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Particle paths of general relativity as

geodesies of an affine connection

R. Bur man

This paper deals with the motion of incoherent matter, and

hence of test particles, in the presence of fields with an

arbitrary energy-momentum tensor. The equations of motion are

obtained from Einstein's field equations and are written in the

form of geodesic equations of an affine connection. The

special cases of the electromagnetic field, the Proca field and

a scalar field are discussed.

1. Introduction

In general relativity, matter can be described by an energy-momentum

tensor, or by singularities in the field with the empty space field

equations applicable outside the singularities [1]. With the former

description, it is easily shown that the equations of motion of incoherent

matter follow from the field equations; in the absence of

non-gravitational fields, the particles follow geodesies of the Riemannian

space of general relativity. In particular, this result applies to a

single test particle, as is seen by taking the density to be proportional

to a delta function [9, pp. 19-20]. Einstein, Infeld and Hoffman derived

the equations of motion of gravitating particles in their total

gravitational field by using the second description.

In general relativity, the equations of motion of a test charge in an

electromagnetic field can be written as the equations of geodesies in a

Finsler space or in a five dimensional Riemannian space [9, p. 85]. They

can also be expressed, by suitably choosing an affine connection, in the
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form of the geodesic equations of that connection [Z]; the affinity is

the sum of the usual Riemann-Christoffel symbol and a third-rank tensor

which depends on the electromagnetic field and the particle's it-velocity.

In the present paper, this result is generalized to particles in fields

having an arbitrary energy-momentum tensor. Some particular fields are

then discussed.

2. The equations of motion

Consider a four dimensional Riemannian space with coordinates a;"

and interval ds given by ds = g dx dx , [g ) being the metric

tensor. The contracted curvature tensor and the curvature scalar are

written (i? ) and R . Covariant differentation is denoted by a

semi-colon.

The field equations of general relativity are

(1) i?VV + (X - i i ? ) / V = - < K V + 5PVJ

where A i s the cosmological constant and K is a constant, while

(M J and (S J are the energy-momentum tensors of matter and the

(non-gravitational) f i e l d s , respectively. For incoherent matter (dust)

MVV = puVuV , p being the proper density and (uV) the U-velocity

[cdx /ds) , a being the speed of l ight in empty space.

Since the divergence of the l e f t side of the set ( l ) vanishes,

(2a) KV = ^ V . v

(2b) = uu(pM
v).v + Puv.y

where

(3) KV E-SVV .
; v

It follows from u u = a2 , that [u u )_ and hence u u _ vanish.

So multiplying through by u and summing over p •, (2b) leads to
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(1*) (pu )... = — «
c2 y

Substituting (h) into (2b) gives

(5) u wM.,, = - ^ - —uK u"

- the equation of motion of the matter.

From the general expression for a covariant derivative

where a comma denotes ordinary partial differentiation and the braces

denote the Christoffel symbol of the second kind. Thus, since

uV = odx Ids , (5) has the alternative form

(7) ^ + ( M } ̂ L ^ = -±-\KV - -i- u A
ds2 >-T v' ds ds pe2^ e2 a

If the right side of (5) or (T) vanishes, the particles follow

geodesies in the Riemannian space of general relativity. This occurs if

(KV) vanishes or if [KV) and (uV) are parallel.

The term in S y V in (l) could be regarded as modifying Einstein's

field equations, and thus being appropriate to the left side of ( l ) ,

rather than as being part of the energy-momentum tensor. Such a

modification was introduced by Hoyle [4, 5] in his original treatment of

continuous creation. Equation (T) is equivalent to one stated by Hoyle

3. The affinity

Consider the set of quantities defined by

(8)

in which the A are components of a third rank tensor. The sum of an
01 p

affinity and a tensor of the appropriate type is always an affinity, so T

is one. Covariant differentiation with respect to T will be denoted by a
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dot. Henc e

(9) u v u v = u v \ u v + A v u
.v { ;v x v

Substituting (5) into (9), it is seen that

(10) M V V = 0

provided A satisfies

(11) A V u"uu
p

Equation (10) can be written in the alternative form

j 2 T v ds ds '

which can be obtained directly by using (8) and (ll) to eliminate the

Christoffel symbol from (7). Equation (12), like (10), is the equation of

the geodesies of the affine connection T : the paths of test particles

can be described by such geodesies.

From the general expression for a covariant derivative, it follows

that

( 13) q . = q -A -A
yv.p vv;p pvp vpp

Hence, if A is chosen so that A = -A ,

Given an affinity F , consider the set of quantities defined by

(15) r>v = r p + 6 V , + 6 »V + B vo

where V is an arbitrary vector and B an anti-symmetric third rank

tensor; these form an affinity I" with the same geodesies as T [7 ,

p. 55]. If V = 0 and the torsion vector of B vanishes, {Ik) holds

with respect to the affinity V , if it does with respect to V .

Equation (12) shows that the geodesies of Y are unaffected by its

anti-symmetric part. The same geodesies will be obtained if A above is
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replaced by its symmetric part; but for (ik) to hold, T will in general

be non-symmetric.

A "dual affinity" [2] can be introduced by defining

where

ri being the permutation tensor. Covariant differentiation with respect

to *F will be denoted by an asterisk. Since (*4 ) is anti-symmetric

in the first two indices, g ^ vanishes. The geodesies of *T are not

those of F .

The next section will deal with a special form for A .

