BULL. AUSTRAL. MATH. SOC. VOL. 4 (1971). 193-200.

A characterization of Banach-star-algebras by numerical range

Brailey Sims

It is known that in a B^* -algebra every self-adjoint element is hermitian. We give an elementary proof that this condition characterizes B^* -algebras among Banach*-algebras.

By A we mean a complex Banach*-algebra with a one, e, where ||e|| = 1. Following F.F. Bonsall [2] we define the *algebra numerical* range of an element $a \in A$ by $V(a) = \{f(a) : f \in D(e)\}$, where D(e) is the set of normalised states of A, that is

 $D(e) = \{f \in A^* : f(e) = ||f|| = 1\}.$

We say that an element $h \in A$ is *self-adjoint* if $h = h^*$, and following G. Lumer [3] we say that h is *hermitian* if $V(h) \subset R$. Furthermore we call h positive hermitian if $V(h) \subset [0, \infty)$.

G. Lumer [3] has proved that in a B^* -algebra every self-adjoint element is hermitian. By improving a result of 4. Vidav [8], T.W. Palmer [4] has shown that this property characterizes B^* -algebras among Banach*-algebras.

The aim of this paper is to furnish a simpler proof of Palmer's result. More precisely we establish the following theorem.

THEOREM A. A is a B*-algebra if and only if every self-adjoint

Received 22 October 1970. The author thanks Dr J.R. Giles under whose supervision this work was done towards a doctoral thesis at the University of Newcastle, New South Wales.

element of A is hermitian.

Palmer actually shows that a Banach algebra in which every element a has a decomposition a = u + iv, where u and v are hermitian, is a B^* -algebra. However in this case $a \mapsto a^* = u - iv$ defines an involution [8, Hilfssatz 2c] for which every self-adjoint element is hermitian, as in Theorem A.

A.M. Sinclair [7] has proved the remarkable equality

(a)
$$v(h) = ||h||$$
, for all hermitian $h \in A$.

Using this we show that every self-adjoint element is hermitian if and only if the square of every self-adjoint element is positive hermitian. This equivalence and Sinclair's result provide the essential techniques for our proof.

It is well known [2] that the spectrum, $\sigma(a)$ of any element a, is contained in the numerical range of that element. Defining the spectral radius of a by $\nu(a) = \sup\{|\lambda| : \lambda \in \sigma(a)\}$, and similarly the numerical radius of a by $\omega(a) = \sup\{|\lambda| : \lambda \in V(a)\}$, we therefore obtain the inequality

(b)
$$v(a) \leq w(a)$$
, for all $a \in A$

H. Bohnenblust and S. Karlin [1, p. 129] have proved the following inequality between the norm and the numerical radius.

(c)
$$\frac{1}{e} ||a|| \le w(a) \le ||a||$$
, for all $a \in A$

We now investigate properties of A when every self-adjoint element is hermitian.

LEMMA 1. If every self-adjoint element of A is hermitian, then:

(i) every hermitian element is self-adjoint;

(ii)
$$V(a^*) = \overline{V(a)}$$
, for all $a \in A$;

(iii) the involution * is continuous.

Proof. Take any $f \in D(e)$ and $a \in A$, let a = u + iv, $a^* = u - iv$ (u, v self-adjoint) then

> (i) if a is hermitian, $f(a) = f(u) + if(v) \in R$, therefore f(v) = 0, all $f \in D(e)$, so w(v) = 0 and hence by (c),

https://doi.org/10.1017/S0004972700046451 Published online by Cambridge University Press

v = 0 and a = u, which is self-adjoint;

(ii)
$$f(a^*) = f(u) - if(v) = \overline{f(u)} + i\overline{f(v)} = \overline{f}(a) \in \overline{V(a)}$$
, therefore $V(a^*) \subseteq \overline{V(a)}$ and by symmetry $V(a^*) = \overline{V(a)}$;

(iii) from (ii) $w(a) = w(a^*)$ and consequently, by (c),

$$\frac{1}{e} \|a\| \le \|a^*\| \le e\|a\| \quad . \qquad //$$

LEMMA 2. The self-adjoint elements of A are hermitian if and only if the square of every self-adjoint element of A is positive hermitian.

