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Abstract

In a finite Desarguesian plane of odd order, it was shown by Segre thirty years ago that a set
of maximum size with at most two points on a line is a conic. Here, in a plane of odd or even
order, sufficient conditions are given for a set with at most three points on a line to be a cubic
curve. The case of an elliptic curve is of particular interest.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 51 E 15, 14 H 25.

0. Notation

GF(q) the finite field of ¢ elements
PG(2,q) the projective plane over GF(q)
PG (2,q) the set of lines in PG(2,q)

P(X) the point of PG(2,q) with coordinate vector X
Uo P(1,0,0),

U, P(0,1,0)

U, P(0,0,1)

U P(1,1,1)

PQ the line joining the points P and @

I(P,Q) PQ

(P) the group generated by P
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1. Background

In PG(2,q), a (k;n)-arc is a set of k points with at most n points on any line
and with » points on some line. A (k;2)-arc is also called a k-arc. A (k;n)-arc is
complete if there is no (k+ 1; n)-arc containing it. First we state some problems.

I When i3 a (k;n)-arc an irreducible algebraic curve of degree n?

More generally, one can ask the following.

II When is a (k;n)-arc contained in an irreducible algebraic curve of degree
n?

A more restricted problem can be posed.

III When is an irreducible algebraic curve of degree n complete as a (k;n)-arc?

Much is known about these questions for n = 2. In this paper we consider
them for n = 3.

For n = 2, some answers are by now classical. Up to projectivities, there is
only one irreducible algebraic curve of degree 2, which we call a conic. The most
elegant theorem, due to Segre (1956), answers problem I completely for ¢ odd.

A For q odd, a (¢ + 1)-arc is a conic.

A partial answer to II is given also by Segre (1967).

B1 For q odd and k > q — %./g+ %, a k-arc is contained in a unique conic.
To show that this is not best possible there is a recent result due to the second
author [23].

B2 For q an odd prime p and k > 44—5(1111 + 10), a k-arc is contained in a
unique conic.

Problem III is trivial for n = 2.

C A conic i3 a complete (g + 1)-arc for q odd but an incomplete (q + 1)-arc
Jor g even which can be completed uniquely to a (¢ + 2)-arc.

For comparable results to (A) and (B) when ¢ is even, see [4] Chapter 10 and
Thas [20], [21]; the latter contains a slight improvement on (B1) for odd q.

As an indication of the difficulty of the problem, it is worth noting that
neither m,(2,¢), the maximum number of points on a (k;n)-arc, nor N,(g),
the maximum number of points on a non-singular algebraic curve of genus g, is
known in general. We survey these values briefly, giving the principal results.
First,

(1.1) No(9) < q+1+29/3,
where, if a plane curve of genus g has degree n, then 2g < (n—1)(n—2). For a
survey, see (6], Appendix IV and [16], [17], [18]. Also

(1.2) Mmn(2,9) < (n—1)g+n
with equality implying that n = g+ 1 or n divides g. When ¢ = 2* and n divides
q, then

mn(2,9) = (n—1)g +n.
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Also
g+1, qodd,

ma(2,q) = { qg+2, gqeven.
Apart from the cases of n = 2 or ¢ even, very few results are known. For small
values of n and g,
2¢+3 forq=2,3,
m3(2,q) =4 2q+1 forg=4,5"7,
2¢—1 forg=38,9,
3¢g+1 forq=5,7,9,
my(2,9) = {
3g+4 for g=28,
ms(2,q) =4¢9+1 for ¢=7,8,9,
5¢+1 forq=171,
me(2,9) = ¢ 5¢+2 for g=28,
5¢+3 forg=29,
my(2,9) =6g+1 for ¢q=38.

For a survey on my,(2, q), see [5] and [4] Chapter 12. See also [1], [10].

Apart from the central results (A) and (B), there have been characterizations
of other rational curves (g = 0) obtained by using birational transformations of a
conic and then applying (B1). See [4], Chapter 12, Tallini Scafati [19], Keedwell
[7], [8], Raguso and Rella [12], [13], [14].

