A characterization of Banach-star-algebras by numerical range

Brailey Sims

Abstract

It is known that in a B^{*}-algebra every self-adjoint element is hermitian. We give an elementary proof that this condition characterizes B^{*}-algebras among Banach*-algebras.

By A we mean a complex Banach*-algebra with a one, e, where $\|e\|=1$. Following F.F. Bonsall [2] we define the algebra numerical range of an element $a \in A$ by $V(a)=\{f(a): f \in D(e)\}$, where $D(e)$ is the set of normalised states of A, that is

$$
D(e)=\left\{f \in A^{*}: f(e)=\|f\|=1\right\}
$$

We say that an element $h \in A$ is self-adjoint if $h=h^{*}$, and following G. Lumer [3] we say that h is hermition if $V(h) \subset R$. Furthermore we call h positive hermitian if $V(h) \subset[0, \infty)$.
G. Lumer [3] has proved that in a B^{*}-algebra every self-adjoint element-is hermitian. By improving a result of I. Vidav [8], T.W. Palmer [4] has shown that this property characterizes B^{*}-algebras among Banach*-algebras.

The aim of this paper is' to furnish a simpler proof of Palmer's result. More precisely we establish the following theorem.

THEOREM A. A is a B^{*}-algebra if and only if every self-adjoint

Received 22 October 1970. The author thanks Dr J.R. Giles under whose supervision this work was done towards a doctoral thesis at the University of Newcastle, New South Wales.
element of A is hermitian.
Palmer actually shows that a Banach algebra in which every element a has a decomposition $a=u+i v$, where u and v are hermitian, is a B^{*}-algebra. However in this case $a \mapsto a^{*}=u-i v$ defines an involution [8, Hilfssatz 2c] for which every self-adjoint element is hermitian, as in Theorem A.
A.M. Sinclair [7] has proved the remarkable equality
(a)

$$
v(h)=\|h\| \text {, for all hermitian } h \in A .
$$

Using this we show that every self-adjoint element is hermitian if and only if the square of every self-adjoint element is positive hermitian. This equivalence and Sinclair's result provide the essential techniques for our proof.

It is well known [2] that the spectrum, $\sigma(a)$ of any element a, is contained in the numerical range of that element. Defining the spectral radius of a by $v(a)=\sup \{|\lambda|: \lambda \in \sigma(a)\}$, and similarly the numerical radius of a by $\omega(a)=\sup \{|\lambda|: \lambda \in V(a)\}$, we therefore obtain the inequality
(b)

$$
v(a) \leq \omega(a), \text { for all } a \in A
$$

H. Bohnenblust and S. Karlin [1, p. 129] have proved the following inequality between the norm and the numerical radius.

$$
\begin{equation*}
\frac{1}{e}\|a\| \leq w(a) \leq\|a\| \text {, for all } a \in A . \tag{c}
\end{equation*}
$$

We now investigate properties of A when every self-adjoint element is hermitian.

LEMMA 1. If every self-adjoint element of A is hermitian, then:
(i) every hermitian element is self-adjoint;
(ii) $V\left(a^{*}\right)=\overline{V(a)}$, for all $a \in A$;
(iii) the involution * is continuous.

Proof. Take any $f \in D(e)$ and $a \in A$, let $a=u+i v$, $a^{*}=u-i v(u, v$ self-adjoint) then
(i) if a is hermitian, $f(a)=f(u)+i f(v) \in R$, therefore $f(v)=0$, all $f \in D(e)$, so $w(v)=0$ and hence by (c),

$$
v=0 \text { and } a=u \text {, which is self-adjoint; }
$$

(ii) $f\left(a^{*}\right)=f(u)-i f(v)=\overline{f(u)+i f(v)}=\bar{f}(a) \in \overline{V(a)}$, therefore $V\left(a^{*}\right) \subseteq \overline{V(a)}$ and by symmetry $V\left(a^{*}\right)=\overline{V(a)}$; from (ii) $w(a)=w\left(a^{*}\right)$ and consequently, by (c),

$$
\begin{equation*}
\frac{1}{e}\|a\| \leq\left\|a^{*}\right\| \leq e\|a\| \tag{iii}
\end{equation*}
$$

LEMMA 2. The self-adjoint elements of A are hermitian if and only if the square of every self-adjoint element of A is positive hermitian.

