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Abstract. D. Brannan’s conjecture says that for 0 < α, β ≤ 1, |x| = 1, and n ∈ �

one has |A2n−1(α, β, x)| ≤ |A2n−1(α, β, 1)|, where

(1 + xz)α

(1 − z)β
=

∞∑
n=0

An(α, β, x)zn.

We prove this for the case α = β, and also prove a differentiated version of the Brannan
conjecture. This has applications to estimates for Gegenbauer polynomials and also
to coefficient estimates for univalent functions in the unit disk that are ‘starlike with
respect to a boundary point’. The latter application has previously been conjectured
by H. Silverman and E. Silvia. The proofs make use of various properties of the Gauss
hypergeometric function.

2000 Mathematics Subject Classification. Primary 30C50; Secondary 33C05,
33C45.

1. Introduction. Let

(1 + xz)α

(1 − z)β
=

∞∑
n=0

An(α, β, x)zn, α, β > 0. (1.1)

In the context of coefficient problems for functions with bounded boundary rotation
the question arose for which combinations of α, β, n > 0 the relation

|An(α, β, x)| ≤ |An(α, β, 1)|, |x| = 1, (1.2)

will hold. Special cases have been discussed in various papers. After the verification of
(1.2) for n ≤ 13 (assuming α = β ≥ 1) by D. Brannan, J. G. Clunie & W. E. Kirwan [5]
the case α ≥ 1 (with β = 1, n ∈ �) were established by D. Aharonov and S. Friedland
[2], and these imply (1.2) for α, β ≥ 1, n ∈ �. Later Brannan [4] showed that the
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situation changes for values of α < 1 and/or β < 1. He proved that for each α, with
0 < α < 1, there exists nα ∈ � such that

max
|x|=1

|A2n(α, 1, x)| > A2n(α, 1, 1), n > nα. (1.3)

Based on a theorem for n = 3 and numerical data for larger n Brannan then made the
following conjecture.

CONJECTURE 1. (Brannan [4]). The relation (1.2) holds for 0 < α, β ≤ 1 and
odd n.

This conjecture, for the special case β = 1, has been established by Brannan [4]
(n = 3), J. G. Milcetich [7] (n = 5) and recently by R. W. Barnard, K. Pearce and
W. Wheeler [3] (n = 7). For the cases α = β it has been verified by H. Silverman and
E. Silvia [8] (n = 3; for the context of their work compare Section 3) and very recently
by R. Geisler [6] for n ≤ 33, making heavy use of computer algebra.

Our main result here is the following theorem.

THEOREM 1. The Brannan conjecture holds for the cases α = β =: λ ∈ (0, 1), i.e.

|A2n−1(λ, λ, x)| ≤ |A2n−1(λ, λ, 1)|, |x| = 1, n ∈ �. (1.4)

Another question, related to the subject of the Brannan conjecture, arises for the
coefficients of

1
(1 + xz)α(1 − z)β

=
∞∑

n=0

An(−α, β, x)zn.

It is clear that for α, β > 0 and n ∈ � we always have

max
|x|=1

|An(−α, β, x)| = |An(−α, β,−1)|,

so it seems that nothing interesting is to be discovered here. However, the situation
changes if we look at the quantities

max
|x|=1

q(x)γ |An(−α, β, x)| (1.5)

for some positive γ and

q(x) :=
∣∣∣∣1 + x

2

∣∣∣∣ .
Now we find something similar to the assertion in the Brannan conjecture.

THEOREM 2. For 0 < α, β with α + β ≤ 2 and n ∈ � we have

q(x)
α+β

2 |A2n(−α, β, x)| ≤ |A2n(−α, β, 1)|, |x| = 1. (1.6)

Note that A2n−1(−α, α, 1) = 0 for α > 0, so that nothing like (1.6) can be expected
for odd indices in general.

Writing A′
n(α, β, x) := ∂

∂x An(α, β, x) we find that

(1 − α)An(−α, β, x) = A′
n+1(1 − α, β, x).
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Looking at Theorem 2 in this way, it actually turns out to be a differentiated version
of the inequality in Brannan’s conjecture, with slightly different restrictions on α, β.