2. Cubic arcs and cubic curves

We now turn to the case of (k; 3)-arcs, also called cubic arcs, and cubic curves.
It is desired to solve problem I when n = 3. Tallini Scafati used (B1) of §1 to
solve the problem for rational cubic curves with the following result.
D Let Z be a (k;3)-arc in PG(2,q), q odd and q > 11, with the following
properties:
(i) Z contatns four distinct points P, Py, Py, P3 such that
(a) there i3 no 3-secant of Z through P,
(b) any conic through P and one P; meets & in at most three other points;
(ii) k> q- 3/7+19/4.
Then Z is contained in a rational cubic with a double point at P.
It therefore remains to look at (k; 3)-arcs and elliptic cubic curves. Firstly it
must be noted that there are many (k; 3)-arcs which are not elliptic curves.
The number of projectively distinct elliptic cubics in PG(2, q) is roughly 3q.
More precisely, if P, is this number and A, is the number with at least one
inflexion, then the numbers are given by Table 1, in which ¢ = m (mod 12).
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TABLE 1

m 3 9 2,8 4 1 7 5 11
Ay 29+2 29+4 2¢+1 2g+5 29+6 2q+4 2¢+2 2q
P, 3¢g+1 3¢q+3 3q 3¢g+6 3g+7 3¢g+5 3g+1 3¢g-1

The number C(k, q) of projectively distinct (k;3)-ares is hard to calculate. By
way of example, C(11,5) = 2, {11]; C(7,8) = 98, [25]. In contrast, if E(k,q) is
the number of projectively distinct elliptic cubics with precisely k points, then
E(11,5) = 0, E(7,8) = 0. In fact, the number k of points on an elliptic curve
satisfies

g+1-2/g<k<q+1+2/q

and can take every value in this interval other than ¢ + 1 + mp, where ¢ = p"
with p prime. For these results, see [24], [15], [2], [9]. In [15] the value of E(k,q)
is calculated.

The most important property of an elliptic cubic & is that it is an abelian
group. Choose any point O as the zero. If P, Q are any points of &, then PQ
meets & in a further point R, which is taken as P if PQ is the tangent at P.
Then RO meets & again at P + Q. If O is an inflexion, then P;, P,, P; are
collinear if and only if Py + P, + P3 = O.

From the above properties it follows that certain restrictions must be placed
on a (k;3)-arc Z to make it an elliptic curve. Certain axioms evolve naturally.
Firstly, £ requires a zero and we make it an inflexion:

(E1) there exists O in % such that IN.Z = {O} for some line !.

Next, we require a specific tangent at each point of 7 other than O:

(E2) there exists an injective map 7:.#\{O} — PG(!)(2,q) such that P € Pr

and |[PrNZ|=1or 2.
Note that (E2) does not specify a tangent at O. The axiom (E1) says that more
than one such tangent may exist. This is naturally weaker than specifying the
tangent at O. It would be unsatisfactory to show that 7 lies in a cubic curve
& when one unisecant of % is chosen as a tangent at O but not one other is
chosen. Now, it is necessary to ensure that there are no bisecants of Z other
than tangents:

(E3) if P, Q € Z and PQ # Pr or Qr, then PQ) meets Z in three distinct

points P, @, R.
It follows from (E1)-(E3) that Z has at most k& — 1 bisecants. Also there is
no cubic curve whose tangents are concurrent at a point of the curve. So (E3)
ensures that a cubic curve containing .Z has no double point in Z. Further,
(E1)-(E3) are insufficient to ensure that the group law holds on Z; for an
example, see the Appendix. It is therefore necessary to introduce a further
axiom.
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For each point P in %, define the point P as follows.

(i) 0=0;

(ii) if P # O and Pr # PO, define P to be the third point of PON.%Z other
than P and O;

(iii) if P # O and Pt = PO, define P = P.
Now, for each pair of points P, Q in . %, define the point P * Q:

(i) P+P=Pif Prn%Z = {P};

(ii) Px P=Rif PrNn% = {P,R};

(iii) PxQ =P if P, N% = {P,Q};

(iv) PxQ=Rif PQNZ ={P,Q,R}.
The final axiom for 7 is the strongest:

(E4) Z is an abelian group with identity O such that —P =P and P+ Q =
PxQ.

DEFINITION. A (k;3)-arc % satisfying (E1)—(E4) is called a group-arc or a
k-group-arc.

EXAMPLES. (1) The prototype of a group-arc is the set of points of an elliptic
cubic curve with inflexion at O.

(2) The set of non-singular points of a singular cubic with an inflexion at O
is also a group-arc.

REMARKS. (1) The axiom (E4) is necessary as it is not possible to prove the
associative law on the basis of (E1)-(E3).

(2) Any subgroup of a group-arc is a group-arc.

(3) P+ @+ R =0 if and only if P, @, R are collinear.

The main purpose of this paper is to show that these two examples are the
only ones and thus to provide a characterization of elliptic curves.

