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Abstract
This trial was conducted to study the effects of dietary rapeseed cake (RSC) containing high glucosinolates (GLS) on rumen fermentation,
nutrient digestion and the rumen microbial community in steers. Eight growing steers and four rations containing RSC (GLS 226·1 μmol/g
DM) at 0·00, 2·65, 5·35 and 8·00 % DM were assigned in a replicate 4 × 4 Latin square design. The results indicated that increasing RSC levels
increased the ruminal concentration of thiocyanate (SCN) (P< 0·01), decreased the ruminal concentration of ammonia nitrogen (NH3-N) and the
molar proportion of isovalerate (P< 0·05), did not affect the ruminal concentration of total volatile fatty acids (P> 0·05), decreased the crude
protein (CP) digestibility (P< 0·05) and increased the ether extract (EE) digestibility (P< 0·01). Increasing RSC levels tended to decrease the
abundances of ruminal Ruminobacter amylophilus (P= 0·055) and Ruminococcus albus (P= 0·086) but did not affect methanogens, protozoa,
fungi and other bacteria (P> 0·05). Increasing RSC levels in the ration did not affect the ruminal bacterial diversity (P> 0·05), but it increased the
operational taxonomic units and the bacterial richness (P< 0·05) and affected the relative abundances of some bacteria at the phylum level and
genus level (P< 0·05). In conclusion, RSC decreased the ruminal concentration of NH3-N and the CP digestibility, increased the EE digestibility
and partly affected the ruminal bacterial community. SCN, as the metabolite of GLS, could be a major factor affecting these indices.
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Rapeseed is an important oil crop widely cultivated around
the world and is also the largest oil crop in China. The annual
rapeseed production in China accounts for approximately
20 % of the worldwide production(1). The varieties of rapeseed
used for oil production mainly include Brassica napus,
Brassica campestris, Brassica juncea and Brassica rapa(2–4).

Rapeseed cake (RSC) is the by-product of rapeseeds after
oil extraction(5). RSC has a high content of crude protein (CP)
(averaging 36·3 % in DM) and metabolisable energy (averag-
ing 13·0 MJ/kg DM)(6) and also contains a well-balanced com-
position of amino acids(7). Therefore, RSC is a good source of
protein feed for livestock. However, RSC from some varieties
of rapeseed contains high concentrations of glucosinolates
(GLS)(8), which act as antinutritional factors and can nega-
tively affect the nutrient utilisation and health of livestock.
Although some varieties of rapeseed with low GLS have been
widely cultivated in North America, some varieties of rape-
seeds containing high GLS are widely planted in China

because of their high adaptability to the local conditions. A
high content of GLS in the ration of pigs could induce iodine
deficiency(9) and result in liver and thyroid hypertrophy(10).
Ruminants are relatively more tolerant to GLS due to the
pre-gastric location of microflora in the digestive system com-
pared with monogastric animals(11). However, high levels of
GLS in the diet would adversely impact nutrient digestibility.
In lambs, mustard rations containing high GLS reduced CP
digestibility(12). In lactating goats, dietary GLS in mustard
reduced CP digestibility and increased milk thiocyanate
(SCN)(13). In growing calves, dietary GLS in mustard decreased
the digestibility of DM, organic matter and CP(14). In continu-
ous culture with the rumen fluid of cattle, rapeseed forage
containing high GLS showed lower CP digestibility and bacte-
rial N flow than annual ryegrass(15). These results may indicate
that dietary GLS or its metabolite SCN depressed nutrient
digestibility in ruminants. Detoxification of GLS in RSC by
microwaving, water treatment, heat treatment and solid-state

Abbreviations: CP, crude protein; EE, ether extract; GLS, glucosinolate; ISCN, isothiocyanate; NH3-N, ammonia nitrogen; OTU, operational taxonomic units;
RSC, rapeseed cake; SCN, thiocyanate; VFA, volatile fatty acid.
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fermentation(16) can effectively eliminate the harmful effects
of GLS; however, these treatments would increase the
feed cost.

GLS in rapeseeds can be hydrolysed into SCN, isothiocyanate
(ISCN) and goitrin by the myrosinase that exists in rapeseeds
when crushed(17). Only SCN was found in the ruminal digesta
in cattle fed rapeseed rations containing GLS(18). Although the
hydrolysis of GLS is known, the mechanisms of GLS that affect
nutrient digestion in ruminants remain unclear. GLS or SCN
is hypothesised to modulate nutrient digestion in ruminants
through its impact on ruminal microbiota.

The objectives of this trial were to investigate the effects of
RSC containing high GLS in the ration of steers on rumen fer-
mentation, nutrient digestibility and ruminal microbiota and
clarify the interrelationships among GLS, ruminal microbiota
and nutrient digestion in steers.

