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Abstract

We introduce the concept of ‘shift operators’ in order to establish sufficient conditions for the existence
of the resolvent for the Volterra integral equation

x(t)= f (t)+
∫ t

t0
a(t, s)x(s)1s, t0 ∈ Tκ ,

on time scales. The paper will serve as the foundation for future research on the qualitative analysis of
solutions of Volterra integral equations on time scales, using the notion of the resolvent.
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1. Introduction

In [10], the existence of a resolvent kernel r(t, s) corresponding to integral equations
of the form

x(t)= f (t)+
∫ t

0
a(t, s)x(s) ds

is discussed by giving several theorems that provide sufficient conditions on a(t, s).
In this paper, we extend the theory established in [10] to the Volterra integral equation

x(t)= f (t)+
∫ t

t0
a(t, s)x(s)1s,

on time scales, in which integral, summation, and q-integral equations are included as
special cases. There are few papers that deal with the qualitative theory of solutions of
integral equations on time scales. So far as the present authors are aware, the paper of
Kulik and Tisdell [9] is the only one on integral equations on time scales that deals with
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guaranteeing the existence, uniqueness, and boundedness of solutions. In particular,
Kulik and Tisdell [9, p. 105] claim that ‘the importance of integral equations on time
scales is clear: there are no dynamic equations on time scales, there are only integral
equations on time scales’ as ‘in the investigation of dynamic equations on time scales,
the analysis most often turns to that of a related integral equation on time scales’.

In the continuous case, there are volumes written on integral equations where
either the Lyapunov functional or the notion of the resolvent is used to obtain results
regarding the existence of solutions, periodic solutions and stability. The resolvent for
integral equations on time scales has not been developed and the authors intended to
do so in this paper. However, during the preparation of this paper the authors realized
that, in order to prove the continuity of the resolvent, they had to require t − s or t + s
to be in the time scale. This unpleasant restriction led to the idea of ‘shift operators’,
which we state in Definition 3.9. The authors will make use of the shift operators in
future work where Lyapunov functionals are used to prove existence of solutions of
integral equations on time scales. Thus, the notion of shift operators goes beyond this
paper and will have wider positive implications for the general theory of time scales.

A time scale is a nonempty closed subset of real numbers. The delta derivative of a
function f , defined by

f 1(t) := lim
s→t

f (σ (t))− f (s)

σ (t)− s
where s→ t, s ∈ T\{σ(t)}, (1.1)

was first introduced by Hilger [7] to unify discrete and continuous analyses.
In (1.1), σ : T→ T is the forward jump operator defined by σ(t) := inf{s ∈ T : s > t}.
Evidently,

σ(t)=

{
t if T= R
t + 1 if T= Z,

and hence the delta derivative turns into an ordinary derivative if T= R and it
becomes the forward difference operator for T= Z. It is evident from various papers
(see [1, 5, 6, 12] and references therein) that dynamic equations on time scales
are useful tools to explain the differences and similarities between difference and
differential equations. Providing a wide perspective, the theory of time scales also
leads to some new results for both the discrete and continuous cases. Furthermore,
since there are many time scales which are different from R and Z, investigation
of dynamic equations on time scales constitutes a more general and comprehensive
theory.

We assume that the reader is familiar with the basic calculus of time scales.
A comprehensive review on1-derivative and1-Riemann integrals can be found in [5].

Henceforth we denote by [a, b]T the closed interval [a, b] ∩ T of the time scale
T. The intervals [a, b)T, (a, b]T, and (a, b)T are defined similarly. A point t ∈ T
is said to be right dense (left dense) if σ(t)= t (sup{s ∈ T : s < t} = t). A function
f : T→ R is called rd-continuous if it is continuous at right dense points and its left-
sided limits exist (finite) at left dense points. Every rd-continuous function f : T→ R
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has an anti-derivative

F(t)=
∫ t

t0
f (t)1t.

That is, F1(t)= f (t) for all t ∈ Tκ := T\{max T} (see [6, Theorem 1.27]).
In [2, pp. 157–163] a theory for a Lebesgue 1-integration is established by means

of Lebesgue 1-measure, denoted µ1, with the following properties.

THEOREM 1.1 [2, Theorem 5.76]. For each s0 ∈ Tκ , the single point set {s0} is 1-
measurable, and its measure is given by

µ1{s0} = σ(s0)− s0 = µ(s0),

where µ : T→[0,∞) is the step size function defined by µ(t) := σ(t)− t .