Proof. Let the square of every self-adjoint element of A be positive hermitian; then for any self-adjoint $h \in A$ and $f \in D(e)$, $f(h) = f(\frac{1}{2}(h+e)^2 - \frac{1}{2}h^2 - \frac{1}{2}e)$. Therefore

$$f(h) = \frac{1}{2}f((h+e)^2) - \frac{1}{2}f(h^2) - \frac{1}{2} \in \mathbb{R}$$
 and so $V(h) \subset \mathbb{R}$

Let every self-adjoint element be hermitian. Clearly we need only consider self-adjoint h with $v(h) \leq 1$; then, since $v(h^2) \leq 1$, we have $\sigma(h^2) \subseteq [0, 1]$. Hence $\sigma(e-h^2) \subseteq [0, 1]$ and therefore $v(e-h^2) \leq 1$. By (a) and (b), v(k) = w(k) for any self-adjoint $k \in A$. Hence it follows that for any $f \in D(e)$,

 $1 = f(h^2) + f(e-h^2) \le f(h^2) + |f(e-h^2)| \le f(h^2) + v(e-h^2) \le f(h^2) + 1$ and therefore $f(h^2) \ge 0$. //

LEMMA 3. If every self-adjoint element of A is hermitian, then $||x|| ||x^*|| \le 4 ||xx^*||$ for all $x \in A$, (that is, A is an Arens*-algebra).

Proof. Let x = u + iv, $x^* = u - iv$ (u, v self-adjoint); then $xx^* + x^*x = 2u^2 + 2v^2$. For any $f \in D(e)$, by Lemma 2, $f(u^2), f(v^2) \ge 0$, so we have $2f(u^2), 2f(v^2) \le 2(f(u^2)+f(v^2)) = f(xx^*+x^*x)$ and therefore

$$2\max\{\omega(u^2), \omega(v^2)\} \le \omega(xx^{*}+x^{*}x) \le \omega(xx^{*}) + \omega(x^{*}x)$$

But

$$\omega(xx^*) = \nu(xx^*) = \nu(x^*x) = \omega(x^*x)$$

and

$$w(u^2) = v(u^2) = v(u)^2$$
, (similarly for v),

by (a) and [5, Lemma 1.4.17].

Therefore,

$$\{\max\{v(u), v(v)\}\}^2 \leq v(xx^*) = \|xx^*\|$$

Further

$$||x^*||, ||x|| \le ||u|| + ||v|| = v(u) + v(v) \le 2\max\{v(u), v(v)\}$$

(Lemma 2 (iii)) therefore

$$\frac{1}{||x||} ||x^*|| \leq (\max\{v(u), v(v)\})^2.$$

Combining these inequalities we have,

$$||x|| ||x^*|| \le 4 ||xx^*|| . //$$

S. Shirali and W.M. Ford [6] have proved that A is symmetric, that is, $-1 \notin \sigma(xx^*)$ for any $x \in A$, provided $\sigma(h) \subset R$ for all self-adjoint $h \in A$. We show that when every self-adjoint element of A is hermitian, their proof may be shortened, as in the following lemma.

LEMMA 4. If every self-adjoint element of A is hermitian then A is symmetric.

Proof. For any $f \in D(e)$, by Lemma 2,

 $f(xx^*) + f(x^*x) = 2f(u^2) + 2f(v^2) \ge 0$ (u, v as in Lemma 3)

so $f(xx^*) \ge -f(x^*x)$. Therefore if $\lambda \le 0$, $\lambda \in \sigma(x^*x) = \sigma(xx^*)$ there exists $f \in D(e)$ such that $f(xx^*) \ge -\lambda \ge 0$. Hence

$$\sup\{f(xx^*)\} \ge -\inf\{\lambda : \lambda \in \sigma(xx^*)\}.$$

But

$$\sup\{f(xx^*)\} = \sup\{\lambda : \lambda \in \sigma(xx^*)\},\$$

otherwise, for $\alpha > ||xx^*||$, we would have

 $w(\alpha e + xx^*) = \sup\{f(\alpha e + xx^*)\} \neq \sup\{\lambda : \lambda \in \sigma(\alpha e + xx^*)\} = v(\alpha e + xx^*)$

contradicting (a). Therefore $\sup\{\lambda : \lambda \in \sigma(xx^*)\} \ge -\inf\{\lambda : \lambda \in \sigma(xx^*)\}$ thus establishing the result of [6, Lemma 5]. The result now follows by the reasoning of [6, Section 3, p. 278]. //