Materials and methods

Ethics statement

The trial was approved by the Animal Care and Use Committee
of China Agricultural University (approval number 20130611–1).

Experimental design

Eight Simmental bulls (initial body weight 219 (SD 14) kg,
10 months old) castrated 2 weeks before the trial started were
used as the experimental animals. The RSC used in the trial
was the rapeseed residue after the oil was extracted by hot
pressing at the temperature of 120°C with the pressure of
approximately 20 MPa for 20 min/50 kg rapeseed. Four levels
of hot-pressed RSC, that is, 0·00, 2·65, 5·35 and 8·00 %DM, were
included in the rations as the experimental treatments (Table 1).
The animals and the experimental treatments were randomly
assigned in a replicate 4 × 4 Latin square design. Each animal
was supplied with 3·5 kg DM of total mixed ration daily, which
was approximately 90 % of the ad libitumDM intake measured
in a preliminary trial. The concentrations of CP and net energy
of the rations were 1·2 times the maintenance requirements for
the steers(19). Each experimental period lasted 20 d, including
15 d for adaptation and 5 d for sampling. The animals ate all
the feeds offered daily, and no feeds were left during the trial.

Animal feeding and sampling

The animals were kept in individual pens. The daily ration was
divided into two equal meals that were given at 07.00 and
16.00 hours. Fresh drinking water was freely available. During
the sampling period, the total faeces from each animal was col-
lected using a plastic bucket and the weight of the faeces was
recorded daily. An amount of 2 % of the total faeces from each
animal was sampled after homogenisation and mixed with sul-
phuric acid (concentration 10 %, v/v) at 20 ml/100 g fresh faecal
sample to keep the pH of the samples below 3·0 and prevent N
loss during storage and analysis. The ruminal fluid was taken
through the oesophagus of each animal using a tube 2 h after
feeding in the morning on the third day of each sampling period.
To avoid saliva contamination, the first sample of rumen fluid

was discharged and then a sample of about 200 ml of rumen fluid
was collected from each steer. The rumen fluid was filtered
through four layers of cheesecloth, and the ruminal pH was
immediately measured using a portable pH meter (model 8601,
AZ Instrument Corp. Ltd). The feeds were also sampled daily.
The samples were stored in a freezer at –20°C until later analysis
within 2 months.

Chemical analysis of feeds and faeces

The samples of feeds and faeces were freeze-dried (LGJ-12,
Beijing Songyuan Huaxin Technology Development Co. Ltd)
and then grinded to pass a sieve with the pore size of 1 mm
for determination and analysis. The DM of feeds and faeces
was determined in an oven at 105°C using the no. 934.01
AOAC method (1998)(20). The crude ash of the feeds and faeces
was determined by combustion in amuffle furnace at 550°C, and
the total N of feeds and faeces was analysed by the Kjeldahl
method according to AOAC methods (1998)(20) no. 942.05 and
988.05, respectively. The organic matter of the feeds and
faeces was calculated by DMminus crude ash. The ether extract
(EE) of the feeds and faeces was analysed according to AOAC
(1998)(20) method no. 920.39. The neutral-detergent fibre and
acid-detergent fibre of the feeds and faeces inclusive of residual
ash were analysed on an Ankom A200i Fiber Analyzer (Ankom
Technology Corp.) using the methods of Van Soest et al.(21).
The rumen degradable protein and rumen undegradable protein
contents of the feeds were calculated based on Licitra et al.(22) and

Table 1. Ingredients and nutritional composition of experimental
rations (% DM)
(Percentages)

Items (%)

RSC levels

0·00 2·65 5·35 8·00

Ingredients
Maize 27·50 28·30 28·90 29·15
Maize gluten meal 5·60 3·73 2·00 0·10
Soyabean meal 5·35 4·32 3·20 2·20
Rapeseed cake 0·00 2·65 5·35 8·00
Sodium chloride 1·00 1·00 1·00 1·00
Sodium bicarbonate 1·00 1·00 1·00 1·00
Premix* 2·00 2·00 2·00 2·00
Maize silage 57·55 57·00 56·55 56·55
Total 100·00 100·00 100·00 100·00

Nutrient levels
NEmf (MJ/kg)† 5·42 5·50 5·48 5·48
Organic matter 89·52 89·42 89·41 89·68
CP 11·96 12·06 12·04 11·93
RDP (% CP)‡ 64·53 63·52 61·42 58·18
RUP (% CP)‡ 35·47 36·48 38·58 41·82
Neutral-detergent fibre 44·85 44·14 44·52 44·91
Acid-detergent fibre 25·54 25·49 25·99 26·46
Ether extract 1·49 1·80 1·82 2·05
Glucosinolates (μmol/g) 0·00 5·99 12·10 18·09

RSC, rapeseed cake; NEmf, net energy for maintenance and fattening of beef cattle;
CP, crude protein; RDP, rumen degradable protein; RUP, rumen undegradable
protein.
* Provided per kg DM of ration: 54mg Zn (ZnSO4); 70mg Fe (FeSO4); 38 mg Mn
(MnSO4); 12·8mg Cu (CuSO4); 1·2mg iodine (KI); 0·17mg Se (Na2SeO3); 0·6mg
Co (CoCl2); 2·31mg vitamin A; 75 μg vitamin D3.