Proof. Let the square of every self-adjoint element of A be positive hermitian; then for any self-adjoint $h \in A$ and $f \in D(e)$, $f(h)=f\left(\frac{1}{2}(h+e)^{2}-\frac{1}{2} h^{2}-\frac{1}{2} e\right)$. Therefore

$$
f(h)=\frac{1}{2} f\left((h+e)^{2}\right)-\frac{1}{2} f\left(h^{2}\right)-\frac{1}{2} \in R \quad \text { and so } \quad V(h) \subset R
$$

Let every self-adjoint element be hermitian. Clearly we need only consider self-adjoint h with $\nu(h) \leq 1$; then, since $\nu\left(h^{2}\right) \leq 1$, we have $\sigma\left(h^{2}\right) \subseteq[0,1]$. Hence $\sigma\left(e-h^{2}\right) \subseteq[0,1]$ and therefore $v\left(e-h^{2}\right) \leq 1$. By (a) and $(b), v(k)=\omega(k)$ for any self-adjoint $k \in A$. Hence it follows that for any $f \in D(e)$,

$$
1=f\left(h^{2}\right)+f\left(e-h^{2}\right) \leq f\left(h^{2}\right)+\left|f\left(e-h^{2}\right)\right| \leq f\left(h^{2}\right)+v\left(e-h^{2}\right) \leq f\left(h^{2}\right)+1
$$

and therefore $f\left(h^{2}\right) \geq 0$. //
LEMMA 3. If every self-adjoint element of A is hermitian, then $\|x\|\|x\| \leq 4\left\|x x^{*}\right\|$ for all $x \in A$, (that is, A is an Arens*-algebra).

Proof. Let $x=u+i v, x^{*}=u-i v$ (u, v self-adjoint); then $x x^{*}+x^{*} x=2 u^{2}+2 v^{2}$. For any $f \in D(e)$, by Lemma $2, f\left(u^{2}\right), f\left(v^{2}\right) \geq 0$, so we have $2 f\left(u^{2}\right), 2 f\left(v^{2}\right) \leq 2\left(f\left(u^{2}\right)+f\left(v^{2}\right)\right)=f\left(x x^{*}+x^{*} x\right)$ and therefore

$$
2 \max \left\{w\left(u^{2}\right), w\left(v^{2}\right)\right\} \leq w\left(x x^{*}+x^{\star} x\right) \leq w\left(x x^{*}\right)+w\left(x^{*} x\right)
$$

But

$$
w\left(x x^{*}\right)=v\left(x x^{*}\right)=v\left(x^{*} x\right)=w\left(x^{*} x\right)
$$

and

$$
\omega\left(u^{2}\right)=v\left(u^{2}\right)=v(u)^{2},(\text { similarly for } v),
$$

by (a) and [5, Lemma 1.4.17].

Therefore,

$$
(\max \{v(u), v(v)\})^{2} \leq v\left(x x^{*}\right)=\left\|x x^{*}\right\| .
$$

Further

$$
\|x *\|,\|x\| \leq\|u\|+\|v\|=v(u)+v(v) \leq 2 \max \{v(u), v(v)\},
$$ (Lemma 2 (iii)) therefore

$$
\frac{1}{4}\|x\|\|i x *\| \leq(\max \{v(u), v(v)\})^{2} .
$$

Combining these inequalities we have,

$$
\|x\|\|x *\| \leq 4\left\|x x^{*}\right\| \quad . \quad / /
$$

S. Shirali and W.M. Ford [6] have proved that A is symmetric, that is, $-1 \nmid \sigma\left(x x^{*}\right)$ for any $x \in A$, provided $\sigma(h) \subset R$ for all self-adjoint $h \in A$. We show that when every self-adjoint element of A is hermitian, their proof may be shortened, as in the following lemma.

LEMMA 4. If every self-adjoint element of A is hermitian then A is symmetric.

Proof. For any $f \in D(e)$, by Lemma 2,

$$
f\left(x x^{*}\right)+f\left(x^{*} x\right)=2 f\left(u^{2}\right)+2 f^{\prime}\left(v^{2}\right) \geq 0 \quad(u, v \text { as in Lemma 3) }
$$

so $f\left(x x^{*}\right) \geq-f\left(x^{*} x\right)$. Therefore if $\lambda \leq 0, \lambda \in \sigma\left(x^{*} x\right)=\sigma\left(x x^{*}\right)$ there exists $f \in D(e)$ such that $f\left(x x^{*}\right) \geq-\lambda \geq 0$. Hence

$$
\sup \left\{f\left(x x^{*}\right)\right\} \geq-\inf \left\{\lambda: \lambda \in \sigma\left(x x^{*}\right)\right\} .
$$

