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PRINCIPAL INDECOMPOSABLE MODULES
FOR SOME THREE-DIMENSIONAL

SPECIAL LINEAR GROUPS

JAMES ARCHER

Let k be a finite field of characteristic 2 , and let G be

the three dimensional special linear group over k . The

principal indecomposable modules of G over k are constructed

from tensor products of the irreducible modules, and formulae for

their dimensions are given.

Let G be a finite group and k a field, and let kG be the group

algebra. The right regular module, also denoted by kG , has a finite

number of isomorphism types of indecomposable direct summands

P , ..., P . These are the Principal Indecomposable Modules: they are

precisely the indecomposable projective Zcff-modules and the protective

covers of the irreducible fc£-modules.

The aim of this paper is to construct the principal indecomposables

over a field of characteristic 2 for the 3-dimensional special linear

groups SL(3, 2 ) . This is a natural sequel to work of AI per in [2] on the

principal indecomposables for SL(2, 2 J , and uses similar methods. The

idea is to start with the Steinberg module 5 . Since S is projective,

so is S ® U for any irreducible U (indeed for any module U [5,

Example 62.2]) and each principal indecomposable occurs as a direct summand

of one of these [7]. Finding these direct summands is reduced to counting
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how many times S appears in the tensor product of two irreducibles. In

Theorem 1 the principal indecomposables are displayed as tensor products or

differences of tensor products of certain modules. The dimensions of the

principal indecomposables can then be calculated and are given in Theorem

2.

This paper is based on the author's Oxford University D.Phil Thesis

(1979).

1. Preliminaries

Assume k is a splitting field for G and let V , ... , V be all

the different isomorphism types of irreducible /cC-modules. The principal

indecomposables are in one-to-one correspondence P. •«-»• V. with the

irreducibles and there is the decomposition

r
kG ~ 2J (dim V.)P.

i=l % %

(where for n f Z , nM denotes n copies of the module M ). P. is
7s

called the protective cover of V. and has V. both as its unique bottom
Z- "V

factor (minimal submodule) and unique top factor (irreducible quotient) [5,

§§5*+, 58]. We also denote the protective cover of an irreducible U by

P(U) .

For two kG-modules V and W let (V, W) be the dimension of the

fe-vector space Horn, AV, W) . By Schur's lemma

&i> Vo] = ( V V? = &ij •

The next two easy lemmas give a method for finding the direct summands
of a protective module.

LEMMA 1.1. If k is a splitting field for G and V^, ..., V are

the non-isomorphic irreducible kG-modules then for any projective
kG-module P ,

- Z® (P, V)P(V) .
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Proof. Since any protective module is a direct sum of principal

indecomposables, this is immediate from the remarks above. //

Also by general properties of projective modules, for any module W ,

[P., W) is the number of composition factors of W isomorphic to V. .

For a module M , M* denotes the dual module Horn, [M, l) where 1

is the trivial module.

LEMMA 1.2. For any three kG-modules, A, B and C ,

(A ® B, C)- = (A, B* ® C) .

Proof. We have the usual isomorphism of vector spaces

(*) i : Eomk(A®B, C) •+ Ylcm^A, Horn^S, O) .

Horn, (B, C) is made into a fcG-module by defining

(fg)(b) = fibg'^g for / € Homfe(S, C) , b € B , g € G .

If both sides of (*) are made into feG-modules in the same way, then i is

a fcG-isomorphism. Since Horn,(B, C) c- B* ® C the result follows. //

2. The irreducible modules

Henceforth k is the field of 2n elements and G is SL(3, k) .