THEOREM 1.2 [2, Theorem 5.77]. If a, b ∈ T and a ≤ b, then

µ1{[a, b)T} = b − a, µ1{(a, b)T} = b − σ(a).

If a, b ∈ Tκ and a ≤ b, then

µ1{(a, b]T} = σ(b)− σ(a), µ1{[a, b]T} = σ(b)− a.

Furthermore, it is concluded in [2, p. 159] that all theorems of the general Lebesgue
integral theory, including the Lebesgue dominated convergence theorem, also hold
for the Lebesgue 1-integral on time scales. The next theorem gives the relationship
between Riemann and Lebesgue integrals on time scales.

THEOREM 1.3 [2, Theorem 5.81]. Let f be a bounded real-valued function defined
on [a, b]T. If f is Riemann1-integrable from a to b, then f is Lebesgue1-integrable
on [a, b) and ∫ b

a
f (t)1t =

∫
[a,b)

f µ1.

DEFINITION 1.4. We say that a property holds almost everywhere (a.e.) in S ⊂ T if
the set of all right dense points of S for which the property does not hold is a null set,
that is, is a set with 1-measure zero.

The following theorem gives a criterion for 1-Riemann integrability of a function.

THEOREM 1.5. Let f be a bounded function defined on the finite closed interval
[a, b]T of the time scale T. Then f is Riemann 1-integrable from a to b if and only
if f is continuous a.e. in [a, b)T.

Let T1 and T2 be two time scales. In [4], the double 1-integral of a multivariable
function f : T1 × T2→ R over a rectangular region [a, b)T1 × [c, d)T2 is introduced.
The following result provides sufficient conditions for interchanging the order of
integration over a rectangular region.
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LEMMA 1.6 [4, Remark 2.17]. Let f be 1-integrable over R = [a, b)T1 × [c, d)T2

and suppose that the single integrals

K (y)=
∫ b

a
f (x, y)11x,

I (x)=
∫ d

c
f (x, y)12 y

exists for each x ∈ [a, b)T1 and y ∈ [c, d)T2 . Then∫ ∫
R

f (x, y)11x12 y =
∫ b

a
11x

∫ d

c
f (x, y)12 y

=

∫ d

c
12 y

∫ b

a
f (x, y)11x,

where 11 and 12 denote the derivatives on T1 and T2, respectively.

Multiple 1-integration over more general sets is defined in [3, Definitions 4.13,
4.15].

THEOREM 1.7 [3, Theorem 4.30]. Let ϕ : [a, b]Tκ1 → Tκ2 and ψ : [a, b]Tκ1 → Tκ2 be
two continuous functions such that ϕ(t) < ψ(t) for all t ∈ [a, b]Tκ1 . Let E be a
bounded set in T1 × T2 given by

E = {(t, s) ∈ T1 × T2 : a ≤ t < b, ϕ(t)≤ s <ψ(t)}.

Then E is Jordan1-measurable, and if f : E→ R is1-integrable over E if the single
integral ∫ ψ(t)

ϕ(t)
f (t, s)12s

exists for each t ∈ [a, b)T1 , then the iterated integral∫ b

a
11t

∫ ψ(t)

ϕ(t)
f (t, s)12s

exists and ∫ ∫
E

f (t, s)11t12s =
∫ b

a
11t

∫ ψ(t)

ϕ(t)
f (t, s)12s.

Linearity and additivity properties of multiple integrals on time scales can be found
in [3, 4].

To differentiate the iterated integrals given in later sections we will employ the
following theorem.
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THEOREM 1.8 [5, Theorem 1.117]. Let a ∈ Tκ , b ∈ T and assume that k : T× Tκ →
R is continuous at (t, t), where t ∈ Tκ with t > a. Also assume that k1(t, .) is
rd-continuous on [a, σ (t)]. Suppose that for each ε > 0 there exists a neighborhood
U of t , independent of τ ∈ [t0, σ (t)], such that

|k(σ (t), τ )− k(s, r)− k1(t, τ )(σ (t)− s)| ≤ ε|σ(t)− s|

for all s ∈U, where k1 denotes the derivative of k with respect to the first variable.
Then

g(t) :=
∫ t

a
k(t, τ )1τ implies g1(t)=

∫ t

a
k1(t, τ )1τ + k(σ (t), t),

h(t) :=
∫ b

t
k(t, τ )1τ implies g1(t)=

∫ b

t
k1(t, τ )1τ − k(σ (t), t).

