§ 0. Introduction

Recently, A. Morimoto [5] proved that every isometry of a compact Riemannian manifold of positive dimension has not the pseudo-orbit tracing property, and that if a homeomorphism of a compact metric space has the pseudo-orbit tracing property then \(E_{\varphi} = O_{\varphi} \) (see § 1 for definition). The purpose of this paper is to show that every distal homeomorphism of a compact connected metric space has not the pseudo-orbit tracing property.

The author benefited from reading the papers by A. Morimoto [5, 6].

§ 1. Definitions

Let \(\varphi: X \to X \) be a (self-) homeomorphism of a compact metric space \(X \) with distance function \(d \). A sequence of points \(\{x_i\}_{i \in (a, b)} \) \((-\infty \leq a < b \leq \infty) \) is called a \(\delta \)-pseudo-orbit of \(\varphi \) if \(d(\varphi(x_i), x_{i+1}) < \delta \) for \(i \in (a, b - 1) \). A sequence \(\{x_i\} \) is called to be \(\varepsilon \)-traced by \(x \in X \) if \(d(\varphi^i(x), x_i) < \varepsilon \) holds for \(i \in (a, b) \). We say \((X, \varphi) \) to have the pseudo-orbit tracing property (abbrev. P.O.T.P.) if for every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that every \(\delta \)-pseudo-orbit of \(\varphi \) can be \(\varepsilon \)-traced by some point \(x \in X \). The system \((X, \varphi) \) is said to be minimal if a \(\varphi \)-invariant closed set \(K \) is necessarily \(K = \emptyset \) or \(K = X \). Let \(A \) be a subset of the integer group \(\mathbb{Z} \). Then \(A \) is syndetic if there is a finite subset \(K \) of \(\mathbb{Z} \) with \(\mathbb{Z} = K + A \). Let \(x \in X \). Then \(x \) is an almost periodic point if \(\{n \in \mathbb{Z} : \varphi^n(x) \in U\} \) is a syndetic set for all neighborhoods \(U \) of \(x \). Let \((X, \varphi) \) be distal, that is, if \(\inf_{n \in \mathbb{Z}} d(\varphi^n(x), \varphi^n(y)) = 0 \) then \(x = y \). Then every \(x \in X \) is an almost periodic point and the converse is true (p. 36 of [2]). It is clear that every equi-continuous homeomorphism has this property and is hence distal. But the converse does not hold. To check this for example, let \(T^2 \) be a 2-dimensional torus...
and define a homeomorphism \(\varphi : T^2 \to T^2 \) by
\[
\varphi(x, x) = (\alpha + x, nx + x)
\]
\((x, x) \in T^2\) where \(\alpha \in T^1 \) and \(0 \neq n \in \mathbb{Z} \). Then it will be easily checked that \(\varphi \) is distal but not equi-continuous. A point \(x \in X \) is said to be non-wandering (with respect to \(\varphi \)) if for every neighborhood \(U \) of \(x \), there is an \(n > 0 \) with \(U \cap \varphi^n(U) \neq \emptyset \). The set of all nonwandering points is called the nonwandering set and denoted by \(\Omega(\varphi) \). Since \(X \) is compact, we get \(\Omega(\varphi) \neq \emptyset \). If in particular \((X, \varphi)\) is distal, then it is easily proved that \(\Omega(\varphi) = X \) since every \(x \in X \) is almost periodic. We know (cf. p. 132 of [7]) that there is always a Borel probability measure \(\mu \) on \(X \) which is preserved by \(\varphi \) and \(\varphi^{-1} \), and (cf. p. 135 of [7]) that if \((X, \sigma)\) is minimal then \(\mu(U) > 0 \) for all non-empty open set \(U \).