Let V be the standard 3-dimensional module for G ; that is, the row

vectors of length 3 • If a is the Galois automorphism of k , then a

acts on g i G by acting on its entries. V. , the ith Galois conjugate
If

of V , is defined as follows: V. consists of the row vectors of length
U Is

3 and for V € V. , g € G ,
Is

vg = v{ga }

taking the usual 7 action on the right. This gives n - 1 new modules

7^, ..., Vn_-^ • Let N = {0, 1, ..., n-l} . Where necessary regard N as

TLInTL so that for i € N , i + 1 always makes sense. For a subset K of

N we let K denote the complement of K in N . For I cz N we define
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ill %

We also have the duals V. and V* ~ | | V*. .
% J %

Since V* is afforded by the column vectors a of length 3 on

which g € G acts by c -*• g~ e , V* ® V is afforded by the 3 x 3

matrices X on which g acts by X -»• g~ Xg , and so V* ® VQ ~ 2" © WQ

where T consists of the scalar matrices and W those of trace zero. T

is the trivial module while W is easily seen to be irreducible of

dimension 8 and self-dual. Let W. be the ith Galois conjugate of W

and let W = J~f W. . By a theorem of Brauer [3, 83-5], SL(3, 2n) has

h absolutely irreducible modules in characteristic 2 . 1, V , V* and

W are the h irreducibles for SL(3, 2) and so by Steinberg's tensor

product theorem [4] the modules M ® M ® .. . ® M where M. ĉ  1, V.,
\J X YI—A. u If

V*. or W. are the absolute irreducibles for SL(3, 2n) . We call M.

the ith tensor factor of the irreducible. Note that since all the

absolute irreducibles can be written over k , k is a splitting field so

Lemma 1.1 applies.

We shall also use a more convenient notation. For an ordered triple

(J, J, K) of pairwise disjoint subsets of N , let

V{I, J, K) = V ® V* ® W . Then the irreducibles are indexed by all such
J. v K

triples. Let P(I, J, K) be the projective cover of V(I, J, K) . The

module W of dimension 8 is the Steinberg module [5] and henceforth we

denote it by S . It is the reduction modulo 2 of an ordinary

irreducible and so by a theorem of Brauer and Nesbitt [3, 86.3] it is a

principal indecomposable and is projective.

We now obtain some information about the tensor product of two

irreducibles.
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LEMMA 2 . 1 . 7 ® V has a unique composition series

VQ ® VQ => X 3 Y => {0}

where (VQ ® VQ) IX ~ 7* <± Y and X/Y

Proof. 7 ® 7 is afforded by the 3 x 3 matrices M over k , and

g (. G acts by M -+ g Mg , where g is the transpose of g . X consists

of the symmetric matrices and Y those with zeros on the leading diagonal.

LEMMA 2.2. Assume n 2 2 . V ® (/_ is indecomposable with

composition factors (counting multiplicities):

v v* v v* (ft V V* V

VQ is the unique top and the unique bottom factor. V ® W has a

submodule and a quotient isomorphic to V* ® V* .

Proof. V ® V has composition factors V* V , V* so V* ® V* has

composition factors V , V*, V , and V* ® V ® VQ has composition

factors

V V* V V* (5?) V V V* V
0' 1' 0' 0 ® 1' 0' 1' 0 '

But V* ® V̂^ ® 7 ~ V ® [V ® W ) so the composition factors are as

claimed. To find the top factor it is easily checked using Lemma 1.2, that

(7 ® W ll) is zero for each composition factor U , except that it is 1

for U = 7 . Similarly check [U, V ® W) to find the bottom factor.

Now 7 ® 7 has submodules X and Y with X 3 Y and

So VQ® VQ® V* has submodules X ® V* and Y ® 7* such that

CK ~ 0 0 ~ 0 '

Also
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where

Let TT be the project ion onto D . Since Y ® V* i s indecomposable,

C = ker TT i s not a submodule of Y ® V* , and so TT maps Y ® 7*

monomorphically in to 7 ® !/ and V ® f/Q has a submodule isomorphic to

V0 ® V0 •

A g a i n

( C © D ) / ( X ® V*) c V*® 7*

is indecomposable. Since C is irreducible, [C+X ® V*) /(x ® V*) is

either 0 or irreducible, and so in either case must be contained in

[D+X ® V*) / [X ® F*) . Hence

V*Q ® 7* - (ZHX ® V*) / (X ® V*) ~ D/{D n [x ® F*))

and K* ® 7* is a quotient of D ~ KQ ® WQ . //

COROLLARY 2.3. For n > 2 , [VQ ® !/0, 7Q ® WQ) > 3 .