2. Construction of the resolvent equation

In this section we use some properties of multiple 1-integrals to construct the
resolvent equations corresponding to linear and nonlinear systems of integral equations
on time scales.

Let t0 ∈ Tκ be a fixed point and let T > t0 be given. Denote by IT the closed interval
[t0, T ]T. For our future computations, it is essential to know when the formula∫ ∫

E1

f (s, u)1s1u =
∫ t

t0
1u

∫ u

t0
f (s, u)1s

=

∫ t

t0
1s

∫ t

σ(s)
f (s, u)1u, t ∈ IT, (2.1)

holds. Here, E1 is the triangular region given by

E1 := {(s, u) ∈ IT × IT : t0 ≤ s < u, t0 ≤ u < t}. (2.2)

Evidently, E1 is a bounded subset of [t0, T )T × [t0, T )T.
Let t ∈ IT be fixed. For the existence of iterated integrals in (2.1) it is natural to

require that all integrals

K (u) :=
∫ u

t0
f (s, u)1s, J (s, t) :=

∫ t

σ(s)
f (s, u)1u (2.3)

exist for each u ∈ [t0, t)T and s ∈ [t0, t)T.
Inspired by the method in [8, Lemma 1], we obtain the following result which

enables us to interchange the order of integration over a triangular region.

LEMMA 2.1. Suppose that f : IT × IT→ R is 1-integrable over E1 and that the
single integrals (2.3) exist for each u ∈ [t0, t)T and s ∈ [t0, t)T. If the function
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J (s, t) defined in (2.3) satisfies the conditions of Theorem 1.8, then (2.1) holds for all
t ∈ IT.

PROOF. First, from (2.2) and Theorem 1.7 we deduce that the set E1 is Jordan 1-
measurable and the double integral∫ ∫

E1

f (s, u)1s1u

exists. The existence of single integrals in (2.3) and Theorem 1.7 imply existence of
iterated integrals and the equality∫ ∫

E1

f (s, u)1s1u =
∫ t

t0
1u

∫ u

t0
f (s, u)1s, t ∈ IT.

Theorem 1.8 guarantees that the function

h(t) :=
∫ t

t0
1u

∫ u

t0
f (s, u)1s −

∫ t

t0
1s

∫ t

σ(s)
f (s, u)1u, t ∈ IT,

is 1-differentiable and

h1(t) =
∫ t

t0
f (s, t)1s −

∫ σ(t)

σ (t)
f (t, u)1u −

∫ t

t0
1s

[∫ t

σ(s)
f (s, u)1u

]1t

=

∫ t

t0
f (s, t)1s −

∫ t

t0
f (s, t)1s = 0 ∀t ∈ [t0, T )T.

Applying [6, Corollary 1.15] we conclude that h is constant. On the other hand, since
h(t0)= 0, then h(t)= 0 for all t ∈ IT. The proof is complete. 2

First, we consider the linear system of integral equations of the form

x(t)= f (t)+
∫ t

t0
a(t, s)x(s)1s. (2.4)

The corresponding resolvent equation associated with a(t, s) is given by

r(t, s)=−a(t, s)+
∫ t

σ(s)
r(t, u)a(u, s)1u. (2.5)

If a is scalar-valued, then so is r . If a is an n × n matrix, then so is r .
If Equation (2.5) has a solution r(t, s) and we can justify the use of Lemma 2.1

along with all necessary integrals, then the solution of the linear system (2.4) may be
written in terms of f as follows:

x(t)= f (t)−
∫ t

t0
r(t, u) f (u)1u. (2.6)
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To see this we multiply both sides of (2.4) by r(t, s) to obtain∫ t

t0
r(t, u)x(u)1u −

∫ t

t0
r(t, u) f (u)1u =

∫ t

t0
r(t, u)

∫ u

t0
a(u, s)x(s)1s1u

=

∫ t

t0

{∫ t

σ(s)
r(t, u)a(u, s)1u

}
x(s)1s

=

∫ t

t0
[r(t, s)+ a(t, s)]x(s)1s.