THEOREM 2.1. If % is a k-group-arc in PG(2,q) such that either

(a) k is divisible by at least two distinct primes other than 2, 3, 5, or

(b) k = 223%5°p®, where p > 7 is a prime, d > 1 and 2°3%5° > 6,
then Z is a subgroup of the set of non-singular points of a cubic curve.

Note. The only values of k excluded are k = 2°3°5¢,a,b,c > 0, k = ep?, p
prime, p > 7 and 1 < e < 5. This theorem is proved in §4.

3. Preliminary lemmas for the main theorem

Four lemmas are required.

LEMMA 3.1. If P is a point of an arbitrary group-arc, then (P) is uniquely
determined by O, £P, £2P, 3P and (—2P)r.
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PROOF. Let n be the order of P. If n < 6, there is nothing to prove; so,
assume that n > 7. Then

=3P =1(P,2P)N1(0,3P).

If n = 7, all points of (P) have been obtained. If n > 7,
4P = (-P,-3P) N (-2P)r.

If n = 8, again all points of (P) have been determined. If n > 8,
—4P = I(P,3P)N{(0,4P).

Now proceed by induction and assume that O, £P,...,+mP have been deter-
mined for m > 4. Then

~(m+1)P=1(P,mP)NI(2P,(m ~ 1)P),
(m+1)P=1l-P,—mP)NI(O,—(m+1)P),

providing each pair of lines is distinct. If the opposite occurs, then (P) is already
determined by the induction hypothesis.

LEMMA 3.2. Let P be a point of order at least siz of a group-arc. Then (P)
1s a subgroup of a unique cubic curve with inflexion O.

PROOF. By a suitable choice of coordinates we may take (i) O = Uy, (it)
P = U,, (iii) —2P = Uy, (iv) 3P = U. Since Pr = l(P,-2P), (v) Pr = Upl..
As 2P € {0,-2P) and 2P # O, 4P # O, so (vi) 2P = P(1,¢,0), ¢ # 0.
Since ~P = I(3P,—-2P)n!{(0, P), (vii) —P = P(0,1,1). Now, let (viii) (-2P)r
have equation z; = dz;. From conditions (i)-(iii) and (vi)-(vii), the cubic has
equation

A(z?zy — 7,2%) + By 1325 + Bazgz3 + Clcziz, — 723) + Dxyz 20 = 0.

Now, (iv) gives B; + Ba + (¢ — 1)C + D = 0; from (v), By = 0; from (viii),
Bid + Cc = 0. The fact that O is an inflexion gives D + ¢A — C = 0. Hence
A=d-1,B;=0,B; = —¢,C=4d,D =c+ (1—-c)d Thus the cubic is
determined.

LEMMA 3.3. Let & and & be cubic curves and % a k-group-arc which 1s
a subgroup of both & and &. If k > 5, then & = &.

PROOF. The curves & and &; intersect in the points of Z with multiplicity
at least two in the points P of Z other than O, since Pr is the tangent at P
of both & and &. Hence, if & # &, Bézout’s theorem gives 9 > 1 + 2(k — 1),
whence k£ < 5.
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LEMMA 3.4. Let Z be a group-arc contained in a cubic curve & such that
any cyclic subgroup of Z s a subgroup of &. Then F is a subgroup of & .

PROOF. Tangents at P depend only on (P); so tangents are the same in
Z and &. Also, inverses depend only on (P); so inverses are the same in
Z and &. If P, Q € %, then it must be shown that P + Q is the same
in % and & If P = -Q, then P+ Q = O € (P). If PQ = Pr, then
Q@ = -2P and P+ Q = —P € (P); similarly, when PQ = Qr. Otherwise
PQNZ ={P,Q,R} C&;s0oRe&. AsR=—(P+Q)in% and &,s0 P+Q
is the same in % and &.

4. Proof of the main theorem

(i) Assume condition (a). Let p, q be distinct primes dividing &k with p,q > 7.
Let P in Z be a point of order p and @ in % a point of order g. Then P+Q has
order pq and, by Lemma 3.2, we may take & to be the unique cubic containing
(P + @). We shall prove that .7’ is a subgroup of &.

Let R in % be a point of order n and suppose first that p ¢ n. Let &; be the
cubic containing (P + R). As P, R have coprime orders, so both (P) and (R)
are contained in (P + R) and hence in &]. Similarly, (P) is contained in (P + Q)
and in &. As P has order p > 7, so & = & by Lemma 3.3. So (R) is contained
in& =¢&.

Now suppose that p|n and that ¢" is the highest power of g dividing n. Let
m =n/q". Note that pjm and so m > 7. Let &, &;, &, be the cubics containing
respectively (R), (¢g"R), (¢" R+ Q). It will be shown that & = &,. Since R € &,
this will complete the proof.

