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COMPACTNESS OF INVARIANT DENSITIES 
FOR FAMILIES OF EXPANDING, 

PIECEWISE MONOTONIC TRANSFORMATIONS 

P. GÔRA AND A. BOYARSKY 

1. Introduction. Let / = [0,1] and let L\ = L\(I,m) be the space of all 
integrable functions on /, where m denotes Lebesque measure on /. Let || ||i be 
the Xi-norm and let r : / —> I be a measurable, nonsingular transformation on 
/. Let 

© = { / € £ i : | | / | | i = l , / W è O } 

denote the space of densities. The probability measure \i is invariant under r if for 
all measurable sets A, fi(A) = fj,(r~{A). The measure /i is absolutely continuous 
if there exists an /* G *D such that for any measurable set A 

M04) = f f(x)m{dx). 

We refer to /* as the invariant density of r (with respect to m). It is well-known 
that /* is a fixed point of the Frobenius-Perron operator Pr : L\ —• L\ defined 
by 

prfW=-f I f(s)m(ds). 

The operator PT has a simple physical interpretation. If x is a random variable 
with density / , then the random variable r{x) has PTf as its density. Thus the 
orbit {P"f} describes the evolution of the density/ in time. 

For r piecewise C2 and expanding, it is shown in [11] that PT has a fixed 
point. (Other existence results are established in [15]. The proof in [3, Chapter 
7 , Section 4] appears to have an error.) Since the invariant density/* describes 
the asymptotic properties of orbits {f(X)}, the computation of/* is an important 
problem. Unfortunately, solving the functional equation PTf = / explicitly is 
possible only in the very simplest cases. Practical procedures for approximating 
the solution of the functional equation directly do not seem to be known. 

From the proof in [11], we obtain that any invariant density/* is approximated 
by the sequence 
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856 P. GORA AND A. BOYARSKY 

where/ £ L\. Since 

N 

Prfix) = ^ ( rr1^))KTr1) ,^)lx^)U), 

where \A is the characteristic function of the set A, it is a very complex procedure 
to use the sequence of partial sums. Even if PT is a constrictive operator [10] 
and 

| | / ,
T * / - / l i - > 0 a s £ ^ c x ) , 

the iteration of PT is prohibitively complex. 
In [12], Li carried out a suggestion of Ulam and proved a method of approxi­

mating/* by using the eigenvectors of certain matrices. Drawbacks of the results 
in [12] are the requirement that \r'(x)\ > 2, and the computation of the matrices, 
which are not the Frobenius-Perron operators of piecewise linear Markov maps, 
can be difficult. This idea is carried out for maps on the real line in [2]. 

The key inequality in [11] is: 

l l 

(1) \JPrf^l\\fh+&\Jfr 
0 0 

where 

P=j<h 7 = ^ + 2fmin|/ / |J , 

{//} being the intervals of smoothness of r. The fact that 7 depends on the 
partition makes it impossible to use (1) for families of maps whose defining 
partitions become finer and finer. It is this difficulty which prohibits the use of 
the stability results in [7, 9], where it is essential that the number of intervals 
in the partitions of the approximating transformations be bounded. For special 
Renyi maps r, it is shown in [6] that there exist piecewise linear Markov maps 
Tn,i~n—+ r, such that the associated invariant densities /„ converge uniformly t o / , 
the invariant density. The method relies heavily on bounded variation arguments 
and is lengthy. A more general procedure is outlined in [8], but there are major 
gaps in the proof and there appear to be errors. The main objective of this note 
is to give a correct version of the results stated in [8]. 

In Section 2 the main compactness result is proved. In Section 3, this result 
is used to prove the existence of sequences of piecewise linear Markov maps, 
whose densities converge to the invariant density of the map. 