The set \(2^X \) of all closed non-empty subsets of \(X \) will be a compact metric space by the distance function \(\delta \) defined by
\[
\delta(A, B) = \max\{\max_{a \in A} d(a, b), \max_{b \in B} d(a, b)\} \quad (A, B \in 2^X)
\]
where \(d(A, B) = \inf_{a \in A} d(a, b) \) (cf. p. 45 of [4]). We denote by \(\text{Orb}^\delta(\varphi) \) the set of all \(\delta \)-pseudo-orbits of \(\varphi \) and by \(\text{Orb}^{\delta^2}(\varphi) \) the set of all \(A \in 2^X \), for which there is \(\{x_i\} \in \text{Orb}^\delta(\varphi) \) such that \(A = \text{Cl} \{x_i : i \in \mathbb{Z}\} \), \(\text{Cl} \) denoting the closure. Let \(E_\varphi \) denote the set of all \(A \in 2^X \) such that for every \(\epsilon > 0 \) there is \(A, \in \text{Orb}^\epsilon(\varphi) \) with \(\delta(A, A_\epsilon) < \epsilon \). An element \(A \) of \(E_\varphi \) is called an extended orbit of \(\varphi \). On the other hand, we define \(O_\varphi = \text{Cl} \{O_\varphi(x) : i \in \mathbb{Z}\} \) where \(O_\varphi(x) = \text{Cl} \{\varphi^i(x) : i \in \mathbb{Z}\} \). We can easily see that \(E_\varphi \) is closed in \(2^X \) and that \(O_\varphi \subset E_\varphi \) holds.

§ 2. Results

Throughout this section, \(X \) will be a compact metric space with distance function \(d \) and \(\varphi \) will be a self-homeomorphism of \(X \).

Theorem. Assume that \(X \) is connected. If \((X, \varphi)\) is distal, then \((X, \varphi)\) has not P.O.T.P.

Lemma 1. If \((X, \varphi)\) has P.O.T.P., for every \(\epsilon > 0 \) and every \(x_0 \in \Omega(\varphi) \) there is a point \(y \in X \) and an integer \(k = k(x_0, \epsilon) > 0 \) such that \(O_\varphi(y) \subset U_\epsilon(x_0) \).

Proof. Since \(x_0 \in \Omega(\varphi) \), for \(\delta > 0 \) with \(\delta < \epsilon \) there are a point \(x \in X \) and an integer \(k > 0 \) such that \(x \) and \(\varphi^i(x) \) belong to \(U_{\frac{\delta}{2}}(x_0) \). Now, set \(x_{n+1} = \varphi^i(x) \) for \(n \in \mathbb{Z} \) and \(0 \leq i < k \). Obviously, \(\{x_i : i \in \mathbb{Z}\} = \{\cdots, x, \varphi(x), \cdots, \varphi^{k-1}(x), \cdots\} \in \text{Orb}^\delta(\varphi) \). Hence we can find a point \(y \in X \) such that \(d(\varphi^i(y), \)

https://doi.org/10.1017/S00277630000020146 Published online by Cambridge University Press
\(x_i < \varepsilon \) for \(i \in \mathbb{Z} \). In particular, \(d(\varphi^{n_k}(y), x_{n_k}) < \varepsilon \) and hence \(d(\varphi^{n_k}(y), x) < \varepsilon \) for \(n \in \mathbb{Z} \). Therefore we have \(O_{\varphi}(y) \subseteq U_i(x_i) \).

Corollary 1. Assume that \(X \) is connected and not one point. If \((X, \varphi) \) is minimal, then \((X, \varphi) \) has not P.O.T.P.

Proof. Let \(\varepsilon = \text{diameter}\ (X)/3 \) and assume that \((X, \varphi) \) has P.O.T.P. By Lemma 1 we have that for some \(x_0 \in X \) there are \(y \in X \) and \(k > 0 \) with \(O_{\varphi}(y) \subseteq O_{\varphi}(x_0) \). Since \(X \) is connected, \(O_{\varphi}(y) = O_{\varphi}(y) = X \) and so diameter \((X) \leq 2\varepsilon \). This is a contradiction.