† NEmf was calculated according to Feng(19).
‡ The contents of RDP and RUP were determined according to Licitra et al.(22) and the
National Research Council(23).
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the National Research Council(23). The extraction of GLS from RSC
was conducted according to Tholen et al.(24), and the content of
GLS in RSC was analysed using the method of Wathelet et al.(25)

with slight modification.

Rumen fermentation parameters

The ammonia nitrogen (NH3-N) concentration of rumen fluid
was determined using the colorimetric method of Broderick &
Kang(26). The volatile fatty acid (VFA) concentration of rumen
fluid was determined via a GC (TP-2060F, Beijing Beifen-Ruili
Analytical Instrument Co. Ltd) using the method described by
Yang et al.(27). The ruminal concentration of SCN was analysed
according to China Hygiene Standard WS/T 39-1996(28). The
ruminal concentration of ISCN was analysed using the method
of Matthäus & Fiebig(29). The ruminal concentration of goitrin
was analysed using the method of Thomke et al.(30).

Real-time quantitative PCR analysis for ruminal microflora

The genomicDNAof the ruminalmicro-organismswas extracted
using the TIANamp Stool DNA Kit (DP328, Tiangen Biotech Co.
Ltd). The primer sequences for the target species (Table 2) of
ruminal microflora were synthesised by Sangon Biotech Co.
Ltd. The real-time PCR was performed with TB GreenTM Premix
Ex TaqTM (Tli RNaseH Plus) from Takara Biomedical Technology
Co. Ltd. (no. RR420A) on a Funglyn FTC-3000 Real-time PCR
System to determine the relative abundance of the target spe-
cies using the protocol described by Yang et al.(27). The abun-
dance of the microbial 16S rDNA gene copy number was
expressed relative to the copy number of the total rumen
bacterial 16S rDNA using the following equation:

Relative abundance of target %ð Þ ¼ 2� Ct target�Ct total bacteriað Þ

�100,
where Ct represents the threshold cycle.

Sequencing of rumen bacterial 16S rRNA gene

The total genomic DNA from the ruminal fluid samples for 16S
rRNAgene sequencingwas extractedusing theCTAB/SDSmethod.

The targets in the V3-V4 region of the bacterial 16S rRNA genewere
amplified using 341F (5 0-CCTAYGGGRBGCASCAG-3 0) and 806 R
(5 0-GGACTACHVGGGTWTCTAAT-3 0)(36). All PCR were carried
out in 30 μl reactions with 15 μl of Phusion® High-Fidelity PCR
Master Mix (New England Biolabs), 0·2 μM of forward and reverse
primers, and approximately 10 ng of template DNA. The PCR ther-
mal cycling was carried out as follows: 98°C for 1min (one cycle);
98°C for 10 s, 50°C for 30 s, and 72°C for 30 s (thirty cycles); and
finally 72°C for 5min. The amplicons were sequenced on an Ion
S5TM XL platform (Thermo Fisher Scientific), and 400 bp/600 bp
single-end reads were generated.

Metagenomic analysis of ruminal bacterial community

Following sequencing, raw 16S rRNA gene sequencing reads
were subjected to quality filtration according to the Cutadapt
(version 1.9.1)(37) quality-controlled process and compared with
the Silva database(38). The taxonomic analysis of representative
operational taxonomic unit (OTU) sequences with≥97% similarity
was analysed using UPARSE software (version 7.0.1001)(39). For
each representative sequence, the Silva databasewas used to anno-
tate the taxonomic information based on the Mothur algorithm(38).
The bacterial richness values including Chao1, abundance-based
coverage estimator, community diversity (Shannon and Simpson
index) and sequencing depth (Good’s coverage) were calcu-
lated using QIIME (version 1.7.0)(40). The Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States was used to predict themetabolic functions of themicrobial
communities based on the bacterial OTU(41) in combination with
the Kyoto Encyclopedia of Genes and Genomes software(42).