Proof. Let a, 3 be the endomorphisms mapping V ® V to its

submodules V* and V* ® W* respectively, which exist by Lemma 2.2. Then

a, 3 and the identity are linearly independent. //

LEMMA 2.4. Assume n > 2 . Then

where A is a self-dual indecomposable module with composition factors

(counting multiplicities)

1 1 1 1 V ® V V &) V V* (5?) V* V* @) V* W

1 is the unique top factor and the unique bottom factor of A .

Proof. The composition factors of V ® 7 ® V* ® V* are found from

those of VQ ® VQ and V£ ® V£ . But t h i s module i s 1 © 2WQ ® WQ ® WQ ,
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giv ing t h e composi t ion f a c t o r s of W ® W . Now, by Lemma 1 .2 ,

{wQ<&t/0, i@wQ) = [wo®wQ, vo®v*Q)

= (WQ ® VQ, WQ ® VQ) > 3

by Corollary 2.3. Since (^ ® f/Q, l) = 1 , [WQ ® WQ, WQ) 2 2 . Thus

V ® (/ has a submodule i? such that (w ® P/QJ /# c~ 2WQ . By self-

duality W ® f/ also has a submodule 6 isomorphic to 2W . Since W

only appears twice as a composition factor of W ® V , it follows that

§ n R = {o} , so W ® W ex Q © R and we have the decompositon claimed.

Clearly A is self-dual since W ® V and W are. Finally the top

and bottom factors of A are found using Lemma 1.2. //

Lemmas 2.2-2.U fail for n = 1 because the modules given as

composition factors are no longer irreducible. However one can immediately

deduce the corresponding result.

LEMMA 2.5. For n = 1 ,

and

WQ ® WQ = 3WQ © P[VQ) ® P{v£) ©

Proof. From Lemma 2.2 we deduce that the composition factors of

VQ ® WQ are

K0' K0' K0' X' W0> V0> V0 •

For n = 1 , W is projective and so V ® W = W ® Q . Using Lemma

1.2, [Q, VQ) = 1 , while (§, y) = 0 for a l l other irreducibles. Hence

Q = P[y^j • The other equations follow similarly. / /

3. The principal indecomposable modules

In this section we decompose the projective modules S ® U , for U

irreducible, to find the principal indecomposables. By Lemma 1.1,
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5 ® U c* yf (5 ® V, V)P(V)

summing over the irreducibles V . But, by Lemma 1.2,

(5 ® U, V) = (S, U* ® V) .

The next few lemmas are devoted to calculating this.

DEFINITION 3.1. Let V = V ® U ® . . . ® U and

X = X ® X ® . .. ® X be irreducibles where each U. and X. is 1 ,

V., V* or V. . Then Y = Y ® J ® ... ® Y is a cross-section of
1s Is 7s U X Yl—X.

U ® X if each y. i s a composition factor of U. ® X. .

LEMMA 3.2. Z-et £/ and X be irreducibles and let Y be a cross-

seotion of U ® X . If S is a composition factor of Y then Y is

isomorphic to S or to V® V* .

Proof. By Lemmas 2.1-2.1* each / . i s isomorphic to one of

1 , V., W., V. ® V . n , V*. ® V . l 5 V. . , W. n' i* t' % ^+l % t+1' z+1 i + l

or to the dual of one of these. Thus dim y = 3 8 and since y has n

tensor factors a 5 2{n-b) . If I is reducible it has a reducible pair

of tensor factors

v. ®v., vi® v., v.®w., w.®w.

or the dual of one of these. Call Y' a standard reduction of Y if Y'

is obtained from Y by replacing a reducible pair by one of its

composition factors. Call it type A if V*. ® V. is replaced by W. .
1* 1r Is

If S is a composition factor of Y , it is obtained from Y by a"

sequence of standard reductions. The only one which increases the power of

8 in the dimension is type A, which decreases the power of 3 by two. If

a reduction increases the power of 3 , then the power of 8 is reduced by

the same amount. Therefore to obtain S , of dimension 8 , by standard

reductions, we must have a £ 2{n-b) . But then a = 2(n-b) and

dim y = 9 8 , and there must be n - b reductions of type A. If b # n

some y. has dimension 9 , and then so must Y. and Y. and hence
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all the Y.'s , and so Y c~ V <8> V* . Otherwise all Y^ have dimension 8

and Y ĉ  5 . //

DEFINITION 3.3. Let I, J and K be subsets of N . The ordered

triple (J, J, K) is a trio if

(i) {l, J, K) is a partition of N ,

(ii) \K\ is even,

(iii) if i, j E I u J then both belong to I or both belong

to J if and only if |ik € K \ i < k < j}| is even.