Corollary 2. If \((X, \varphi) \) is minimal, then \(E_\varphi = O_{\varphi} \).

Proof. It is proved by A. Morimoto that every \(A \in E_\varphi \) is \(\varphi \)-invariant \((\varphi(A) = A) \). In fact, for every \(\varepsilon > 0 \) there is \(\varepsilon > \varepsilon_t > 0 \) such that \(d(\varphi(x), \varphi(y)) < \varepsilon \) when \(d(x, y) < \varepsilon_t \). By definition we can find \(\{x_i\} \in \text{Orb}^t(\varphi) \) with \(\overline{d}(A, \text{Cl}(x_i)) < \varepsilon_t \). Set \(y_i = \varphi(x_i) \) for \(i \in \mathbb{Z} \), then \(d(y_i, x_{i+1}) < \varepsilon_t \) and so \(\overline{d}(\text{Cl}(x_i), \text{Cl}(y_i)) < \varepsilon_t \). It is clear that \(d(\varphi(y_i), y_{i+1}) < \varepsilon \) for \(i \in \mathbb{Z} \). Hence, \(\{y_i\} \in \text{Orb}^t(\varphi) \). Let \(A' = \text{Cl}(x_i) \). Then \(\overline{d}(A', \varphi(A')) < \varepsilon_t \) and since \(\overline{d}(A, A') < \varepsilon_t \) we get \(\overline{d}(\varphi(A), \varphi(A')) < \varepsilon_t \). Therefore

\[
\overline{d}(\varphi(A), A) < \overline{d}(\varphi(A), \varphi(A')) + \overline{d}(\varphi(A'), A') + \overline{d}(A', A) < 3\varepsilon
\]

and so \(\overline{d}(\varphi(A), A) = 0 \); i.e. \(\varphi(A) = A \). Therefore we get \(E_\varphi = \{X\} = O_{\varphi} \).

Lemma 2. If \((X, \varphi) \) has P.O.T.P., for every integer \(k > 0 \), \((X, \varphi^k) \) has also P.O.T.P.

Proof. For every \(\varepsilon > 0 \) there is \(\delta > 0 \) such that \(\{x_i\} \in \text{Orb}^t(\varphi) \) is \(\varepsilon \)-traced by a point in \(X \). Take \(\{y_i\} \in \text{Orb}^t(\varphi) \) and put \(x_{n_k+i} = \varphi^i(y_n) \) for \(n \in \mathbb{Z} \) and \(0 \leq i \leq k - 1 \). Obviously, \(\{x_i\} \in \text{Orb}^t(\varphi) \). Hence there is \(y \in X \) with \(d(\varphi^i(y), x_{n_k+i}) < \varepsilon \) for \(i \in \mathbb{Z} \). In particular, \(d(\varphi^i(y), y_n) = d(\varphi^{n_k+i}(y), x_{n_k}) < \varepsilon \) for \(n \in \mathbb{Z} \). This completes the proof of Lemma 2.

Lemma 3. Let \((X, \varphi) \) be distal. Then for every \(x \in X \), \((O_{\varphi}(x), \varphi)\) is minimal.

Proof. Since every \(x \in X \) is almost periodic under \(\varphi \), for a neighborhood \(U \) of \(x \) there is a finite set \(K = \{n_1, \cdots, n_k\} \) of \(\mathbb{Z} \) such that \(Z = A + K \) where \(A = \{n \in \mathbb{Z}: \varphi^n(x) \in U\} \). Hence \(O_{\varphi}(x) = \text{Cl}(\varphi^n(x): n \in A) \cup \text{Cl}(\varphi^{n+k}(x): n \in A) \cup \cdots \cup \text{Cl}(\varphi^{n+k}(x): n \in A) \). Let \(y \in O_{\varphi}(x) \). Then \(O_{\varphi}(y) \cap U \neq \emptyset \). This implies that \(x \in O_{\varphi}(y) \). Hence \(O_{\varphi}(x) = O_{\varphi}(y) \).
Remark 1. If \((X, \varphi)\) is distal and topologically transitive, then it is clearly minimal (by Lemma 3).