Statistical analysis

Statistical analysis was performed using a linear regression
model with cluster robust standard errors clustered on steers
in Stata (version 15, StataCorp 2017). The model for statistical
analysis including fixed effects of RSC ration (x1= 0, 1, 2 and
3), period (x2= 1, 2, 3 and 4) and standard errors was adjusted
for clusters of steers (n 8) for the variables. The statistical analysis

Table 2. Real-time PCR primers of ruminal microbial flora

Target species Primer sequence (5 0 to 3 0)* Reference

Total bacteria F: CGG CAA CGA GCG CAA CCC Denman & McSweeney(31)

R: CCA TTG TAG CAC GTG TGT AGC C
Methanogens F: TTC GGT GGA TCD CAR AGR GC Denman et al.(32)

R: GBA RGT CGW AWC CGT AGA ATC C
Fungi F: GAG GAA GTA AAA GTC GTA ACA AGG TTT C Denman & McSweeney(31)

R: CAA ATT CAC AAA GGG TAG GAT GAT T
Protozoa F: GCT TTC GWT GGT AGT GTA TT Sylvester et al.(33)

R: CTT GCC CTC YAA TCG TWC T
Ruminobacter amylophilus F: CAA CCA GTC GCA TTC AGA Tajima et al.(34)

R: CAC TAC TCA TGG CAA CAT
Butyrivibrio fibrisolvens F: GCC TCA GCG TCA GTA ATC G Stevenson & Weimer(35)

R: GGA GCG TAG GCG GTT TTA C
Fibrobacter succinogenes F: GTT CGG AAT TAC TGG GCG TAA A Denman & McSweeney(31)

R: CGC CTG CCC CTG AAC TAT C
Ruminococcus albus F: TGT TAA CAG AGG GAA GCA AAG CA Stevenson & Weimer(35)

R: TGC AGC CTA CAA TCC GAA CTA A
Ruminococcus flavefaciens F: CGA ACG GAG ATA ATT TGA GTT TAC TTA GG Denman & McSweeney(31)

R: CGG TCT CTG TAT GTT ATG AGG TAT TAC C

* Primer direction (F: forward; R: reverse).
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results were presented as the intercept of the regression equation,
regression coefficients, robust SE and CI for RSC ration. The
P values for regressions were also presented. The data were
declared to be significant at P < 0·05 and as tendencies at
0·05 < P< 0·10. Spearman’s rank correlation tests between bac-
terial species at the genus level and the environmental factors
including pH and the ruminal concentrations of NH3-N, total
VFA and SCN were performed, and the significance was tested
by corr.test in the psych package from R software (version
2.15.3, R Core Team 2013, http://www.r-project.org).

Results

Daily live weight gain

The average daily live weight gain of the four treatment groups
(0·00, 2·65, 5·35 and 8·00 % of RSC in ration) was 275·0 (SD 88·6),
325·0 (SD 100·0), 318·8 (SD 116·3) and 354·8 (SD 111·8) g, respec-
tively. Increasing the RSC levels in rations did not affect the aver-
age daily liveweight gain of the four treatment groups (P> 0·05).

Ruminal fermentation parameters

Increasing the RSC levels in rations decreased the ruminal con-
centration of NH3-N (P< 0·05) and themolar proportion of isoval-
erate (P< 0·05), but it did not affect the ruminal pH, the total VFA
concentration, themolar proportions of individual VFAor the ratio
of acetate:propionate (P> 0·05). Increasing the RSC levels in
rations increased the ruminal concentration of SCN (P< 0·01),
whereas ISCN and goitrin were undetectable (Table 3).

Apparent digestibility of nutrients

Increasing the RSC levels in rations decreased the apparent
digestibility of CP (P< 0·05) and increased the apparent digest-
ibility of EE (P< 0·01) but did not affect the apparent digestibility
of DM, organic matter, neutral-detergent fibre or acid-detergent
fibre (P> 0·05) (Table 4).

Ruminal microbial flora

Increasing the RSC levels in rations tended to decrease the rel-
ative abundances of Ruminobacter amylophilus (P = 0·055)
and Ruminococcus albus (P = 0·086) but did not affect the
relative abundances of methanogens, protozoa, anaerobic
fungi, Ruminococcus flavefaciens, Butyrivibrio fibrisolvens
or Fibrobacter succinogenes (P > 0·05) (Table 5).

Rumen bacterial diversity

A total of 2 270 387 qualified sequences were obtained from
the rumen fluid samples with an average of 73 238 (SD 11 900)
per sample, and 52 685 OTU with 1700 (SD 127) OTU per sam-
ple were detected based on 97 % similarity. Increasing the RSC
levels in rations increased the OTU (P < 0·05) and Chao1
(P< 0·01) and abundance-based coverage estimator (P< 0·01)
values, decreased Good’s coverage (P< 0·01) and did not affect
the Shannon index or the Simpson index (P> 0·05). The
values of Good’s coverage of the rumen fluid samples were all
above 98% (Table 6).