Note that (ii) ensures the consistency of (iii) under the obvious

circular ordering of N . Also given K and i € N\K , i may be

assigned either to I or to J and then J and J are determined by

(iii), so each K # N with \K\ even determines a unique pair of trios

(J, J, K) and (J, I, K) . (0, 0, N) is a trio if and only if n is

even.

LEMMA 3.4. Let U and V(l, J, K) be irreducibles such that

U ® v(l, J, K) has a cross-section Y isomorphic to S or to V., ® V* .
r N N

(i) If I u J u K * N then Y <± S and U ̂  v(j, I, L) where

IuJuKuL = N.

(ii) Let I u J u K = N . If Y o* S then U ̂  V(J, I, L) where

L c K ; if Y c~ V ® V* then U =. V(X, Y, I u J u Z) where {X, Y, Z}

is a partition of K and (lux, J v y, z) is a trio.

Proof. Let the ith tensor factor of V(l, J, K) be X. .

In case (i) we have Y. ~ U. for some i f J u J u K and so for this

i , Y. ̂  W. and consequently y ~ 5 . Then
%r Is

U. ® X. ~ one of V. ® V*., W. or W. ® W.
I* I* If % 2- 2- %

for each i , so U has the form claimed.

In case (ii) first suppose Y ~ S . If Y. ~ f/. for all £ , then

U <- ̂ (J, J, L) with L c K . Otherwise Y^ ~ f/. for all i , and then

both irreducibles must be isomorphic to 5 .
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Now suppose Y c~ V ® V* . Each Y. i s isomorphic to V. ® 7 . ^ or

V*. ® F. , or the dual of one of these . Define

£ = H i N I Y.
1

F = {;

and

H = {i Z N |

Then (£, F, ff) is a trio. Also

i d E implies U. ® X. ̂  V. ® V. ,
1> 1* %> %>

i € F implies £/. ® X. o= 7* ® V. ,
Is 1* 1r %

i d H implies y. ® X. ~ (/. ® W. ,

by Lemmas 2.2 and 2.k. Thus (/. is never trivial and U. o? W. for

i € J u J .

Define a partition {X, Y, Z) of K by

V. ̂

V. for i d X ,
tr

V* for i € Y ,

W. for i € Z .
1

Then £/ ̂  7(X, Y, J u J- u Z) . Also

E = I u X , F = J u Y , H = Z .

So (J u X, <7 u y, Z) is a trio, and the proof is complete. //

PROPOSITION 3.5. Let U and V(l, J, K) be irredueibles and

suppose the dimension

[S, U® V(I, J, K)) * 0 .

(i) If I u J u K t N then U ^ V(J, I, L) where IuJuKuL = N

and the dimension is 2' ' .

(ii) If I u J u K = N then either U ̂  V(J, I, L) for some L c K

and the dimension is 2 ^ 1 } or U ̂  V{X, Y, I u J o Z) where {X, Y, Z}
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is a partition of K and (I u X, J u Y, Z) is a trio, and the dimension

Iz I
is 2' j except that

(5, S ®S) =
2n + 1 if n is odd,

3.2n + 1 if n is even.

Proof. This dimension is the number of times that S appears as a

composition factor of # ® V(I, J, K) . Since each composition factor

occurs in some cross-section, by Lemma 3.2 this is the number of cross-

sections y isomorphic to S or to V ® V* . By Lemma 3.*», U has one

of the stated forms.

In case d), Y c~ S by Lemma 3.h (i). There is a unique choice for

each Y. except for i € K n L when there are two, since W. ® W. has

two composition factors W. and so the dimension is 2' '.