The group (¢"R) is in both & and &;. As ¢"R has order m > 7, again by
Lemma 3.3 it follows that & = &;. Since ¢"*'R = q(¢"R + Q), the group
(¢"*'R) lies in both &; and &;. As m and q are coprime, ¢"*! R has order m;
Lemma 3.3 delivers that & = &. Finally, mQ = m(¢"R + Q). Since there exist
integers u, v such that um + vg = 1, so Q = umQ. Hence (Q) is in both & and
&3008 =& asq>7. Thus & =&, =& = &,.

(ii) Assume condition (b). By the fundamental theorem for finite abelian
groups,

A =GeG1® &G,

where G; = Z/p%, ¢; > 1,¢1+ -+ ¢ = d, |G| = 2°3°5¢ > 6. Let P; be a
generator of G;, 1 = 1,...,r. If Q € G, then the order of P, + @ is divisible
by p% > 7; so (P; + Q) is contained in a unique cubic & . As P; and Q have
coprime orders, both (P;) and (Q) lie in (P; + Q) and hence in & . Since P;

has order p% > 7, it follows from Lemma 3.3 that, for a fixed ¢, the & ¢ are all
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equal as @ runs through the points of G. Let this common curve be &;; then
G C &;,. So, by Lemma 3.3, all & are equal to the cubic &, say. Thus, G and
G, Gs,...,G, are subgroups of &.

It remains to show that (R) is a subgroup of & for any R in Z. Firstly, &
does not depend on the decomposition of H = G, ®- - -®G,, since the uniqueness
of & follows from the fact that G C & and Lemma 3.3. So, given any point
P in H of order p% for some ¢, we may assume that G; = (P); hence (P) is a
subgroup of &. Also, given any point Q in H we can find P in H of order p%,
some ¢, such that (Q) is a subgroup of (P), which in turn is a subgroup of &.
Hence (Q) is a subgroup of & for all Q in H.

Finally, given Rin Z,wehave R=P+Qwith PinGand Qin H. If R is
not in G or H, then R has order at least 2p and so (R} is contained in a unique
cubic &;. Further, & N & contains mR where m is the order of P. As mR has
order at least p, so & = &; and (R) is a subgroup of &. Lemma 3.4 now shows
that % is a subgroup of &.

5. Elliptic curves as complete arcs

A conic in PG(2, ¢) is a complete (g+1)-arc when ¢ is odd and is an incomplete
{g + 1)-arc when q is even. The question now is to decide when a non-singular
cubic & with k points is a complete (k; 3)-arc.

THEOREM 5.1. Ifq > 79 and q is not a power of 2 or 3, then a non-singular
cubic & with k points is a complete (k; 3)-arc unless j(&) = 0 in which case the
completion of & has at most k + 3 points.

PROOF. Let f(z,y) = 0 be an affine equation for & and let Py € PG(2,9)\&.
The j-invariant of & gives the six cross-ratios of the four tangents from a point of
& to other points of €. Then j(&) = 0 when there are only two distinct values
among the six cross-ratios; the curve is called equianharmonic in this case. We
shall show that if 7(&) # O there exists a line through P, cutting & in three
distinct points.

Let K be the function field of &. Suppose Py = (zo,¥0) and let

1

F(z) = P zf(»’«’,(y —yo)(z — 2o}/ (z — o) + yo)-

Then F(z) is a polynomial of degree 2 in z, lying in K[z}, whose roots give the
two points of & lying on the line through P = (z,y) and P, where P € & and
P is excluded. If F(z) is irreducible over L, the function field of & consider over

the algebraic closure GF(q) of GF(q), then F(z) = 0 defines a double cover of &,
which we denote by & . The curve ¥ is ramified over & at those points (z,y)
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where F(z) has a double root, that is where PP is a tangent to & at the other
intersection; hence there are at most six such points. It follows from Hurwitz’s
formula ([3], p. 299) that the genus of F satisfies 2g — 2 < 6, whence g < 4.

An unramified rational point of & corresponds to a point P in & for which
F(z) splits into two distinct linear factors over GF(q); that is, PP, meets & in
three distinct points. So it suffices to show that ¥ has an unramified rational
point. This will happen if # has at least 7 points, which is true if g+1—8,/g > 7
by the Hasse-Weil theorem; that is ¢ > 79.