Divergence of the rumen bacterial communities

Based on the OTU obtained, a total of twenty-two phyla of bac-
teria were identified. The major phyla (top 10) are shown in
Table 7. Increasing the RSC levels in rations decreased the rela-
tive abundances of unidentified bacteria (P< 0·05) and tended to
decrease the relative abundance of Elusimicrobia (P= 0·054)
but did not affect the relative abundances of any othermajor bac-
teria at the phylum level (P> 0·05).

At the genus level, a total of 179 genera of bacteria were iden-
tified and the major genera (top 10) are shown in Table 8.
Increasing the RSC levels in rations increased the relative abun-
dance of Pseudobutyrivibrio (P< 0·01) but did not affect the rel-
ative abundances of any other major bacteria at the genus
level (P> 0·05).

Table 3. Effects of dietary inclusion of rapeseed cake (RSC) on rumen fermentation in steers*
(Coefficients and 95% confidence intervals)

Items

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

pH 6·34 6·41 6·33 6·42 6·56 0·019 0·017 –0·022, 0·060 0·311
NH3-N (mmol/l) 5·04 4·43 4·27 3·28 3·69 –0·618 0·204 –1·100, –0·135 0·019
Total VFA (mmol/l) 55·39 52·63 55·00 52·02 66·83 –0·755 0·659 –2·313, 0·804 0·290
VFA molar proportion (%)
Acetate 53·18 52·67 53·71 53·68 54·66 0·263 0·214 –0·244, 0·769 0·260
Propionate 27·18 27·33 26·38 26·61 28·79 –0·303 0·152 –0·662, 0·057 0·087
Butyrate 11·86 12·34 12·00 12·53 10·65 0·218 0·242 –0·354, 0·789 0·398
Isobutyrate 1·59 1·53 1·53 1·63 1·80 0·002 0·062 –0·145, 0·149 0·971
Valerate 4·38 4·63 4·71 4·02 2·51 –0·106 0·112 –0·371, 0·159 0·377
Isovalerate 1·83 1·52 1·69 1·54 1·60 –0·081 0·025 –0·140, –0·021 0·015

Acetate/propionate 1·97 1·93 2·04 2·02 1·91 0·030 0·016 –0·007, 0·067 0·095
Thiocyanate (mg/l) 0·00 0·453 0·925 1·165 –0·301 0·398 0·012 0·369, 0·428 <0·01
Goitrin (mg/l) ND ND ND ND – – – – –
Isothiocyanate (mg/l) ND ND ND ND – – – – –

Coef., coefficient of regression; NH3-N, ammonia nitrogen; ND, not detected; VFA, volatile fatty acid.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.
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Predicted metabolic functions of ruminal bacteria

The predicted functions of the rumen bacterial microbiota at
Kyoto Encyclopedia of Genes and Genomes level 2 are shown
in Table 9. Increasing the RSC levels in rations increased the
function of cellular processes and signalling (P< 0·01) and
tended to affect the lipid metabolism (P= 0·064), the biosynthe-
sis of other secondary metabolites (P= 0·087) and the enzyme
families (P= 0·053).

Correlations between the bacterial community
and the rumen fermentation parameters

Fig. 1 indicates that the ruminal concentration of SCNwas pos-
itively correlated with Desulfovibrio (P < 0·01) and negatively
correlated with Candidatus_Endomicrobium and Candidatus_
Saccharimonas (P< 0·05) at the genus level. The ruminal pH
was negatively correlated with Candidatus_Endomicrobium
and unidentified_Lachnospiraceae (P< 0·05) at the genus level.

Table 5. Effects of dietary inclusion of rapeseed cake (RSC) on ruminal microbial flora of steers (% of total bacterial 16S rDNA)*
(Coefficients and 95% confidence intervals)

Items

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

Methanogens 1·94 2·11 2·44 2·03 3·39 0·034 0·154 –0·329, 0·397 0·831
Protozoa 14·3 13·6 16·5 15·5 16·74 0·466 1·447 –2·955, 3·888 0·757
Fungi 1·77 1·31 1·77 1·40 2·04 –0·115 0·098 –0·346, 0·117 0·280
Butyrivibrio fibrisolvens 12·03 7·78 12·04 7·56 12·11 –0·900 0·460 –1·987, 0·187 0·091
Ruminobacter amylophilus × 10–1 6·43 3·01 3·15 0·92 11·23 –1·725 0·750 –3·498, 0·048 0·055
Ruminococcus albus 2·25 1·83 2·08 1·49 2·41 –0·241 0·121 –0·526, 0·044 0·086
Ruminococcus flavefaciens 1·39 0·86 1·22 0·74 1·84 –0·172 0·095 –0·396, 0·052 0·113
Fibrobacter succinogenes 20·6 19·2 22·8 17·8 24·5 –0·377 1·143 –3·079, 2·326 0·751

Coef., coefficient of regression.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.