LEMMA 5. If every self-adjoint element of A is hermitian, then, for an equivalent renorming, A is a B^* -algebra.

Proof. From Lemmas 2 and 1 (iii), we have by [5, Theorem 4.7.3] that

$$\begin{split} f(xx^*) &\geq 0 \quad \left(f \in D(e)\right) \text{ whenever } \sigma(xx^*) \subset [0, \infty) \text{ , but if } -\delta^2 \in \sigma(xx^*) \text{ ,} \\ \text{then } -1 \in \sigma\left[\delta^{-1}x\left(\delta^{-1}x\right)^*\right] \text{ , contradicting Lemma 4. Therefore } f(xx^*) &\geq 0 \text{ ,} \\ \text{for all } f \in D(e) \text{ , in which case the Cauchy-Schwartz inequality,} \\ \left|f(xy^*)\right|^2 &\leq f(xx^*)f(yy^*) \text{ , holds } [5, 4.5 (2)]. \text{ Using this and (a) it is} \\ \text{easily verified that } \|x\|_0^2 &= \|xx^*\| = w(xx^*) = \sup\{f(xx^*) : f \in D(e)\} \text{ is a} \\ \text{norm on } A \text{ satisfying } \|x\|_0^2 &= \|xx^*\|_0 \text{ . But} \end{split}$$

$$||xx^*|| \ge \frac{1}{4} ||x|| ||x^*|| \ge \frac{1}{4} e^{-1} ||x||^2$$

by Lemmas 3 and 1 (iii); also,

$$||xx^*|| \leq ||x|| ||x^*|| \leq e ||x||^2 ,$$

by Lemma 1 (iii). So

$$\frac{1}{2} e^{-\frac{1}{2}} \|x\| \le \|x\|_0 \le e^{\frac{1}{2}} \|x\| ,$$

that is $\| \|_{0}$ and $\| \|$ are equivalent. //

COROLLARY 5.1. The two norms of Lemma 5 agree on the self-adjoint elements.

Lemma 5 also follows from a result of B. Yood [9, Theorem 2.7]. For if every self-adjoint element h of A is hermitian, then its spectrum is real and by (a) ||h|| = v(h). However, because of the additive properties of the numerical range we have been able to give a more concise and revealing proof.

We now introduce the following Lemma, which is implicit in the work of Palmer [4].

LEMMA 6. If A is a B*-algebra in an equivalent norm $|| ||_0$, such that for all self-adjoint elements h of A, $||h|| = ||h||_0$, then A is a B*-algebra in the given norm.

Proof. Since A with $\| \|_{0}$ is a B^{*} -algebra, by [4, Lemma 1] its unit ball, $B_{0} = \{x \in A : \|x\|_{0} \leq 1\}$ is the closed convex hull of the set of elements of the form $\exp(ih)$, where h is hermitian. By [8, Hilfssatz 1], $\|\exp(ih)\| = 1$ so $B_{0} \subset B$, that is $\|x\| \leq \|x\|_{0}$, for all $x \in A$; therefore $||xx^*|| \le ||x|| ||x^*|| \le ||x||_0 ||x^*||_0 = ||xx^*||_0 = ||xx^*||$ and so A with $||\cdot||$ is a B^* -algebra. //

Combining Lemma 6 with Lemma 5 and Corollary 5.1 we obtain the sufficiency in Theorem A. Necessity follows from [3, Lemma 20].