Thus,

−

∫ t

t0
r(t, u) f (u)1u =

∫ t

t0
a(t, s)x(s)1s, (2.7)

which implies (2.6). One may also show by using (2.7) that (2.6) implies (2.4).
Next, we consider the nonlinear system of integral equations of the form

x̃(t)= f (t)+
∫ t

t0
a(t, s){̃x(s)+ G(s, x̃(s))}1s, (2.8)

where G(t, x̃) indicates the higher-order terms of x̃ . If the solution x̃ of (2.8) is known,
then Equation (2.8) can be rewritten as

x̃(t)= F(t)+
∫ t

t0
a(t, s )̃x(s)1s,

where

F(t)= f (t)+
∫ t

t0
a(t, s)G(s, x̃(s))1s.

If the existence of resolvent r(t, s) is known, we get by (2.6) that

x̃(t) = F(t)−
∫ t

t0
r(t, s)F(s)1s

= f (t)+
∫ t

t0
a(t, s)G(s, x̃(s))1s

−

∫ t

t0
r(t, s)

{
f (s)+

∫ s

t0
a(s, u)G(u, x̃(u))1u

}
1s

= f (t)−
∫ t

t0
r(t, s) f (s)1s +

∫ t

t0
a(t, s)G(s, x̃(s))1s

−

∫ t

t0

{∫ t

σ(u)
r(t, s)a(s, u)1s

}
G(u, x̃(u))1u
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= f (t)−
∫ t

t0
r(t, s) f (s)1s

+

∫ t

t0

{
a(t, u)−

∫ t

σ(u)
r(t, s)a(s, u)1s

}
G(u, x̃(u))1u

= f (t)−
∫ t

t0
r(t, s) f (s)1s −

∫ t

t0
r(t, u)G(u, x̃(u))1u.

(2.9)

Thus, from (2.6) we obtain the variation of constants form of Equation (2.8) as follows:

x̃(t)= x(t)−
∫ t

t0
r(t, u)G(u, x̃(u))1u. (2.10)

By making use of (2.9), (2.4), and (2.6), one may easily verify that (2.10) implies (2.8).
In the next section, we study the existence of resolvent r(t, s) corresponding to the

linear system of integral equations (2.4). We also show by Theorems 3.6 and 3.8 that∫ t

σ(s)
r(t, u)a(u, s)1u =

∫ t

σ(s)
a(t, u)r(u, s)1u.

This will enable us to rewrite (2.5) as

r(t, s)=−a(t, s)+
∫ t

σ(s)
a(t, u)r(u, s)1u. (2.11)

3. Existence of resolvents

3.1. L p case. Let the set � be given by

� := {(t, s) ∈ IT × IT : t0 ≤ s ≤ t ≤ T }.

Henceforth, we let 1< p <∞ and assume that 1/p + 1/q = 1. For any n × n
matrix A we denote by |A| the matrix norm

|A| = sup
|x |≤1
‖Ax‖

where ‖u‖ indicates the vector norm of u. Let us define the functions

A(t) :=
∫ t

t0
|a(t, s)|q1s, B(t) :=

∫ T

t
|a(s, t)|p1s, t ∈ IT (3.1)

and

c(t, s) :=
∫ t

s
A(u)p/q1u, (t, s) ∈�. (3.2)

Next, we define a class of n × n matrix-valued functions α :�→ Rn×n satisfying
the following conditions.

(C.1) α(t, s) is measurable in (t, s) ∈� with α(t, s)= 0 a.e. when σ(s) > t .
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(C.2) For almost all t in IT, the integral
∫ T

t0
|α(t, s)|q1s exists, and for almost all s

in IT, the integral
∫ T

t0
|α(t, s)|p1t exists.

(C.3) The numbers
∫ T

t0
{
∫ T

t0
|α(t, s)|q1s}p/q1t and

∫ T
t0
{
∫ T

t0
|α(t, s)|p1t}q/p1s are

both finite.

DEFINITION 3.1. We say that an n × n matrix-valued function α(t, s) is of type
(L p, T ) if and only if the conditions (C.1)–(C.3) hold.

EXAMPLE 3.2. Any function α(t, s) which is continuous in (t, s) for (t, s) ∈� is of
type (L p, T ) for all p > 1 and T > t0.

DEFINITION 3.3. An n × n matrix-valued function α(t, s) is said to be of type LL p
if and only if it is of type (L p, T ) for each T > t0.