But

$$
\sup \left\{f\left(x x^{*}\right)\right\}=\sup \left\{\lambda: \lambda \in \sigma\left(x x^{*}\right)\right\},
$$

otherwise, for $\alpha>\left\|x x^{*}\right\|$, we would have

$$
w\left(\alpha e+x x^{*}\right)=\sup \left\{f\left(\alpha e+x x^{*}\right)\right\} \neq \sup \left\{\lambda: \lambda \in \sigma\left(\alpha e+x x^{*}\right)\right\}=v\left(\alpha e+x x^{*}\right)
$$

contradicting (a). Therefore $\sup \left\{\lambda: \lambda \in \sigma\left(x x^{*}\right)\right\} \geq-\inf \left\{\lambda: \lambda \in \sigma\left(x x^{*}\right)\right\}$ thus establishing the result of [6, Lemma 5]. The result now follows by the reasoning of [6, Section 3, p. 278]. //

LEMMA 5. If every self-adjoint element of A is hermition, then, for an equivalent renorming, A is a B^{*}-algebra.

Proof. From Lemmas 2 and 1 (iii), we have by [5, Theorem 4.7.3] that
$f\left(x x^{*}\right) \geq 0 \quad(f \in D(e))$ whenever $\sigma\left(x x^{*}\right) \subset[0, \infty)$, but if $-\delta^{2} \in \sigma\left(x x^{*}\right)$, then $-1 \in \sigma\left(\delta^{-1} x\left(\delta^{-1} x\right) *\right)$, contradicting Lerma 4. Therefore $f\left(x x^{*}\right) \geq 0$, for all $f \in D(e)$, in which case the Cauchy-Schwartz inequality, $\left|f\left(x y^{*}\right)\right|^{2} \leq f\left(x x^{*}\right) f\left(y y^{*}\right)$, holds [5, $\left.4.5(2)\right]$. Using this and (a) it is easily verified that $\|x\|_{0}^{2}=\left\|x x^{*}\right\|=w\left(x x^{*}\right)=\sup \left\{f\left(x x^{*}\right): f \in D(e)\right\}$ is a norm on A satisfying $\|x\|_{0}^{2}=\left\|x x^{*}\right\|_{0}$. But

$$
\left\|x x^{*}\right\| \geq \frac{1}{4}\|x\|\|x *\| \geq \frac{1}{4} e^{-1}\|x\|^{2}
$$

by Lemmas 3 and 1 (i ii); also,

$$
\left\|x x^{*}\right\| \leq\|x\|\left\|x^{*}\right\| \leq e\|x\|^{2},
$$

by Lemma 1 (iii). So

$$
\frac{1}{2} e^{-\frac{1}{2}}\|x\| \leq\|x\|_{0} \leq e^{\frac{1}{2}}\|x\|,
$$

that is $\left\|\|_{0}\right.$ and $\| \|$ are equivalent. //
COROLLARY 5.1. The two norms of Lenma 5 agree on the self-adjoint elements.

Lemma 5 also follows from a result of B. Yood [9, Theorem 2.7]. For if every self-adjoint element h of A is hermitian, then its spectrum is real and by (a) $\|h\|=v(h)$. However, because of the additive properties of the numerical range we have been able to give a more concise and revealing proof.

We now introduce the following Lemma, which is implicit in the work of Palmer [4].

LEMMA 6. If A is a B^{*}-algebra in an equivalent norm $\left\|\|_{0}\right.$, such that for all self-adjoint elements h of $A,\|h\|=\|h\|_{0}$, then A is a B^{*}-algebra in the given norm.

Proof. Since A with $\left\|\|_{0}\right.$ is a B^{*}-algebra, by [4, Lemma l] its unit ball, $B_{0}=\left\{x \in A:\|x\|_{0} \leq 1\right\}$ is the closed convex hull of the set of elements of the form $\exp (i h)$, where h is hermitian. By [8 , Hilfssatz l], $\|\exp (i h)\|=1$ so $B_{0} \subset B$, that is $\|x\| \leq\|x\|_{0}$, for all
$x \in A$; therefore $\left\|x x^{*}\right\| \leq\|x\|\left\|x^{*}\right\| \leq\|x\|_{0}\left\|x^{*}\right\|_{0}=\left\|x x^{*}\right\|_{0}=\left\|x x^{*}\right\|$ and so A with || || is a B^{*}-algebra. //

Combining Lemma 6 with Lemma 5 and Corollary 5.1 we obtain the sufficiency in Theorem A. Necessity follows from [3, Lemma 20].