Table 6. Effects of dietary inclusion of rapeseed cake (RSC) on the α-diversity of rumen bacterial communities of steers*
(Coefficients and 95% confidence intervals)

Items

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

OTU 1694 1615 1710 1787 1597 37·9 10·9 12·1, 63·6 0·010
Shannon index 8·53 8·32 8·47 8·55 8·30 0·023 0·053 –0·103, 0·148 0·683
Simpson index 0·991 0·985 0·990 0·990 0·986 0·0002 0·0009 –0·002, 0·002 0·809
Chao1 1739 1642 1788 1922 1634 68·7 17·8 26·6, 110·9 <0·01
ACE 1747 1632 1789 1896 1631 60·0 13·9 27·2, 92·7 <0·01
Good’s coverage (%) 99·05 99·18 98·94 98·85 99·15 –0·081 0·019 –0·127, –0·036 <0·01

Coef., coefficient of regression; OTU, operational taxonomic units; ACE, abundance-based coverage estimator.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.

Table 4. Effects of dietary inclusion of rapeseed cake (RSC) on apparent nutrient digestibility in steers*
(Coefficients and 95% confidence intervals)

Items

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

DM intake (kg/d) 3·48 3·50 3·53 3·53 – – – – – –
Digestibility (%)
DM 64·18 64·13 64·90 63·91 65·32 –0·005 0·186 –0·446, 0·436 0·980
OM 63·47 63·60 64·51 63·37 63·64 0·058 0·218 –0·459, 0·574 0·800
CP (N × 6·25) 58·16 56·80 56·96 54·47 63·65 –1·063 0·338 –1·863, –0·263 0·016
EE 46·17 52·09 58·06 61·27 51·42 5·159 0·910 3·008, 7·310 <0·01
aNDF† 65·05 64·09 65·55 63·00 73·03 –0·414 0·264 –1·039, 0·211 0·161
ADF 53·31 52·90 54·59 51·67 56·74 –0·314 0·440 –1·355, 0·727 0·499

Coef., coefficient of regression; OM, organic matter; CP, crude protein; EE, ether extract; ADF, acid-detergent fibre.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.
† Neutral-detergent fibre (aNDF) assayed with heat-stable α-amylase and sodium sulphite, expressed as inclusive of residual ash.
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The ruminal concentration of NH3-N was correlated with
the relative abundances of several rumen bacteria at the
genus level including Candidatus_Endomicrobium (positive,
P < 0·05), unidentified_Clostridiales (negative, P < 0·05),
Anaerosporobacter (negative, P < 0·05), Acetobacter (nega-
tive, P < 0·05), Saccharofermentans (positive, P < 0·05) and
Pseudobutyrivibrio (positive, P < 0·01). The ruminal concen-
tration of total VFA was positively correlated with the relative
abundances ofAlloprevotella,Acetobacter andAnaeroplasma but
was negatively correlated with Saccharofermentans at the genus
level (P< 0·05).

Discussion

GLS are typical secondarymetabolites ofBrassica plants and can
be hydrolysed into SCN, ISCN and goitrin by myrosinase in

crushed rapeseeds(17). The results of the present trial indicated
that increasing the RSC levels in rations increased the dietary

concentration of GLS and consequently increased the ruminal

concentration of SCN. However, ISCN and goitrin were unde-
tectable in ruminal digesta. The results indicated that the main

metabolite of GLS in the rumen was SCN. The results were in

agreement with Subuh et al.(18) who reported that only SCN

Table 7. Effects of dietary inclusion of rapeseed cake (RSC) on the relative abundance (%) of rumen bacteria of steers at phylum level (top 10)*
(Coefficients and 95% confidence intervals)

Items

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

Bacteroidetes 54·5 59·1 55·1 56·6 58·0 0·228 0·598 –1·19, 1·64 0·715
Firmicutes 31·4 27·5 30·6 30·6 27·3 –0·083 0·527 –1·33, 1·16 0·879
Melainabacteria 3·10 3·43 3·30 3·36 2·80 0·077 0·157 –0·30, 0·45 0·641
Proteobacteria 2·96 2·89 3·77 2·32 4·00 –0·038 0·144 –0·38, 0·30 0·799
Fibrobacteres 1·78 1·01 1·38 1·70 1·39 0·008 0·161 –0·37, 0·39 0·962
Tenericutes 1·45 1·58 1·43 1·50 1·85 –0·006 0·061 –0·15, 0·14 0·925
Gracilibacteria 1·17 0·99 1·02 0·77 0·95 –0·115 0·104 –0·36, 0·13 0·306
Spirochaetes 1·06 1·07 1·01 1·18 0·92 0·030 0·049 –0·09, 0·14 0·557
Elusimicrobia 0·341 0·266 0·276 0·194 0·328 –0·042 0·018 –0·08, 0·00 0·054
U_bacteria 0·389 0·299 0·284 0·272 0·324 –0·037 0·012 –0·07, –0·01 0·019

Coef., coefficient of regression; U, unidentified.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.