Let the kernel a(t, s) be of type (L p, T ). Define the sequence {rn(t, s)}n∈N by

r1(t, s) := a(t, s), (3.3)

rn+1(t, s) :=
∫ t

σ(s)
a(t, u)rn(u, s)1u (3.4)

for (t, s) ∈� and rn(t, s)= 0 for t0 ≤ t < σ(s)≤ T .
The following lemma plays a substantial role in obtaining inequality (3.7).

LEMMA 3.4. Let 1< p <∞ and the kernel a(t, s) be of type (L p, T ). Then

{c(t, s)n}1t

n!
≥ A(t)p/q c(t, s)n−1

(n − 1)!
(3.5)

holds for all positive integers n > 1 and (t, s) ∈�.

PROOF. We use the formula

{ f n+1(t)}1 =

{ n∑
k=0

f (t)k f (σ (t))n−k
}

f 1(t) (3.6)

(see [5, Exercise 1.23]). Since a(t, s) is of type (L p, T ), it is obvious that c(t, s) is
1-differentiable in its both parameters and

c1t (t, s)= A(t)p/q , c1s (t, s)=−A(s)p/q .

On the other hand, it follows from (3.2) that c is increasing in t and decreasing in s,
that is,

c(σ (t), s)≥ c(t, s) and c(t, σ (s))≤ c(t, s)

https://doi.org/10.1017/S0004972709001166 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709001166


148 M. Adıvar and Y. N. Raffoul [10]

for all (t, s) ∈�. Thus, from (3.6) we obtain

{c(t, s)n}1t

(n − 1)!
=

1
(n − 1)!

{n−1∑
k=0

c(t, s)kc(σ (t), s)n−k−1
}

c1(t, s)

≥
1

(n − 1)!

{n−1∑
k=0

c(t, s)kc(t, s)n−k−1
}

A(t)p/q

= n A(t)p/q c(t, s)n−1

(n − 1)!
.

This completes the proof. 2

LEMMA 3.5. Let 1< p <∞ and the kernel a(t, s) be of type (L p, T ). Then for each
positive integer n ≥ 1, the function rn(t, s) is of type (L p, T ). Moreover, for each
nonnegative integer n ≥ 0 and for (t, s) ∈�,

|rn+2(t, s)| ≤ A(t)1/q B(s)1/p
{c(t, s)n/n!}1/p (3.7)

holds.

PROOF. If t0 ≤ t < σ(s)≤ T for some (t, s) ∈�, then rn+2(t, s)= 0 and (3.7) holds.
Suppose that σ(s)≤ t for all (t, s) ∈�. We proceed by induction. From Hölder’s
inequality we find that

|r2(t, s)| ≤
∫ t

σ(s)
|a(t, u)||a(u, s)|1u

≤

{∫ t

s
|a(t, u)|q1u

}1/q{∫ t

s
|a(u, s)|p1u

}1/p

≤ A(t)1/q B(s)1/p.

This shows that the kernel r2 satisfies (3.7) and is of type (L p, T ). Suppose that
r1, r2, . . . , rn+1 are all kernels of type (L p, T ) and that (3.7) holds for n − 1. It
follows from (3.4) and (3.5) that

|rn+2(t, s)| =
∫ t

σ(s)
|a(t, u)||rn+1(u, s)|1u

≤

{∫ t

s
|a(t, u)|q1u

}1/q{∫ t

s
|rn+1(u, s)|p1u

}1/p

≤ A(t)1/q
{

B(s)
∫ t

s
A(u)p/q c(u, s)n−1

(n − 1)!
1u

}1/p

≤ A(t)1/q B(s)1/p
{∫ t

s
[c(u, s)n/n!]1u1u

}1/p

= A(t)1/q B(s)1/p
{c(t, s)n/n!}1/p.
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Thus (3.7) is satisfied. Using (3.1) and (3.7), we conclude that rn+2 is of type (L p, T ).
The proof is complete. 2

THEOREM 3.6. If 1< p <∞ and the kernel a(t, s) is of type (L p, T ), then there
exists a kernel r(t, s) of type (L p, T ) which solves the resolvent Equation (2.11) a.e.
in (t, s) ∈�.