As in [10, Corollary 1] Theorem A can be stated in the apparently stronger form:

THEOREM A^{1}. A is a B^{*}-algebra if and only if the set of hermitian self-adjoint elements of A is dense in the set of self-adjoint elements.

Since the set of self-adjoint elements is closed in A, it is sufficient to establish the following lemma.

LEMMA 7. The set of hermitian elements of A is closed.
Proof. Let $\left\{h_{n}\right\}$ be any sequence converging to h, with $V\left(h_{n}\right) \subset R$, for all n. For any $\varepsilon>0$ there exists N so that $\left\|h_{n}-h\right\| \leq \varepsilon$ whenever $n \geq N$. If $\lambda \in V(h)$ then $\lambda=f(h)$ for some $f \in D(e)$. Let $\lambda_{n}=f\left(h_{n}\right)$ for all n, then $\left|\lambda_{n}-\lambda\right|=\left|f\left(h_{n}-h\right)\right| \leq\left\|h_{n}-h\right\| \leq \varepsilon$ for $n \geq N$. So λ is the limit of a sequence of real numbers and therefore λ is real. //
[Added 16 November 1970]. We give an example to show that
If every hermitian element-is self-adjoint, then A is not necessarily a B^{*}-algebra even under equivalent renorming.

Let $X=l_{\infty}^{2}$ and take $A=L(X)$, all the 2×2 matrices with complex entries.

If $a=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is such that $V(a) \subset R$, then it is well known [2] that $f_{x}(\alpha x) \in R$ for all $x \in X$ with $\|x\|=1$ and all $f_{x} \in X^{*}$ such that $f_{x}(x)=\|f\|=1$. Let $x=(1,0)$; then $f_{x}=(1,0)$ and so $f_{x}(a x) \in R$ implies that $a_{11} \in R$. Similarly $a_{22} \in R$.

Now choose $x=(1, \lambda)$ for any complex λ where $0<|\lambda|<1$. Then $f_{x}=(1,0), f(a x)=a_{11}+a_{12} \lambda \in R$ and therefore $a_{12}=0$. Similarly

$$
\begin{aligned}
& a_{1}=0 \text {. It follows that } a \in A \text { is hermitian if and only if } \\
& a=\left[\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right] \text { for } \alpha, \beta \in R . \\
& \text { Define the involution } * \text { on } A \text { by } \\
& \qquad\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{*}=\left[\begin{array}{cc}
\bar{a}_{11} & -\bar{a}_{21} \\
-\bar{a}_{12} & \bar{a}_{22}
\end{array}\right] ;
\end{aligned}
$$

then every hermitian element is self-adjoint (but not conversely):
However * is not proper (that is $a a^{*}=0$ does not imply $a=0$) ; for example take $a=\left[\begin{array}{ll}i & 1 \\ 0 & 0\end{array}\right]$; and so A cannot be a B^{*}-algebra for any norm.

References

[1] H.F. Bohnenblust and S. Karlin, "Geometrical properties of the unit sphere of Banach algebras", Ann. of Math. (2) 62 (1955), 217-229.
[2] F.F. Bonsall, "The numerical range of an element of a normed algebra", Glasgow Math. J. 10 (1969), 68-72.
[3] G. Lumer, "Semi-inner-product spaces", Trans. Amer. Math. Soc. 100 (1961), 29-43.
[4] T.W. Palmer, "Characterisations of C^{*}-algebras", Bull. Amer. Math. Soc. 74 (1968), 538-540.
[5] Charles E. Rickart, General theory of Banach algebras (Van Nostrand, Princeton, New Jersey, 1960).
[6] Satish Shirali and James W.M. Ford, "Symmetry in complex involutary Banach algebras II', Duke Math. J. 37 (1970), 275-280.
[7] A.M. Sinclair, "The norm of a hermitian element in a Banach algebra", (to appear).
[8] Ivan Vidav, "Eine metrische Kennzeichnung der selbstadjungierten Operatoren", Math. Z. 66 (1956), 121-128.
[9] Bertram Yood, "Faithful * representations of normed algebras", Pacific J. Math. 10 (1960), 345-363.
[10] Bertram Yood, "On axioms for B^{*}-algebras", Bull. Amer. Math. Soc. 76 (1970), 80-82.

University of Newcastle,
Newcastle, New South Wales.