2. Strong compactness of invariant densities. The transformation r : 
[0,1] —» [0,1] is called piecewise expanding if there exist 0 = ao < a\ < 
... <aN = 1 and a constant À > 1, such that for any / = 0 , 1 , . . . , Af — 1 
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COMPACTNESS OF INVARIANT DENSITIES 857 

(i) T\(ahai+l) is of class C1 and the limits T'(d\), r'(ai+{) exist (or are infinite) 

(ii) \T\X)\ ^ À > 1 for x G (ail ai+\) 

(iii) is a function of bounded variation 

We shall denote by Q the set {ao,a\,...,au} and byÛ the partition of [0, 1] 
into closed intervals with endpoints belonging to Q : 1\ — [ao,a\],.. .,IH = 
[tf/V-b<2/v]. 

In this section we shall prove the compactness of the set of invariant densities 
for any family of piecewise expanding maps which satisfy conditions (i) and 
(ii) uniformly. We do not assume that they have a common defining partition Û, 
although we need a weak supplementary condition on their defining partitions. 

THEOREM 1. Let {ra}aeA be a family of piecewise expanding transformations 
satisfying the following conditions: 

(1) There exists a constant A > 1 such that 

Kw\ s A, 

whenever the derivative exists for any a G ft ; 
(2) There exists a constant W > 0 such that for any a G ft 

Var ^ W; 

(3) There exists a constant 6 > 0 such that for any a£ft, there exists a finite 
partition %^a such that for I G ^Ca,Ta|/ is one-to-one, ra(I) is an interval, and 

min diam (I) > 5. 

(4) For any m ^ 1, there exists 6m > 0 such that if 

m~\ 

7=0 

then 

min diam(7) è 6m > 0. 

Then, for any density f of bounded variation, there exists a constant V such that 
any a£ft, and any k = 1,2, 3 , . . . 

Var/>* / ^ V. 
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858 P. GORA AND A. BOYARSKY 

This implies that any raia G A, admits an invariant density fa and that the set 
{fa}a<Efi is of uniformly bounded variation and hence is precompact in L\. 

Remarks. (I) In a personal communication, Gerhard Keller pointed out to us 
that the proof of Theorem 1 does not work without assumption (4). Keller's 
example is given at the end of this section. 

(II) The assumption (4) is a consequence of assumption (3) for families of 
transformations considered in Section 3, i.e., for families of Markov transfor­
mations associated with a piecewise expanding transformation r. 

(III) Although condition (3) may appear to be strong, it in fact holds for 
all the approximating maps of interest. Let r be a fixed piecewise expanding 
transformation on a finite partition 

* = {/,•}?=,. 

Let rn be a tranformation which approximates r : rn is monotonie on each /,, but 
Tn\j. is allowed to have discontinuities in its derivative, as shown for example in 
Figure 1. Then condition (3) is satisfied for 

3C„ = 3C ={(0, .5) ,( .5,1)} 

and the family {rn}. This idea is developed in detail in Section 3. 

LEMMA 1. If the family {ra}aeA satisfies the conditions of Theorem 1, then for 
any m = 1,2,..., the family {T^}aeA satisfies analogous conditions. Moreover, 
the new partitions 

m—\ 

7=0 

satisfy 

max Var 
(fSc)' 

= "*( -r ) W. 

Proof It is obvious that the conditions (1) and (2) will be satisfied for dif­
ferent constants. The condition (3) is satisfied by assumption (4). To prove the 
supplementary inequality, we let 

Wk = max Var 
1 

(^y 
and prove 

Wkûk[-) W 
k-\ 
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by induction. Let t0 < t{ < . . . < t{ be any sequence of points in / G 3C«+1). 
Then 

£ 
7=0 

1 1 

l-\ 

= £ 

«S 
7=0 

(7*+1y(0-+l) (T*a
+lY(tj) 

1 1 

(^ )W,+ i ) ' r'a(tj+l) (7*y(rary) • r'a«,-) 

1 1 

(7*y(rafy-+i) • ^ ( ^ i ) (T*y(r^-) • T'a(tj+i) 

1 1 

( T * ) ' M ) • T'a(tj+l) (liYiTatj) • r'a(fy) 
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< 
1 ' - ' 

7=0 

1 '"' 

7=0 

1 1 

1 1 
T'a(tJ+l) T'a(tj) 

Hence 

< _w, + w < w _i_ w 

1 

which completes the proof. 