PROOF. Let rn be defined by (3.3) and (3.4). Let

r(t, s) := −
∞∑

n=1

rn(t, s) for (t, s) ∈� (3.8)

and r(t, s)= 0 whenever t0 ≤ t < σ(s)≤ T . From (3.7) we obtain

|r(t, s)| ≤ |a(t, s)| + A(t)1/q B(s)1/p
∞∑

n=2

{αn/n!}1/p, (3.9)

where

α =

∫ T

t0
A(u)p/q1u.

For any n > α, {
αn+1n!

αn(n + 1)!

}1/p

=

{
α

n + 1

}1/p

< 1.

This implies that the series in (3.9) converges by the ratio test. Since A(t), B(s), and
a(t, s) are finite, r(t, s) is a.e. well defined and measurable in (t, s) for (t, s) ∈�.
By (3.9) we deduce that r is of type (L p, T ). Finally, we resort to the Lebesgue
dominated convergence theorem to obtain∫ t

σ(s)
a(t, u)r(u, s)1u =

∫ t

σ(s)
a(t, u)

{
−

∞∑
n=1

rn(u, s)

}
1u

= −

∞∑
n=1

∫ t

σ(s)
a(t, u)rn(u, s)1u

= −

∞∑
n=1

rn+1(t, s)

= r(t, s)+ a(t, s).

This shows that r defined in (3.8) solves Equation (2.11). 2

LEMMA 3.7. If a(t, s) is of type (L p, T ), then for any positive integers v and w with
v + w = n + 1,

rn+1(t, s)=
∫ t

σ(s)
rw(t, u)rv(u, s)1u. (3.10)
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PROOF. For n = 1, the proof is trivial. Let (3.10) be true for w0 + v0 ≤ n, n ≥ 1.
Given v, w ≥ 1 with v + w = n + 1, define

I (w, v)=
∫ t

σ(s)
rw(t, u)rv(u, s)1u.

Then

I (w, v) =
∫ t

σ(s)
rw(t, u)

{∫ u

σ(s)
a(u, z)rv−1(z, s)1z

}
1u

=

∫ t

σ(s)

∫ t

σ(z)
rw(t, u)a(u, z)rv−1(z, s)1u1z

=

∫ t

σ(s)
rw+1(t, z)rv−1(z, s)1z

= I (w + 1, v − 1).

Hence, we arrive at

I (1, n)= I (2, n − 1)= I (3, n − 3) · · · = I (n, 1),

which proves the result for n + 1. 2

From the previous results in this section we proceed to the next result.

THEOREM 3.8. If a(t, s) is a kernel of type LL p, then there exists a kernel r(t, s) of
type LL p such that r satisfies both resolvent Equations (2.5) and (2.11) for almost all
(t, s) in the region �.

PROOF. Let r(t, s) be defined by (3.8). We know from Theorem 3.6 that r(t, s)
is of type (L p, T ) for each T > t0 and solves the resolvent Equation (2.11) a.e. in
(t, s) ∈�. On the other hand, we get by (3.8) and (3.10) that∫ t

σ(s)
r(t, u)a(u, s)1u =

∫ t

σ(s)

{
−

∞∑
n=1

rn(t, u)

}
a(u, s)1u

= −

∞∑
n=1

∫ t

σ(s)
rn(t, u)a(u, s)1u

= −

∞∑
n=1

rn+1(t, s)

= r(t, s)+ a(t, s),

where the Lebesgue dominated convergence theorem enables us to interchange
summation and integration. Hence, r(t, s) solves Equation (2.5). The proof is
complete. 2

OPEN PROBLEM. Show the existence of a resolvent r(t, s) of type LL1 solving the
Equations (2.5) and (2.11).
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3.2. Shift operators.

DEFINITION 3.9. Let T be a time scale and t0 ∈ T a fixed number such that there exist
operators δ± : [t0,∞)T × T→ T satisfying the following properties.

(P.1) The functions δ± are strictly increasing with respect to their second arguments,
that is, if (T0, t), (T0, u) ∈D± := {(s, t) ∈ [t0,∞)T × T : δ±(s, t) ∈ T}, then

T0 ≤ t < u implies δ±(T0, t) < δ±(T0, u).

(P.2) If (T1, u), (T2, u) ∈D− with T1 < T2, then

δ−(T1, u) > δ−(T2, u),

and if (T1, u), (T2, u) ∈D+ with T1 < T2, then

δ+(T1, u) < δ+(T2, u).