We shall now give a proof of the theorem.

Assuming that \((X, \varphi)\) has P.O.T.P., we shall draw a contradiction. To do this, let \(\varepsilon = \text{diameter}(X)/9\). Then there is \(\delta > 0\) with \(\delta < \varepsilon\) such that every \(\{z_t\} \in \text{Orb}^t(\varphi)\) is \(\varepsilon\)-traced by a point of \(X\). Lemma 1 insures us that for \(y \in \Omega(\varphi)\) there are \(y \in X\) and \(k > 0\) with \(O_{\varphi}(y) \subset U(y)\). Put \(\psi = \varphi^k\). Then \((X, \psi)\) has P.O.T.P. (by Lemma 2) and is distal. Since \(X\) is connected and compact, we can take a sequence of points \(\{p_i\}_{i=1}^N\) in \(X\) such that \(p_i = y\), \(d(p_i, p_{i+1}) < \delta/2\) for \(1 \leq i \leq N - 1\) and such that \(\bigcup_{i=1}^N U_{\psi}(p_i) = X\). Since \((X, \psi)\) is distal, every point of \(X\) is almost periodic. Hence for \(1 \leq i \leq N\) there is an integer \(c(i) > 0\) such that \(d(p_i, \psi^c(p_i)) < \delta/2\). Let us put

\[
x_i = \psi^{-i}(p_i) \quad (i < 0)
\]
\[
x_i = \psi^i(p_i) \quad (0 \leq i \leq c(1) - 1)
\]
\[
x_{c(1) + i} = \psi^i(p_c) \quad (0 \leq i \leq c(2) - 1)
\]
\[
\ldots
\]
\[
x_{c(1) + \cdots + c(N - 1) + i} = \psi^i(p_N) \quad (0 \leq i \leq c(N) - 1)
\]
\[
x_{c(1) + \cdots + c(N) + i} = \psi^i(p_{N-1}) \quad (0 \leq i \leq c(N - 1) - 1)
\]
\[
\ldots
\]
\[
x_{c(1) + 2c(2) + \cdots + 2c(N - 1) + c(N) + i} = \psi^i(p_i) \quad (i \geq 0).
\]

Obviously, \(\{x_i\}_{i \in \mathbb{Z}} \in \text{Orb}^t(\psi)\) and \(\overline{d}(\text{Cl} \{x_i\}, X) < \delta\). By assumption, there is \(z \in X\) with \(d(\psi^i(z), x_i) < \varepsilon\) \((i \in \mathbb{Z})\) so that \(\overline{d}(O_{\psi}(z), X) < \delta + \varepsilon < 2\varepsilon\), and in particular

\[
d(\psi^i(z), \psi^i(p_i)) = d(\psi^i(z), \psi^i(y)) < \varepsilon \quad (i < 0),
\]
\[
d(\psi^{i+1}(z), \psi^i(p_i)) = d(\psi^{i+1}(z), \psi^i(y)) < \varepsilon \quad (i \geq 0)
\]

where \(c = c(1) + c(N) + 2 \sum_{i=1}^{N-1} c(i)\). This implies that

\[
\psi^i(z) \in U_i(\psi^i(y)) \subset U_i(O_{\psi}(y)) \quad (i < 0),
\]
\[
\psi^{i+1}(z) \in U_i(\psi^i(y)) \subset U_i(O_{\psi}(y)) \quad (i \geq 0)
\]

where \(U_i(O_{\psi}(y)) = \bigcup_{h \in O_{\psi}(y)} U_i(h)\). Put \(O_{\psi}(z) = \text{Cl} \{\psi^i(z) : i < 0\}\) and \(O_{\psi}(z) = \text{Cl} \{\psi^i(z) : i > 0\}\). Then we have that \(O_{\psi}(z) \subset U_i(O_{\psi}(y))\) and \(\psi^iO_{\psi}(z) \subset U_i(O_{\psi}(y))\). Since \(O_{\psi}(z) \cup O_{\psi}(z) = O_{\psi}(z)\), by Baire’s theorem either \(O_{\psi}(z)\) or \(O_{\psi}(z)\) has non-empty interior in the set \(O_{\psi}(z)\).