The following lemma is similar to a result in [17], and to Lemma 5 in [14]. 

LEMMA 2. Let r be a transformation satisfying the assumptions of Theorem 
I. Let 

ri = max Var 
1 

Then for any density f of bounded variation 

VarP T /£ ( ! + , , ) Var Z + ^ I L 

Proof. For any / G ^ we define 0/ = (r | / )_ 1 , and A/ = T(/) . L e t / be a 
density of bounded variation. We will estimate the variation of PTf. 

Let 0 = t0 < t\ < . . . < tr = 1. We have: 

X>r/(f;)-/V(f;-
7=1 

= E 
7=1 

E/^'(r7))l^/(0')IX4;(0) 
/esc 

^]/(0/(o_1))l<>;(o_1)lx^-,) 
/e^C 

7=1 /G»C 
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COMPACTNESS OF INVARIANT DENSITIES 861 

7=1 ieX 

+EwE,,V(^/(^i))i^(^i)ii 
j=l IEK 

where 

^ is taken over 1 ^j^r and / G 3C such that /y, /y_i G A/; 
X)" is taken over 1 ^ j ^ r and / G *K such that /y G Ah t/-\ £ A7; 
£ ' " is taken over l^j^r and / G 3C such that /,- £ A/, /,-_i G Af. 
The first sum can be estimated by: 

r 

E ' E ' I [/(MOO) -/(M0--i)M'y-i)l 

r 

+ E ' E ' i/(^(o-i))iwi(o) - #(',--• HI 
y=i /eac 

A '"*•' ' V ' " ' ' ' «. 

We have used the inequalities: 

^ | v a r / + f v a r / + i j T \f\dxV tj. 

| / ( M O _ , ) ) | S i n f | / | + V a r / 

£ljf|/|* + V,r/ 

and 

E / ^ / ^ ) - ^ ( 0 - i ) ] ^ Var|^| ^ry. 
7 = 1 

Let 7(7) be the smallest 7 such that tj G / and / ( / ) be the biggest j such that 
tj G I. The remaining two sums can then be estimated by: 

lex 

s i ( 2 V a r / + i I , | / | A 

since, if *, .y G /, then 

| /(*) | + | / ( 3 0 | ^ 2 V a r / + 2inf|/ | . 

https://doi.org/10.4153/CJM-1989-039-8 Published online by Cambridge University Press

file:///f/dx
https://doi.org/10.4153/CJM-1989-039-8


862 P. GORA AND A. BOYARSKY 

Consequently we have: 

V a r / V ^ + ^ V a r / + ^ p | | / | | , . 

Remark. Under the assumptions of Lemma 2, a little more careful reasoning 
gives us the following better estimate: 

V a r P . / ^ + t ^ V a r / + ^ | | / | | i . 

See [17]. 

LEMMA 3. If the conclusions of Lemma 2 is true for the family {T^}W^I, m a 
fixed positive integer, then it is true for the family {rn}n^\ itself 

Proof Let r € {rn}n^[. It is enough to prove that if 

Var/>£/ < Vx 

for any n, and any / of bounded variation, then 

VarP; / < V2 

for any n and some V2. Let n = k • m+j 0 ^ j ^ m — 1. We have 

VarP; / = VarPJP*,/ 

=a-y-a-r'(¥)»/ ^ H -
It is easy to see that we can find an appropriate V2. 