(P.3) If t ∈ T, then (t0, t) ∈D± and δ±(t0, t)= t and if t ∈ [t0,∞)T, then (t, t0) ∈D+
and δ+(t, t0)= δ+(t0, t)= t .

(P.4) If (s, t) ∈D+, then (s, δ+(s, t)) ∈D− and δ−(s, δ+(s, t))= t .
(P.5) If (s, t) ∈D+ and (u, δ+(s, t)) ∈D−, then (s, δ−(u, t)) ∈D+ and

δ−(u, δ+(s, t))= δ+(s, δ−(u, t)).

The operators δ− and δ+ associated with the t0 ∈ T (called an initial point) are
said to be backward and forward shift operators on T, respectively. The variable
s ∈ [t0,∞)T in δ±(s, t) is called the shift size. The values δ+(s, t) and δ−(s, t) in T
denote translation of t ∈ T by s units to the right and left, respectively. The sets D±
are the domains of the shift operators δ±, respectively.

Notice that (P.3)–(P.5) imply δ−(u, u)= δ−(u, δ+(u, t0))= t0, and hence, (u, u) ∈
D− for all u ∈ [t0,∞)T.

DEFINITION 3.10. A point t∗ ∈ T is said to be a sticky point if

δ±(s, t∗)= t∗ for all s ∈ [t0,∞)T with (s, t∗) ∈D±.

Henecforth, we will denote by T∗ the largest subset of T without a sticky point.

COROLLARY 3.11. If t0 ∈ T∗, then t∗ /∈ [t0,∞)T.

PROOF. If t0 ∈ T∗ and t∗ ∈ [t0,∞)T is a sticky point, then

t∗ = δ−(t
∗, t∗)= t0 ∈ T∗ = T−{t∗}.

This leads to a contradiction. 2
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EXAMPLE 3.12. Let T= R and t0 = 1. The operators

δ−(s, t)=

{
t/s if t ≥ 0
st if t < 0,

for s ∈ [1,∞)

and

δ+(s, t)=

{
st if t ≥ 0
t/s if t < 0,

for s ∈ [1,∞)

are left and right shift operators associated with the initial point t0 = 1. Also, t∗ = 0 is
a sticky point (that is, T∗ = R−{0}) since

δ±(s, 0)= 0 ∀s ∈ [1,∞).

In the following table we give some time scales with their corresponding shift
operators (note that N1/2

= {
√

n : n ∈ N} and qZ
= {qn

: n ∈ Z and q > 1}).

T t0 t∗ T∗ δ−(s, t) δ+(s, t)
R 0 N/A R t − s t + s
Z 0 N/A Z t − s t + s

qZ
∪ {0} 1 0 qZ t/s st

N1/2 0 N/A N1/2
√

t2 − s2
√

t2 + s2

Definition 3.9 yields the following result.

LEMMA 3.13. Let δ− and δ+ be the shift operators associated with the initial point
t0. Then:

(i) δ+(s, t)= u if and only if δ−(s, u)= t;
(ii) δ+(s, t) ∈ [t0,∞)T for all (s, t) ∈ D+ with t ≥ t0;
(iii) δ−(s, t) ∈ [t0,∞)T for all (s, t) ∈ D− with t ≥ s;
(iv) if δ+(s, t) is1-differentiable in its second variable t ∈ T∗κ , then δ1t

+ (s, t) > 0 for
all (s, t) ∈ D+ with t ∈ T∗κ .

PROOF. (i) is obtained from (P.4). (ii) and (iii) follow from (P.1)–(P.2). Since δ+(s, t)
is strictly increasing in its second variable, we have (iv) by [6, Corollary 1.16]. 2

Notice that the shift operators δ± are defined once the initial point t0 ∈ T is known.
For instance, we choose the initial point t0 = 0 to define shift operators δ±(s, t)=
t ± s on T= R. However, if we take the initial point λ ∈ (0,∞) then we can define
new shift operators by δ̃±(s, t)= t ∓ λ± s and in terms of δ± as

δ̃±(s, t)= δ∓(λ, δ±(s, t)).