Table 8. Effects of dietary inclusion of rapeseed cake (RSC) on the relative abundance (%) of rumen bacteria of steers at genus level (top 10)*
(Coefficients and 95% confidence intervals)

Items

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

U_Bacteroidales 9·03 13·33 9·49 8·88 13·67 –0·468 0·770 –2·29, 1·35 0·562
U_Prevotellaceae 5·80 6·08 5·80 6·04 5·56 0·060 0·218 –0·46, 0·58 0·790
U_Lachnospiraceae 3·32 2·46 2·94 2·97 2·64 –0·065 0·180 –0·49, 0·36 0·728
U_Ruminococcaceae 3·17 2·57 2·70 2·69 2·90 –0·134 0·112 –0·40, 0·13 0·271
Pseudobutyrivibrio 1·57 1·65 2·39 2·10 0·76 0·233 0·045 0·13, 0·34 <0·01
Fibrobacter 1·78 1·01 1·38 1·70 1·39 0·008 0·162 –0·38, 0·39 0·964
Saccharofermentans 1·41 1·02 1·12 1·31 0·84 –0·026 0·069 –0·19, 0·14 0·717
U_Rikenellaceae 1·05 0·92 0·93 0·96 0·86 –0·023 0·044 –0·13, 0·08 0·613
Ruminobacter 0·463 0·668 0·587 0·202 0·75 –0·071 0·053 –0·20, 0·05 0·222
Succinivibrio 0·460 0·453 0·728 0·535 0·63 0·055 0·065 –0·10, 0·21 0·427

Coef., coefficient of regression; U, unidentified.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.

Table 9. Predicted functions with linear changes at Kyoto Encyclopedia of Genes and Genomes (KEGG) level 2 of the rumen bacterial microbiota*
(Coefficients and 95% confidence intervals)

Functions (%)

RSC levels

Intercept Coef. Robust SE 95% CI P0·00 2·65 5·35 8·00

Lipid metabolism 2·804 2·768 2·778 2·766 2·813 –0·010 0·004 –0·020, 0·001 0·064
Biosynthesis of other secondary metabolites 1·076 1·110 1·099 1·099 1·083 0·006 0·003 –0·001, 0·014 0·087
Enzyme families 2·206 2·221 2·209 2·224 2·214 0·004 0·002 –0·000, 0·008 0·053
Cellular processes and signalling 3·825 3·819 3·848 3·848 3·817 0·010 0·003 0·004, 0·016 <0·01

RSC, rapeseed cake.
* Values were least square means (n 8), cluster robust SE and other parameters of cluster robust regression of RSC level.
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was found in ruminal but not in duodenal digesta in cattle fed
rapeseed rations, while ITC and goitrin were undetectable in
ruminal and duodenal digesta. The RSC used in the present trial
was the residue of hot-pressed rapeseeds after oil extraction.
The myrosinase in the rapeseeds should have been inacti-
vated during the extraction(43). Bacteroides thetaiotaomicron,
Peptostreptococcus spp. and Bifidobacterium spp. are report-
edly able to produce enzymes with myrosinase-like activities(44).
Since Peptostreptococcus and Bifidobacterium are two prevalent
bacteria in the rumen of heifers(45), the SCN found in the rumen
digesta of the present trial should have been from the microbial
hydrolysis of GLS in RSC. ISCN and goitrin can be rapidly hydro-
lysed by rumenmicrobes, while SCNwas relatively unreactive in
an in vitro culture of bovine ruminal fluid(46,47). This finding
could be the reason that SCN was the metabolite of GLS rather
than goitrin or ITC found in the rumen fluid in the present trial.

SCN reportedly has inhibitive effects on some species of bac-
teria, such as Escherichia coli, Staphylococcus aureus, etc.(48,49).
The results of the present trial indicated that increasing GLS lev-
els in the ration tended to decrease the relative abundances of
ruminal Butyrivibrio fibrisolvens, Ruminobacter amylophilus
and Ruminococcus albus. This inhibition could have resulted
from the SCN hydrolysed from GLS.