As in [10, Corollary 1] Theorem A can be stated in the apparently stronger form:

THEOREM A^1 . A is a B*-algebra if and only if the set of hermitian self-adjoint elements of A is dense in the set of self-adjoint elements.

Since the set of self-adjoint elements is closed in A, it is sufficient to establish the following lemma.

LEMMA 7. The set of hermitian elements of A is closed.

Proof. Let $\{h_n\}$ be any sequence converging to h, with $V(h_n) \subset R$, for all n. For any $\varepsilon > 0$ there exists N so that $\|h_n - h\| \le \varepsilon$ whenever $n \ge N$. If $\lambda \in V(h)$ then $\lambda = f(h)$ for some $f \in D(e)$. Let $\lambda_n = f(h_n)$ for all n, then $|\lambda_n - \lambda| = |f(h_n - h)| \le \|h_n - h\| \le \varepsilon$ for $n \ge N$. So λ is the limit of a sequence of real numbers and therefore λ is real. //

[Added 16 November 1970]. We give an example to show that

If every hermitian element is self-adjoint, then A is not necessarily a B*-algebra even under equivalent renorming.

Let $X = l_{\infty}^2$ and take A = L(X), all the 2 × 2 matrices with complex entries.

If $a = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ is such that $V(\alpha) \subset R$, then it is well known [2] that $f_x(ax) \in R$ for all $x \in X$ with ||x|| = 1 and all $f_x \in X^*$ such that $f_x(x) = ||f|| = 1$. Let x = (1, 0); then $f_x = (1, 0)$ and so $f_x(ax) \in R$ implies that $a_{11} \in R$. Similarly $a_{22} \in R$.

Now choose $x = (1, \lambda)$ for any complex λ where $0 < |\lambda| < 1$. Then $f_x = (1, 0)$, $f(ax) = a_{11} + a_{12}\lambda \in R$ and therefore $a_{12} = 0$. Similarly

$$a_1 = 0$$
. It follows that $a \in A$ is hermitian if and only if
 $a = \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ for $\alpha, \beta \in R$.

Define the involution * on A by

$$\begin{bmatrix} a_{11} & a_{12} \\ \\ \\ \\ a_{21} & a_{22} \end{bmatrix}^* = \begin{bmatrix} \overline{a}_{11} & -\overline{a}_{21} \\ \\ \\ \\ \\ -\overline{a}_{12} & \overline{a}_{22} \end{bmatrix};$$

then every hermitian element is self-adjoint (but not conversely): However * is not proper (that is $aa^* = 0$ does not imply a = 0); for example take $a = \begin{bmatrix} i & 1 \\ 0 & 0 \end{bmatrix}$; and so A cannot be a B*-algebra for any norm.

References

- H.F. Bohnenblust and S. Karlin, "Geometrical properties of the unit sphere of Banach algebras", Ann. of Math. (2) 62 (1955), 217-229.
- [2] F.F. Bonsall, "The numerical range of an element of a normed algebra", *Glasgow Math. J.* 10 (1969), 68-72.
- [3] G. Lumer, "Semi-inner-product spaces", Trans. Amer. Math. Soc. 100 (1961), 29-43.
- [4] T.W. Palmer, "Characterisations of C*-algebras", Bull. Amer. Math. Soc. 74 (1968), 538-540.
- [5] Charles E. Rickart, General theory of Banach algebras (Van Nostrand, Princeton, New Jersey, 1960).
- [6] Satish Shirali and James W.M. Ford, "Symmetry in complex involutary Banach algebras II", Duke Math. J. 37 (1970), 275-280.
- [7] A.M. Sinclair, "The norm of a hermitian element in a Banach algebra", (to appear).
- [8] Ivan Vidav, "Eine metrische Kennzeichnung der selbstadjungierten Operatoren", Math. Z. 66 (1956), 121-128.

[9] Bertram Yood, "Faithful * representations of normed algebras", Pacific J. Math. 10 (1960), 345-363.

[10] Bertram Yood, "On axioms for B*-algebras", Bull. Amer. Math. Soc. 76 (1970), 80-82.

University of Newcastle, Newcastle, New South Wales.