In case (ii) first note that by Lemma 3.*+ di) it is impossible to

both choose Y c~ S and Y ~ V ® V* except when I u J = 0 , both

irreducibles are S , and (0, 0, N) is a trio so n is even. There are

2 cross-sections Y of S ® S with each Y. ~ W. , and one with each

^i ~ ^i ' W n e n n is e v e n there are also 2.2 with each

^i ~ Vi ® ^i o r ^* ® ^* T h i s S i v e s t h e stated dimensions for

(5, S ®S) .

Otherwise at least one of U and V(I, J, K) is not isomorphic to

S . if £/i [/(<;, J, L) with I c X then (by Lemma 3.1* Cii;) 7. must be
tr

chosen isomorphic to V. for all i . For i £ L there are 2 choices
If

for 7. (as a composition factor of U. ® W. ̂  (/. ® W. ) , and otherwise
t* 1r Is Is 1,

only one choice. This gives 2' ' choices for Y .

If £/ ̂  K(X, y, J u J u Z) then Y must be chosen isomorphic to

VN ® VN ' F o r ^ € i?' ̂ ' J o r J there is a unique choice for Y. ,

isomorphic to one of V*. ® V. and K. ® V*. . For i € Z y must be

chosen compatibly as V. ® V. or V*. ® V*. from V. ® W. . This gives
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I Z I
21 ' choices for Y . The proof is complete. / /

We can now decompose t h e modules S ® U . For a subse t K of N l e t

~K be t h e complement of K i n N . Then from Lemma 2.U,

(3.6) s®w = 5? 2 y

where A_ = ~| f̂  A , On the other hand from Lemmas 1.1 and 1.2 and
r€i? r

Proposition 3.5, for L t N we have

So, for K * 0 ,

(3.8) P ( ^ j = V x ® A j •

NOTATION 3.9. Let SD denote Va®Wn , for R c N .

PROPOSITION 3.10. Let I, J and K be pairwise disjoint subsets of

N with K # 0 . Let L = I v J u K . Then

P(I, J, K) = BI®B*®WK®AL .

Proof. Since

it is protective. We show that K(J, J", î ) is the only top factor. Now

because W ® A is a direct summand of S ® 1/ it follows that
.1 Ue/ U/t LI U

Bj. <g> B* ® WK® AL is a direct summand of 5 ® V(I, J, L) . Consider, for

an irreducible U ,

[S ® V(I, J, L), U) = [S, V(J, I, L) ®U) .

Since K t 0 , J u J u L + N so by Proposition 3-5 if this space is non-

zero then U ~ V(I, J, K u Z) with Z c i . Hence these £/'s are the

only candidates for top factors of 5_ ® 5* ® W ® A . However
1 J K L

[Bj. ®BJ® WK ® AL, V(I, J, K u Z)) = [Wj-® AL, V* ® VJ ® V(I, J, K u Z)) ,

and
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V*®Vj® V(I, J, K u Z) ĉ  jf Wx ® Wy ® P/

45 I

JOT

which is a direct sum of irreducibles. Since, by (3.8),

the dimension is non-zero only if Z = 0 and then i t is one. This proves

the proposition. / /

An expression for P(l) comes from decomposing 5 ® 5 . Let T be

the set of t r ios not including (0, 0, N) . Using c to mean proper

inclusion, from Lemma 1.1 and Proposition 3.5 we have

5 ® 5 = © , «/, X) © m'
LQV

where

m ' =
2 + 1 if n is odd, and

3.2 + 1 if n is even.

From (3.6) on the other hand

© ^ ®^K K

Using (3.8) then we have

© , J, X) © [m'-2n)s .

Recall that (0, 0, /V) is a trio if and only if n is even. Hence we may

rewrite this as

(3.11)

where

m =

, J, K) -mS ,

if n is odd, and

2 + 1 if n is even,
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and the sum is now over a l l trios ( I , J, K) .

PROPOSITION 3.12. If I u J * 0 and K = I v J then

B ® B* ® A = P(I, J, 0) © 2f 2^P{X, Y, I u J u Z)
I J K z

where the sum is over partitions {X, Y, Z) of K such that

(J u X, J u 7, Z) is a trio.