COROLLARY 1. For −1 < α < 1 and 0 < β ≤ 1 + α we have

q(x)
1−α+β

2 |A′
2n−1(α, β, x)| ≤ |A′

2n−1(α, β, 1)|, |x| = 1, n ∈ �. (1.7)

Theorem 2, for α = β, has an interesting interpretation in terms of the Gegenbauer
orthogonal polynomial system. These polynomials C(α)

n (t), for α > 0, are given through
a generating function (see [1, 22.9.3]):

1
(1 − 2tz + z2)α

=
∞∑

n=0

C(α)
n (t)zn.

This implies that

An(−α, α,−e2iϕ) = einϕC(α)
n (cos ϕ),

and Theorem 2 gives

COROLLARY 2. For 0 < α ≤ 1, n ∈ �, we have

(1 − t2)
α
2
∣∣C(α)

2n (t)
∣∣ ≤ ∣∣C(α)

2n (0)
∣∣, t ∈ [−1, 1]. (1.8)

It is easily checked that this is not generally true for α > 1, which also proves the
sharpness of the bound α + β ≤ 2 in Theorem 2.

Corollary 2 is an improvement over the known estimate [1, 22.14.3]

(1 − t2)
α
2
∣∣C(α)

m (t)
∣∣ <

(m/2)α−1

�(α)
, t ∈ [−1, 1], α ∈ (0, 1),

for even m.
Using the hypergeometric function

2F1(a, b, c, z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn,

we find that

An(α, β, x) = (β)n

n! 2F1(−n,−α, 1 − β − n,−x), (1.9)

where (a)n := a(a + 1) . . . (a + n − 1) is the Pochhammer symbol. It turns out that both
Theorems 1 and 2 are contained in the following result concerning 2F1.

THEOREM 3. Let 0 < α, β with α + β ≤ 2 and n ∈ �. Then

q(x)
α+β

2 |2F1(−2n, α, α + β, 1 + x)| ≤ 2F1(−2n, α, α + β, 2), |x| = 1. (1.10)

The proofs of these results are given in the next section. Section 3 contains a
discussion and partial proof of a conjecture of H. Silverman and E. Silvia [8], which
is closely related to the Brannan conjecture and has an interesting application to the
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coefficient problem for univalent functions f in the unit disk �, with f (�) ‘starlike with
respect to a boundary point’.

2. Proofs of Theorems 1–3.

Proof of Theorem 3. For α > 0, β > 0, |x| = 1 we have (compare [1, 15.3.1])

2F1(−2n, α, α + β, 1 + x) = �(α + β)
�(α)�(β)

∫ 1

0
tα−1(1 − t)β−1(1 − t(1 + x))2ndt,

so that we have to estimate

R(x) :=
∣∣∣∣(1 + x)

α+β

2

∫ 1

0
tα−1(1 − t)β−1(1 − t(1 + x))2ndt

∣∣∣∣ . (2.1)

Using τ := 1 − t(1 + x) and Cauchy’s theorem for the triangle with the vertices 1, 0,−x
we find that

R(x) =
∣∣∣∣∣
∫ −x

1

(
1 − τ√
1 + x

)α−1 (
x + τ√
1 + x

)β−1

τ 2ndτ

∣∣∣∣∣
=

∣∣∣∣−
∫ 1

0
+

∫ −x

0

∣∣∣∣
=

∣∣∣∣
∫ 1

0

(
S(x, τ ) + (−1)2nx2n+1T(x, τ )

)
τ 2ndτ

∣∣∣∣ ,
with

S(x, τ ) : =
(

1 − τ√
1 + x

)α−1 (
x + τ√
1 + x

)β−1

,

T(x, τ ) : =
(

1 + xτ√
1 + x

)α−1 (
x(1 − τ )√

1 + x

)β−1

.

To prove R(x) ≤ R(1), it suffices to show

|S(x, τ )| + |T(x, τ )| ≤ S(1, τ ) + T(1, τ ), |x| = 1, 0 ≤ τ ≤ 1.

For τ fixed this is equivalent to

U(x) := (1 − τ )γ |x + τ |γ
|1 + x|γ

[
q(x) + 1

q(x)

]
≤ U(1),

where

γ := α + β − 2
2

, q(x) :=
∣∣∣∣1 − τ

x + τ

∣∣∣∣
(α−β)/2

.