Let \(\mu\) be a \(\psi\)-invariant Borel probability measure of \(O_{\psi}(z)\). Since
\((O_\psi(z), \psi)\) is minimal by Lemma 3, every non-empty open set in \(O_\psi(z)\) has \(\mu\)-positive measure. When the interior of \(O_\psi(z)\) in \(O_\psi(z)\) is non-empty, it is easy to see that \(O_\psi(z) = \psi O_\psi(z)\) and so \(O_\psi(z) = O_\psi(z)\). Indeed, assume \(\psi^{-1}O_\psi(z) \subseteq O_\psi(z)\). Then \(V = \bigcap_{k \geq 0} \psi^{-k}O_\psi(z)\) does not contain the interior of \(O_\psi(z)\) in \(O_\psi(z)\). Hence \(\mu(O_\psi(z)\setminus V) > 0\). Since \(O_\psi(z) = \bigcup_{k \geq 0} \psi^{-k}[O_\psi(z)\setminus 0^{-1}O_\psi(z)] \cup V\), we get \(\mu(O_\psi(z)\setminus \psi^{-1}O_\psi(z)) > 0\), thus contradicting \(\mu(O_\psi(z)) \leq 1\). If the interior of \(O_\psi(z)\) in \(O_\psi(z)\) is non-empty; i.e. \(\mu(O_\psi(z)) > 0\), then it follows that \(O_\psi(z) = O_\psi(z)\). Obviously \(O_\psi(z) = \psi^{-1}O_\psi(z)\). In any case we get \(O_\psi(z) \subset U_i(O_\psi(y))\) so that \(O_\psi(z) \subset U_i(O_\psi(y)) \subset U_i(y)\) (because \(O_\psi(y) \subset U_i(y)\)). Since \(2\epsilon > d(O_\psi(z), X) = \max_{x \in X} d(O_\psi(z), x)\), we have \(X = U_i(O_\psi(z))\) from which \(X = U_i(y)\); i.e. diameter \((X) \leq 8\epsilon\). This is a contradiction.

Remark 2. We know (Application 2 of [1]) that every (group) automorphism \(\sigma\) of a zero-dimensional compact metric group \(X\) has P.O.T.P. If \((X, \sigma)\) has zero topological entropy (the existence of such automorphisms is known), then we can prove (cf. Lemma 14 of [1]) that \(X\) contains a sequence \(X = X_0 \supset X_1 \supset \cdots\) of completely \(\sigma\)-invariant normal subgroups such that \(\cap X_n\) is trivial and for every \(n \geq 0\), \(X_n/X_{n+1}\) is a finite group. Hence for \(x, y \in X\) (\(x \neq y\)) there is \(n > 0\) such that \(xy^{-1} \notin x_n\). Since \(\sigma(X_n) = x_n\) for all \(j \in Z\), we get easily \(\sigma'(xy^{-1}) \notin X_n\) (\(j \in Z\)), which implies that \(d(\sigma'(x), \sigma'(y)) > d(\sigma'(x)X_n, \sigma'(y)X_n) > 0\) (the distance function \(d\) is a translation invariant metric of \(X\)). Since \(X_n/X_{n+1}\) is a finite group, we get \(\inf d(\sigma'(x), \sigma'(y)) > 0\); i.e. \((X, \sigma)\) is distal. Therefore every zero-dimensional automorphism with zero topological entropy is distal and has P.O.T.P. This shows that the assumption of connectedness in the theorem can not drop out.

References

Department of Mathematics
Tokyo Metropolitan University
Fukazawa, Setagaya-ku
Tokyo 158, Japan