The results of the present trial indicated that increasing the
RSC levels in rations increased the rumen undegradable pro-
tein contents of the experimental rations and consequently
decreased the ruminal concentration of NH3-N. One reason
for the decreased ruminal concentration of NH3-N could be
that the RSC used in the present trial was from hot-pressed
rapeseeds that contained a higher content of rumen unde-
gradable protein(50). Another reason could be that the SCN
hydrolysed from GLS inhibited the ruminal degradation of
dietary CP as reported by Dillard et al.(15). In that report, in vitro
rumen fermentation of foraged brassica containing high GLS
showed a lower NH3-N concentration and CP digestibility than
annual ryegrass. The results indicated that SCN, the metabolite
of GLS in the present trial, should have inhibited CP degradation
in the rumen and subsequently decreased CP digestibility(15).

Ruminal NH3-N is the main N source for the growth of rumi-
nal Ruminobacter amylophilus and Ruminococcus albus(51,52).

Slyter et al.(53) reported that the ruminal concentration of NH3-N
above 2·2 mg/100 ml in steers (live weight 183–226 kg) fed
rations containing CP at 11·1–19·5 % was sufficient to allow
maximum growth of rumen microbes. In the present trial,
the ruminal concentrations of NH3-N ranged from 3·28 to
5·04 mmol/l (equivalent to 4·59–7·06 mg/100 ml) in steers (live
weight 219 (SD 14) kg, dietary CP 12·0 % DM), which should
have met the NH3-N requirement of the rumen microbes.
However, the results of the present trial indicated that increas-
ing the RSC levels in rations tended to decrease the relative
abundances of the ruminal Ruminobacter amylophilus and
Ruminococcus albus. This inhibition could be due to increased
rumen SCN concentrations.

Increasing the RSC levels in rations in the present trial
decreased the molar proportion of isovalerate in the ruminal
concentration of total VFA. The results could be attributed to
that the leucine content of RSC was lower than that of soyabean
meal(23) and the isovalerate in the rumen exclusively originated
from microbial degradation of leucine(54). The lower dietary
CP degradability and ruminal concentration of NH3-N could
be other reasons for the decreased molar proportion of
isovalerate.

The results of the present trial indicated that increasing the
RSC levels in rations decreased CP digestibility and increased
EE digestibility. One reason for the decrease in CP digestibility
could be that the rumen undegradable protein in RSC as a bypass
protein was not well digested in the small intestine of steers.
Another reason could be that SCN could have negatively affected
the digestibility of CP. The results were in agreement with Pailan &
Singhal(13), who reported that dietary GLS mustard cake (Brassica
juncea) reduced the CP digestibility in lactating goats, and with
Tripathi et al.(12),who reported that highGLSmustardmeal reduced
CP digestibility in lambs.

Increased EE digestibility could be attributed to the hot-
pressed RSC, of which EE was more easily digested(55). The EE
intake should have been increased by the addition of RSC since
the EE contents of the rationswere increased from 1·49 to 2·05 %,
which was a considerable increase in the percentage of EE.
Therefore, the increased intake of EE could have a major effect
on increasing EE digestibility.
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Fig. 1. Correlations between the relative abundance (%) of ruminal bacteria at the genus level and the rumen fermentation parameters. SCN, thiocyanate; NH3-N,
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The results of the present trial showed that increasing the RSC
levels in rations increased the indices of OTU, Chao1 and
abundance-based coverage estimator of the rumen bacterial
community. The results indicated that SCN as the metabolite
of GLS could have improved the richness of the rumen bacterial
community. Increasing the RSC levels in the rations did not affect
the indices of Shannon and Simpson in the present trial. The
results indicated that the SCN hydrolysed fromGLS did not affect
the diversity of the rumen bacterial community.

The results of the present trial also indicated that increasing
the RSC levels in rations decreased the relative abundance of
unidentified bacteria, tended to decrease the relative abundance
of Elusimicrobia at the phylum level and increased the relative
abundance of Pseudobutyrivibrio at the genus level. The effects
should be mainly attributed to the SCN hydrolysed from GLS in
RSC. In response to the altered bacterial community by GLS, the
Phylogenetic Investigation of Communities by Reconstruction of
Unobserved States analysis indicated that the RSC levels tended
to increase the functions of the biosynthesis of other secondary
metabolites, enzyme families, cellular processes and signalling,
and tended to decrease the lipid metabolism. The mechanisms
underlying SCN impacts on the rumen bacterial community in
steers are unclear and require further investigation.

Conclusion

GLS in RSC was hydrolysed into SCN in the rumen of steers but
not to ISCN or goitrin. The SCN in the digestive tract decreased
the ruminal concentration of NH3-N and CP digestibility, partly
affected the ruminal bacterial community and the related func-
tions but did not affect the average daily live weight gain of
steers. The effects of GLS or its metabolite SCN on rumen fermen-
tation and CP digestibility could be attributed to the impacts
of SCN on the ruminal bacterial community. Approaches to
improve the CP digestibility of the RSC rations containing high
GLS and the effects of dietary GLS on the carcass characteristics
and the tissue composition of steers warrant future investigation.
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