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Abstract

The bivariate characterization of stochastic ordering relations given by
Shanthikumar and Yao (1991) is based on collections of bivariate functions
g(x, y), where g(x, y) and g(y, x) satisfy certain properties. We give an
alternate characterization based on collections of pairs of bivariate func­
tions, gt(x, y) and g2(X, y), satisfying certain properties. This characteriza­
tion allows us to extend results for single machine scheduling of jobs that
are identical except for their processing times, to jobs that may have
different costs associated with them.
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1. Preliminaries

For convenience we list the following results for the bivariate characterization of likelihood
ratio, hazard rate, and stochastically ordered random variables (Shanthikumar and Yao
(1991)). Throughout we assume X and Yare independent random variables. For any
bivariate function, g(x, y), define ~g(x, y):= g(x, y) - g(y, x). Also define

~r:= {g(x, y): g(x, y) ~g(y, x) 'Ix ~y},

~r:= {g(x, y): ~g(x, y) is increasing in x 'Ix ~y},

~st:= {g(x, y): ~g(x, y) is increasing in x 'Ix}.

Lemma 1. X~a Y~E[g(X, Y)] ~E[g(Y, X)] veE <§a, for a = lr, hr, st respectively.

2. Main result

Let gt(x, y) and g2(X, y) be two bivariate functions, and let ~g12(x, y) = gt(x, y) - g2(X, y).
We consider the following set of conditions on gt and g2:

(a) ~gt2(X, y) ~ - ~g12(Y' x), i.e. gt(x, y) - g2(X, y) ~g2(Y' x) - gt(y, x), for all x ~y.

(b) ~gt2(X, y) ~ 0, i.e. gt(x, y) ~g2(X, y) for all x ~y.

(c) gt(x, y) ~g2(Y' x) for all x ~y.

(d) gt(y, x) ~g2(X, y) for all x ~y.

(e) gt(x, y) increasing in x for all x ~y.

(f) gt(x, y) decreasing in y for all y ~x.

(g) ~g t2(X, y) increasing in x for all x ~ y.
(h) ~g12(x, y) decreasing in y for all y ~ x.
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Theorem 1.
(i) X~lr Y ¢:)E[gl(X, Y)] ~E[g2(X, Y)] for all s.; s, satisfying conditions (a) and (b).

(ii) X~lr Y ¢:)gl(X, Y) ~icxg2(X, Y) for all s.. s« satisfying conditions (a), (b), and (c).
(iii) X~lr Y ¢:)gl(X, Y) ~stg2(X, Y) for all s.. g2 satisfying conditions (b), (c), and (d)

(and therefore (a».
(iv) X~hr Y ¢:)E[gl(X, Y)] ~E[g2(X, Y)] for all gl' g2 satisfying conditions (a) and (g).
(v) X~hr Y ¢:)s, (X, Y) ~icxg2(X, Y) for all s.. g2 satisfying conditions (a), (b), (c), (e),

and (g).
(vi) X~st Y ¢:)E[gl(X, Y)] ~E[g2(X, Y)] for all s.. s, satisfying conditions (a), (g), and

(h).
(vii) X~st Y ¢:)gl(X, Y) ~icxg2(X, Y) for all s.. s, satisfying conditions (a), (b), (c), (e),

(f), (g), and (h).

Proof·
~: For simplicity, let us assume X and Yare continuous random variables, with densitiesfx

and fy respectively. Then,

E[L\gn(X, Y)] = IL [gl(X, y) - g2(X, y)]fx(x)fy(Y) dx dy

=IL",y {[gl(X, y) - g2(X, y)]fx(x)fy(y)

-[g2(Y, x) - gl(Y, x)]fx(y)fy(x)} dx dy

;S;; IL",y [gl(X, y) - gz(x, y)][fx(x)fy(y) - fx(y)fy(x)] dx dy =: LB

where the inequality follows from (a), which holds in all cases.
(i): From (b) and the fact that X~lrY, we have LB ~ 0, and therefore E[Ag12(X, Y)] ~ O.
(iv) and (vi): The proof goes through as in Shanthikumar and Yao (1991), Theorems 3.4

and 4.3 respectively, using the fact that E[Ag12(X, Y)] ~ LB.
(ii) It is easy to check that if gl and g2 satisfy conditions (a), (b), and (c), and h is any

increasing convex function, then h(gl(X, y» and h(g2(X, y» satisfy (a) and (b), and therefore,
from (i), E[h(gl(X, Y»] ~E[h(g2(X,Y»].

(iii), (v) and (vii): The proof is similar to that of (ii).
¢:: Let g2(X, y) =gl(Y, x). then (a), (c), and (d) hold with equality. That (b) holds is

equivalent to g1 E ~n that (g) holds is equivalent to g 1 E ~n and that (g) and (h) hold is
equivalent to gl E ~st. The result then follows from Lemma 1.

3. Scheduling application

Consider the following scheduling problem. There are n jobs to be scheduled on a single
machine to minimize the total cost, TC = E~=lt(C;), where C; is the completion time of job i,
and t is its 'cost function. We say that /; is steeper than t.. t ~sh, /;- h is non-decreasing. We
assume the cost functions and processing times are agreeable in the sense that if EX; ~EXj

then /; ~ sh for all i and j, where X; is the processing time for job i. For example, the total
cost might be the weighted flowtime, with agreeable weights. Then we have the following,
where SEPT (LEPT) means shortest- (longest-) processing-time-first.

Theorem 2.
(i) If the processing times are likelihood-ratio ordered, and /; is increasing for all i, then the

total cost is stochastically minimized (maximized) by SEPT (LEPT).
(ii) If the processing times are hazard-rate ordered, and t is increasing for all i, then the

total cost is minimized (maximized) in the increasing convex sense by SEPT (LEPT).
(iii) If the processing times are stochastically ordered, and t is increasing and concave for

all i, then the expected total cost is minimized (maximized) by SEPT (LEPT).
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Proof. Suppose policy Jr schedules job j immediately following job i, where EX; ~EXj. Let
n' be the same as Jr except for interchanging jobs i and j. We condition on the processing
times of all the other jobs besides the interchanged jobs. Then the total costs under policies Jr

and x' are

TC 7r := z + {;(w + X;) - t(w + X; + Xj) + h(X; + Xj) =: gt(X;, Xj),

TC 7r , := z + t(w + Xj) + {;(w + X; + Xj) + h(X; + Xj) =: g2(X;, Xj),

where z is the total cost of the jobs scheduled before job i(j) under Jr(Jr'), w is the
completion time of the job scheduled immediately before job i(j) under Jr(Jr'), and
h(X; + Xj) is the total cost of the jobs scheduled after job j(i) under Jr(Jr'). Then one can
easily check that {;~st and j; increasing for alII implies that conditions (a), (b), (c), (d), (e),
and (g) hold (but not (f)), and that if j; is also concave for all I, then condition (h) holds as
well. Thus, TC7r , will be no greater than TC7r in the appropriate sense .by Theorem 1. The
result follows using successive interchanges.

It is also possible to show Theorem 2 using the approach of Chang and Yao (1990) by using
arrangement-increasing functions instead of symmetric functions (Chang, personal com­
munication, 1991). See also Frenk (1991a, b) for related work with weaker ordering relations.
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