4. A special choice of affinity

Here, A will be chosen to have the form given by

x v T Wv

where B is a second rank tensor, with [B ) anti-symmetric; (lit) is
ag)

satisfied. Since u u = a2 , the condition (ll) becomes

(19)
c2

I t may be noted that

(20) B = B
liv.p U v ;p

The torsion vector is given by

V [po] [li o]

So, using (18) and (19),

(22) r = i B °u = -^—[K - — u Xau ]
2pc v a '

since, because of the anti-symmetry of (fl ) , B vanishes. The
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torsion vector vanishes if [K ) vanishes or if [KV) and (uV) are

parallel; if [K ) and [u ) are perpendicular, (r ) is proportional

to (Kj .

Two further tensors are now defined by

(23) I V = i A aA
aV& =^-B B a V

p 2 yaB 2 pa

and

(2U) J = A B A&a = S BBBau u .
yv agy v aB u v

These can be regarded as geometrical quantities, defined in terms of part

of the affinity. Hence the matter tensor can be expressed in terms of

geometrical quantities through

(25) «uv = PVv = p f l 2 V < '

provided J does not vanish.

In addition to la , another invariant can be obtained from B ;

in / V V P = T I syv5ap

= C 2 * s B^v
yv

where *B is the dual of B .

Using (18), (17) becomes

(27) M o = *B ou .
v '' aBx oB x

The corresponding torsion vector is given by

(28) *ry = i *BV\ .

Also *B * = *B
yv*p yv;p
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5. Particular fields

5.1 The electromagnetic field

The electromagnetic field in free space can be represented by an

anti-symmetric second rank tensor (<j> ) which, in general relativity,

satisfies

(29) <j> , +•<(>, + <f> . = 0 ,
yyA,v YAv,y Yvy,A '

y , n l ,yv _ hir .y
(30) <j> ; v - — 3 ,

where the current density U-vector is given by j = puV , p being the

proper charge density. The energy-momentum tensor has components [3,

p. 182]

(31) 5 v = -±-U 4>aV + - 6 V* <t>°

Using (31), (29) and (30) in the definition (3):

giving the l*-force per unit proper volume acting on the matter.

Choosing

(33) B " «. _ - L <,/ ,
pc3

it is seen, using (32b), that the condition (19) is satisfied. The

affinity is now essentially that chosen by Droz-Vincent [2]. Since

u Ka = 0 , the torsion vector is proportional to (Kv) : from (22) and

(32b)

The energy-momentum tensor components can be expressed, using (23),

by

pj I"
8 v = Jj££i|2(j v - ± 6 V ] .

V 2TT[ J { V i y a j
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Droz-Vincent expressed S and M in terms of geometrical quantities

by using both the affinity and its dual.

The invariants J° and (26) become proportional to E2 - H2 and

E.H , where E and H are the electric and magnetic fields.

Apart from factors involving a , p and p , (25) and (35) express

the matter tensor and the electromagnetic energy-momentum tensor in terms

of I and J , which can be thought of as geometrical quantities, defined

in terms of the affinity. Equation (25) fails if E2 = H2 .

The affinity depends on the U-velocity of the matter and on the

ratio of mass and charge densities, as well as on the electromagnetic •

field. For an individual test charge, the affinity depends on its

It-velocity and its charge to mass ratio: the affinity is not an "external"

property of the space, independent of the test particle.

5.2 The Proca field

The Proca field is represented by a It-vector potential [A ) in

terms of which the field tensor is defined by (j) = A - A . The

fields satisfy

(36) <|> , + <|>. + (j> . = 0

and

(37) ^^ m h L ^ . kzAv} f

which reduce to Maxwell's equations when the constant k is zero.

Consider the energy-momentum tensor with components [6]

a]( 3 8 ) s v = 1 L 4,av + i 6
 V4 < H + —\AA° - i 6 VA A

This gives, using (36) and the definition of $ in (3),

(39) K =fi«|, <f,av - £-L Av + A A
v

Using kzAv_ = 3V . » which follows from (37), and (37) itself, (39)
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•becomes

\

Choosing

it is seen, using (1*0), that the condition (19) is satisfied. From (22)

and (U0), the torsion vector has components

5.3 A scalar field

Consider a scalar field ty , and l e t 4> denote <j> . Choosing

(U3) B = —(u <j> -<j) M ) ,
TlJ p e " T u T v

it is seen that the condition (19) is satisfied it K = - <t> .

Consider the energy-momentum tensor with components

(MO s = hU * - 4 g (t t

where ?z and k are constants. This gives K = - 41 provided

satisfies

(U5) *V.V - fe
2* = I •

If ua<f> = 0 , use of (1*3) in (23) leads to

(1*6) I V = —=i [• ̂  + — tt

and hence

(1*7)

Thus, using (25) to eliminate u u ,
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So i f u <j> = 0 and k = 0 , (M) can be written

•(U9) S =Hvc2)2Uj -21 + 1 g J°] ,
yv (2 yv yv 2 wyv oj '

which can be thought of as expressing the energy-momentum tensor in terms

of geometrical quant i t ies .

6. Concluding remarks

This paper has dealt with the motion of incoherent matter, and hence

of test particles, in the presence of fields with an arbitrary

energy-momentum tensor. By expressing the total energy-momenturn tensor as

the sum of a part due to the matter and a part due to the

(non-gravitational) fields, the equations of motion follow from Einstein's

field equations of general relativity. By suitable choice of affine

connection, the equations of motion have been expressed as the equations

of geodesies of the connection. The affinity is the sum of the usual

Christoffel symbol and a part which depends on the fields. If the

energy-momentum tensor of the fields is expressed as the sum of parts due

to separate fields, the parts will contribute additively to the affinity.

A particular form of affinity was chosen with respect to which the

covariant derivative of the metric tensor [g J vanishes; the affinity

is then, in general, non-symmetric. For a test particle, the affinity

depends on its k-velocity and on ratios of coupling constants, such as

its charge and mass: the affinity is not an "external" property of space,

independent of the test particles.
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