It remains to deal with the case that F(z) splits into linear factors over L. So
PyP meets & in two further points P;, P, corresponding to the roots of F(z).
Choosing P, say, we define an automorphism ¢: & — &, given by P¢ = P,
which permutes the points on the lines through Py; the choice of P, gives ¢~ 1.
As ¢ permutes P, Py, P,, it has order 2 or 3. It cannot have order 2, as this would
imply that ¢ has a fixed point on every line through Py, which is impossible. So
¢ has order 3. Since ¢ has a fixed point on every line through P, tangent to &,
we can already conclude that j(&) = 0 ([3], p. 321), proving the first part of
the theorem.

Suppose now that j(&) = 0. The equation of & can be put in the form
y2 = 2% + 1 and its automorphisms fixing (0,0) are given by (z,y) — (bz, cy),
where b = 1, w, or w? with w2 + w+1=0and ¢ =1 or —1. Let ¢ be as above
and let P; = O¢. Then ¢ = ¢ — P fixes O. Note that Py is determined by P;,
since Py is collinear with P, P¢, P¢—1 for all P in &. Also

(5.1) P+ Pp+ Pyl =0.

Now,

(5.2) P$=Py+P,.

Putting P¢~? for P in (5.2) gives P = P¢~19 + Py, whence
(5.3) Py~l =Pyl + Pyt

Hence (5.1) gives
P+(Py+P)+ (Py~l—Py Y =0.

Finally, putting P = O gives P, = Pi¢y~!. As 9 can be taken as one of the
above automorphisms with b # 1 so P, = (0,1), (0, —1) or the point at infinity
on z = 0. So there are at most three choices for P,.

Apart from the possibility of an elliptic curve & being a complete (k; 3)-arc as
in the theorem, it can also contain complete (%k; 2)-arcs when k is even. In [22],
the second author used a similar argument to that of Theorem 5.1 to prove this.
However, the possibility that a certain quadratic polynomial might be reducible
was overlooked. Exactly as in Theorem 5.1, the polynomial is irreducible if
7(&) # 0. So the main result of [22] should read as follows.

https://doi.org/10.1017/51446788700030172 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030172

284 J. W. P. Hirschfeld and J. F. Voloch [10]

THEOREM 5.2. If q is odd and q > 301, then an elliptic cubic curve & in
PG(2,q) with j(&€) # 0 and comprising 2k points contains a complete k-arc.

6. Appendix

We give here an example of a (k; 3)-arc in PG(2, 4) satisfying (E1), (E2), (E3)
but not (E4).

Let 1, I3, I3 be three lines in PG(2,4) concurrent at Py and let Py, Py, P; be
non-collinear points on !y, I, I3 respectively. The nine points on Iy, I3, I3 other
than these four form a (9;3)-arc Z with the following list of properties.

1) Z =& u{Q1,Q2,Q3}, where # is a 6-arc and Q;, @2, Q3 are the three
collinear points completing the PG(2,2) containing Py, Py, Pz, Ps.

(2) The six points R;, 7 = 1,...,6, of # can be regarded as a hexagon #"’
where each side of #” is a 2-secant of Z and any bisecant of /# which is
not a side of &’ contains some Q;. If p; is the number of ¢-secants of %
through one of its points P, then

p3=4spl=1 fOI’P=Qi,i=1,2,3;
p3=3,p2 =2 fOI‘P:R,;, ’I:=1,...,6;
(3) The only cubic curve containing % consists of the three lines Iy, I2, I3.
(4) With #' = Ry RyR3 R4 R5 Rg, choose R;7r = R;R; 1, where Ry = R;.
(5) Z is not a group-arc.
Let i, la, I3 have respective equations 1 = 0, z3 = 0, z; = z3. Define P,
Q:, R; as follows, where w2 +w+1=0:
Po=Uy, P1=U;, Po=U,, P3=10,
QO =P(1a0a 1)5 Q2 =P(1’1)0)7 Q3 =P(03151)’
R, =P(w,0,1), R4=P(w?0,1),
R; = P(w?,1,0), Rs=P(w,1,0),
Rs =P(w?,1,1), Rg=P(w,1,1).
The 3-secants of Z other than @;Q2Q3 are

Qi @1 Q1 Q2 Q2 Q: Q3 Q3 Qs
Ry R Ry R, Ry R4 R; Ry, Ry

Ry R¢ R3 Rs R; R¢ R¢ Rs Ry
Choose @; as the zero of #. Then
(R1+ R4)+ Ry = Q1 + R; = Ry,
Ry + (R4 + Ry) = Ry + Q2 = Rs.

https://doi.org/10.1017/51446788700030172 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030172

[11] Elliptic curves over finite fields 285

So Z satisfies (E1), (E2), (E3) but not (E4) and therefore cannot be contained
in an irreducible cubic curve.
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