Since q(x) + 1/q(x) ≤ q(1) + 1/q(1) and γ ≤ 0 it remains to show that

|x + τ |
|1 + x| ≥ 1 + τ

2
, |x| = 1,

which is easily verified. �
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Proof of Theorem 1. Using

(
1 + xz
1 − z

)λ

=
(

1 + (1 + x)z
1 − z

)λ

=
∞∑

k=0

(
λ

k

)
(1 + x)k

(
z

1 − z

)k

we find

An(λ, λ, x) =
n∑

k=1

(
n − 1
k − 1

)(
λ

k

)
(1 + x)k, n ≥ 1,

(compare also Todorov [9]) which can be written as

An(λ, λ, x) = λ (1 + x) 2F1(1 − n, 1 − λ, 2, 1 + x), n ≥ 1.

The assertion follows from Theorem 3 using α := 1 − λ, β := 1 + λ and with n replaced
by n − 1 (which, by assumption, is even). �

Proof of Theorem 2. Using (1.9) and the general formula [1, 15.3.6]

2F1(A, B, C, Z) = �(C)�(C − A − B)
�(C − A)�(C − B) 2F1(A, B, A + B + 1 − C, 1 − Z)

+ �(C)�(A + B − C)
�(A)�(B)

(1 − Z)C−A−B

× 2F1(C − A, C − B, 1 + C − A − B, 1 − Z),

valid for | arg(1 − Z)| < π , we obtain

An(−α, β, x) = (α + β)n

n! 2F1(−n, α, α + β, 1 + x).

The conclusion follows from Theorem 3. �

3. The Silverman-Silvia conjecture and functions starlike with respect to a boundary
point. In connection with their work on univalent functions f in the unit disk �,
with f (�) ‘starlike with respect to a boundary point’ H. Silverman and E. Silvia [8]
independently proposed a conjecture which is an extended version of the special case
α = β of the Brannan conjecture 1. For odd n (and α = β) the two conjectures actually
coincide (and have been settled in Theorem 1 above). The remaining part of their
conjecture is as follows.

CONJECTURE 2. (Silverman & Silvia). Let α = β =: λ. For n ∈ � even there exists
a unique λn ∈ (0, 1) such that

|An(λ, λ, x)| ≤ |An(λ, λ, 1)|, |x| = 1,

holds for λn ≤ λ ≤ 1 but fails to hold for 0 < λ < λn.

Conjecture 2 has been verified by Silverman and Silvia [8] for n = 2 (λ2 = 1/
√

2,
see also Brannan [4]), and by P. Todorov [9] for n = 4 ( λ4 = 0.74 . . . , a solution of a
bi-cubic equation).

We have the following partial solution for Conjecture 2.

https://doi.org/10.1017/S0017089507003400 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089507003400


50 STEPHAN RUSCHEWEYH AND LUIS SALINAS

THEOREM 4. For n ∈ � even there exist numbers 0 < λ∗
n ≤ λ∗∗

n < 1 such that for
λ ≥ λ∗∗

n we have

|An(λ, λ, x)| ≤ An(λ, λ, 1), |x| = 1, (3.1)

and for 0 < λ < λ∗
n

max
|x|=1

|An(λ, λ, x)| > An(λ, λ, 1). (3.2)

Conjecture 2 claims that λ∗
n = λ∗∗

n which we cannot prove yet. However, there is
strong evidence that the equation

∂2

∂ϕ2

∣∣An(λ, λ, eiϕ)
∣∣2

∣∣∣
ϕ=0

= 0

has exactly one solution λ ∈ (0, 1) for even n, and that this solution equals both, λ∗
n

and λ∗∗
n , and therefore represents λn. This is true, at least, for the solved cases n = 2, 4.

The work of Silverman and Silvia [8] shows that Theorems 1 and 4 are the required
final bits of information for the proof of the following theorem. For the background
we refer to their paper and omit further details.

THEOREM 5. Let f (z) = ∑∞
n=0 anzn be univalent in � such that

(i) f (0) = 1, limr→1 f (r) = 0,
(ii) There exist γ, λ ∈ � with 0 < λ ≤ 2 such that |arg(eiγ f (z))| < 1

2λπ, z ∈ �,
(iii) f (�) is starlike with respect to the boundary point 0.

Then

|a2n−1| ≤ A2n−1(λ, λ, 1), n ∈ �. (3.3)

Furthermore, if λ ≥ λ∗∗
n , we have

|a2n| ≤ A2n(λ, λ, 1).

All these bounds are sharp and attained for f (z) = ((1 + z)/(1 − z))λ.