Proof. Since

(Bx ® Bj. ® ̂ , U) = [S, V(J, I, K) ®U) ,

using Proposition 3.5 and Lemma 1.1 as before in the proof of Proposition

3.10, we have

B ® B*\® W ® W = X® 2'Llp(l, J, L) © X® 2'Zlp(X, Y, I u J u Z)
1 J K K D=K Z

where the second sum is over the partitions stated. On the other hand from

Lemma 2.5 we have

B ® B* ® W ® W = £* 2lLU ® B*I® W ® A .
1 d K K Trrv 1 cJ L K—L

Since by Proposition 3.10,

BZ®B*®WL® AK_L = P(I, J, L)

for L ± 0 , the result follows. //

In stating Theorem 1 we use the notation that A = B - C means

B ̂  A ® C .

THEOREM 1. For an irreducible V{I, J, K) let L = I u J u K . Let

!„, B_ be the modules defined in (3.6) and Notation 3.9 respectively.

(i) If K * 0 then

, J, K) = B].® B*®WR®AL .

(ii) If K = 0 , I u J ? 0 then

I J L x

where the sum runs over partitions {X, Y, Z} of L such that
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(I u X, J u Y, Z) is a trio.

(iii) P(l) = A. -
/V

B* ® W7 - dS , where
1 LJ

d =

-1 if n is odd, and

2 - 1 if n is even,

and the sum runs over all trios (X, Y, Z) .

Proof. (i) and (ii) are from Propositions 3.10 and 3.12. (iii)

follows from (3.1l) and Proposition 3.10, with the observation that by

(ii), P(N, 0, 0) = B- S , and similarly for its dual. //

To give the dimensions of the principal indecomposables we need the

following notion.

DEFINITION. Let J and J be disjoint subsets of N and let the

elements of I u J be i < i- < ... < i . Let

k. = \{k Z N \ i. < k < i. \\

under the circular ordering of N , and for j = 1, ..., r let

e . =
J

1 if both i . and i . belong to I" or both belong to J , and
3 J"*"l

-1 otherwise

for 3=1, ..., r . Then the type of {I, J} is the sequence

THEOREM 2. (i) If K * 0

dim P(I, J, K) = 8«.3»-|K|.2«-

Cii-I If I \j J 4 0 let the type of {J,

(e1, /c1, ..., e r, kp) . Then

dim P(X, J, 0) = 8
r

TT
3=1

Ciii; dim P(l) = 8"(6n-5") .

Proof. (i) is immediate from Theorem 1 (i). For (ii) let the
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elements of J u J be i < . . . < i and let

so that k . = \K.\ . From Theorem 1 (ii) we have to sum the dimensions of

the summands Bv ® B* ® W
A 1

of B ® B% ® A . Suppose we have subsets
1 J L

L . c K . , j = 1, ..., r , such that if 2 = U i. then there is a trio
0 3 3

(I u X, J u I, Z) . By the definition of a trio |L.| must be even if
3

e . = 1 and odd if e . = -1 , and provided these conditions are fulfilled a
3 3

trio exists. Now let 1. = |L.| . The corresponding principal
3 3

indecomposable Bv ® B* ® P/ _ has dimension
A l l UJ KJo

8n.3
k-l
X 1

k -I
r r... 3

and occurs 2'

summands is

= 2 times, so the total dimension of these

k1-l1
X 1

I k-l
.2

The sum of the dimensions of all the summands corresponding to trios

(J u X, J u Y, Z) is

k.-lA
3

k -I
, r r

where the sum is over I . odd or I . even according as e . is -1 or
3 3 3

1 . By the binomial theorem this is

K

Since |J u J| = p ,

giving the result.

/2 •

dim Br ® B* ® 4r

i d L

For (Hi) note that dim ^ = 8 . 6 and
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M o d u l e s for s p e c i a l l i n e a r g r o u p s 4 5 5

dim 2 l * l B y ® S £ ® W? = 2 l ° l . 3 " ~ | 4 l | . 8 "
A 1 LI

For each Z c N with |Z| even there are two tr ios so

dim P( l ) = 8nJ6M-2 . I 2 l Z l . 3 M " ' 2

|Z| even

6n
+l-2 . ? Q2k3n-

k=0 K

k even

= 8n(6n
+l-2.((5*+l)/2))
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