EXAMPLE 3.14. In the following table, we give several time scales to show the
change in the formula of shift operators as the initial point changes.
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T= N1/2 T= hZ T= 2N

t0 0 λ 0 hλ 1 2λ

δ−(s, t)
√

t2 − s2
√

t2 + λ2 − s2 t − s t + hλ− s t/s 2λts−1

δ+(s, t)
√

t2 + s2
√

t2 − λ2 + s2 t + s t − hλ+ s ts 2−λts

Here λ ∈ Z+, 2N
= {2n

: n ∈ N}, and hZ={hn : n ∈ Z}.

3.3. The continuous case. Without the notion of a shift operator, one would have to
require that t + s and t − s be in the time scale. We decided this was an unnecessary
requirement that we overcame with the creation of the shift operator. Also, we expect
researchers to make use of this new notion to overcome such difficulties.

In this section, we are concerned with the existence of the continuous function
r(t, s) on � which solves the resolvent Equations (2.5) and (2.11).

Let T be a time scale containing an initial point t0 ∈ T∗ so that there exist the shift
operators δ± associated with t0. Hereafter, we shall suppose that the right shift operator
δ+(s, t) on T is 1-differentiable in its second variable with rd-continuous derivative.
Substituting δ+(σ (s), t) for t in Equation (2.11), we get

r(δ+(σ (s), t), s)=−a(δ+(σ (s), t), s)+
∫ δ+(σ (s),t)

σ (s)
a(δ+(σ (s), t), v)r(v, s)1v.

(3.11)
Using (3.11) and [5, Theorem 1.98], we obtain

r(δ+(σ (s), t), s)

=−a(δ+(σ (s), t), s)

+

∫ t

t0
a(δ+(σ (s), t), δ+(σ (s), u))δ1u

+ (σ (s), u)r(δ+(σ (s), u), s)1u.

(3.12)

The advantage of considering a resolvent equation of the form (3.12) is that the
variable s appears in the equation only as a parameter. If the role of s is suppressed
then (3.12) turns into

R(t)=−A(t)+
∫ t

t0
as(t, u)R(u)1u, (3.13)

where R(t)= r(δ+(σ (s), t), s), A(t)= a(δ+(σ (s), t), s) and

as(t, u)= a(δ+(σ (s), t), δ+(σ (s), u))δ1u
+ (σ (s), u) for (t, s) ∈�.

Let β > 0 be a constant and let ‖.‖ denote the Euclidean norm on Rn . Define
JT := [a, b]T. We will consider the space C(JT, Rn) of continuous functions endowed
with a suitable norm

‖x‖β := sup
t∈JT

‖x(t)‖

eβ(t, a)
or ‖x‖0 := sup

t∈JT

‖x(t)‖.
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It was proven in [11, Lemma 3.3] that ‖x‖β is a norm and is equivalent to the
supremum norm ‖x‖0. Also, it was concluded that (C(JT, Rn), ‖x‖β) is a Banach
space. We will denote this Banach space by P .

To prove the next result we will employ the following theorem.

THEOREM 3.15 [9, Theorem 3.4]. Consider the linear integral equation

x(t)= f (t)+
∫ t

α

B(t, s)x(s)1s, t ∈ JT. (3.14)

Let B : JT × JT→ Rn×n be a matrix-valued function which is continuous in its first
variable and rd-continuous in its second variable and let f : JT→ Rn be continuous.
Then (3.14) has a unique solution in P . In addition, if a sequence of functions {xi } is
defined inductively by choosing any x0 ∈ C(IT, Rn) and setting

xi+1(t)= f (t)+
∫ t

α

B(t, s)xi (s)1s, t ∈ JT,

then the sequence {xi } converges uniformly on IT to the unique solution x of (3.14).

THEOREM 3.16. If a(t, s) is continuous in (t, s) for (t, s) ∈�, then there exists a
continuous function r(t, s) on� which solves the resolvent Equations (2.5) and (2.11).

PROOF. We can conclude from Theorem 3.15 that for each fixed s ≥ 0 there exists
a unique solution R(t; s) of (3.13) on t0 ≤ t ≤ δ−(σ (s), T ). Moreover, R(t; s) is
continuous in the pair (t, s). Let us define

r(t, s)= R(δ−(σ (s), t); s) for (t, s) ∈�.

Evidently, r solves (2.11). Since a is continuous in (t, s) for (t, s) ∈�, from
Theorem 3.8 there is an L2 function k(t, s) which solves (2.5) and (2.11). By the
uniqueness of the resolvent k(t, s) among L2 functions, k = r . Thus, r also solves
Equation (2.5). 2
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