Proof of Theorem 4. Let n ∈ �. We define

an(λ, x) := −�(1 + λ)�(1 − λ)
λ

An(λ, λ, x),

and, by the same manipulations as in the proof of Theorem 3, we find that

an(λ, x) =
∫ 1

0

[(
1 − τ

x + τ

)λ

τ n−1 − (−x)n
(

x + τ

1 − τ

)λ

τ n−1

]
dτ.

For 1
2 ≤ λ ≤ 1 and x = eiϕ we write an(λ, x) = I1(ϕ) + I2(ϕ) + I3(ϕ), where

I1(ϕ) =
∫ 1

0

(
1 − τ

x + τ

)λ

τ n−1 dτ,

I2(ϕ) = −(−x)n
∫ 1/2

0

(
x + τ

1 − τ

)λ

τ n−1 dτ,

I3(ϕ) = −(−x)n
∫ 1

1/2

(
x + τ

1 − τ

)λ

τ n−1 dτ.
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Then

|I1(ϕ)| ≤
∫ 1

0

∣∣∣∣1 − τ

x + τ

∣∣∣∣
λ

τ n−1 dτ ≤ 1,

|I2(ϕ)| ≤
∫ 1/2

0

∣∣∣∣x + τ

1 − τ

∣∣∣∣
λ

τ n−1 dτ ≤ 2.

Now let δ > 0 and assume that δ ≤ |ϕ| ≤ π . Then

|I3(ϕ)| ≤
(

max
{ψ,λ,τ }∈Gδ

∣∣∣∣eiψ + τ

1 + τ

∣∣∣∣
λ
) ∫ 1

1/2

(
1 + τ

1 − τ

)λ

τ n−1 dτ ≤ m(δ)I3(0),

where Gδ = {{ψ, λ, τ } : δ ≤ |ψ | ≤ π, 1
2 ≤ λ ≤ 1, 1

2 ≤ τ ≤ 1} and m(δ) < 1. Note that

I3(0) ≥ 21−n
∫ 1

1/2
(1 − τ )−λdτ → ∞, (λ → 1),

so that ∣∣∣∣an(λ, x)
an(λ, 1)

∣∣∣∣ ≤ 3 + m(δ)I3(0)
|I3(0) − 3| = m(δ) + o(1), (λ → 1).

The same conclusion holds for an(λ, x) replaced by An(λ, λ, x), and implies that

lim sup
λ→1

sup
δ≤|ϕ|≤π

∣∣∣∣An(λ, λ, eiϕ)
An(λ, λ, 1)

∣∣∣∣ < 1. (3.4)

To complete our proof we need to estimate |An(λ, λ, eiϕ)| in the neighborhood of ϕ = 0.
A simple calculation yields

An(λ, λ, x) =
n∑

k=0

(
λ

k

)(
λ + n − k − 1

n − k

)
xk =:

n∑
k=0

bk(λ)xk,

and expanding h(λ, ϕ) := |An(λ, λ, eiϕ)|2 at ϕ = 0 gives

h(λ, ϕ) = h(λ, 0) − ϕ2 1
2

n∑
k=0

n∑
j=0

(j − k)2bk(λ)bj(λ) + M(ϕ, λ)ϕ3,

where M(ϕ, λ) is uniformly bounded by a constant M in some set [µ1, 1] × [−δ, δ] with
µ1 < 1, δ > 0. One easily finds that

1
2

n∑
k=0

n∑
j=0

(j − k)2bk(1)bj(1) = 1,

so that, by continuity, we have

wn(λ) := 1
2

n∑
k=0

n∑
j=0

(j − k)2bk(λ)bj(λ) >
1
2
,
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for all µ2 ≤ λ ≤ 1, for some µ2 < 1 Hence, for |ϕ| sufficiently small and all λ in some
interval (µ3, 1] we have∣∣∣∣An(λ, λ, eiϕ)

An(λ, λ, 1)

∣∣∣∣
2

≤ 1 − ϕ2
1
2 − Mϕ

|An(λ, λ, 1)|2 ≤ 1.

Together with (3.4), with a sufficiently small δ, this proves the existence of λ∗∗
n < 1 with

|An(λ, λ, x)| ≤ |An(λ, λ, 1)|, |x| = 1, λ ≥ λ∗∗
n ,

for every n ∈ �.
Furthermore, one readily verifies that wn(λ) = (−1)n+1λ2 + O(λ3), so that

h(λ, ϕ) > h(λ, 0) holds for small values of λ > 0 and ϕ (n even, fixed). This proves
the existence of λ∗

n as asserted. The proof of Theorem 4 is complete. �
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