Proof of Theorem 1. Let us fix a positive integer m such that 

(*) ( ^ - + ^ T ^ - T ^ ) < 1-
yXm Xm-\ J 

The family {f£}aeA satisfies the conditions of Theorem 1 with 

A ^ — , r? ^ m- 7.W, and 5 ^ <5m 

(Lemma 1). By Lemma 2, we have that for any a G .# and any density of 
bounded variation: 

Va rP^ / g rVzrf+D, 
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r = — + /w- rW ) < 1 and D = 

where 

This implies that there exists a constant V\ such that: 

Var/^L/ ^ Vi 

for any & = 1,2,..., and any a G -#, and hence the conclusion of Theorem 1 
for the family {r^}aG4. Applying Lemma 3 completes the proof. 

COROLLARY 1. The conclusion of Theorem 1 is valid for families of {ra}ae^ 
such that for some fixed positive integer n, the family {Tn

a}aeA satisfies the 
conditions of the theorem. 

Example. (Gerhard Keller) Let 

( \ - I b-a + x(\ -b + a)lb, 0 ^ x < b 

for a G A — (0, b). It is easy to see that {ra}ae^ satisfies assumptions (1), (2), 
(3) of Theorem 1. However, it does not satisfy assumption (4) since 

min diam(/) = a 

and therefore tends to 0 as a goes to 0. This example, therefore, shows that our 
proof of Theorem 1 does not work without assumption (4). 

3. Approximation by Markov maps. The piecewise expanding transforma­
tion r is called Markov with respect to the partition Û if it transforms the set Q 
of endpoints of intervals of// into itself, i.e., r{Q) C Q. This condition implies 
that if 

inuMAOn/,)^, 

then r(//) D // for 7/,/y G Û. For the Markov transformation r, we define a 
transition matrix M — (mij)11 ^ ij ^ N as follows: 

f 0 if int (7(/f-) H/,-) = <£ 
1 if int (Tili)nij^(l). 

The matrix M is called primitive of these exists a positive integer m such that 
Mm > 0. If Mm > 0, then 7^(7,) = [0,1] for / = 1,.. . ,N. 

Let Q(0) = Q,/7(0) = û. We define 

Qik) = \Jr-J(Q{0\ *=1 ,2 , . . . 
7=0 
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û^^\Jr-\û^\ *= 1,2,... 
y=o 

It is easy to see that Q^k) is the set of endpoints of intervals belonging to û{k). 
For a piecewise expanding map r, we define a sequence of piecewise expand­

ing Markov transformations rn (with respect to <3{n\ n = 1,2,...) associated 
with r, as follows: 

a) If / = [a, b] (E<J(n) and / Pig(0) = </>, then fw|/ is a C1 monotonie function 
such that 

fn(a) = r(a), fn(b) = rib), 

inf \f'n(x)\ ^ inf \T*(X% and 

1 1 
ter ^ Var 
/ f7 

' n 
/ T7 

b) If / = fa,?] enin\at G |2(0), then if r|7 is increasing, we take q™ G (?(A?) 

such that 

q^^riad and ( ^ , « n e W - f 

If r|/ is decreasing, we take the point q^ G Q^ such that 

q^^riad and ( r f e ) , ^ ) n g w = </>. 

We define f„|/ as a C1 monotonie function such that 

Tniai) = q™, fn(q) = T{q), 

inf \f'n(x)\ ^ inf |T'(JC)| 

and 

1 1 
ter Û Var 
/ f' 

1 n 
/ T' 

c) If / = [<?, #,],#/ G (2(0\ *ne definition is analogous to the one given in b). 
In either case, 

UI) 2 r{l\ min |f^|7U)| ^ min \r'{x)\ and 

1 1 
ter ^ Var 
/ K / T~f 

for any / G // ( 
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It is easy to see that fn is a piecewise expanding Markov transformation with 
respect to the partition £f^n\ We shall now prove that the family of Markov 
transformations associated with a piecewise expanding transformation r satisfies 
the assumptions of Theorem 1, which implies that the family {fn}n^\ of their 
invariant densities forms a compact set in L\ 

THEOREM 2. Let r be a piecewise expanding transformation, and {f^}^! a 
family of Markov maps associated with r. Then any fn, n — 1,2,..., admits an 
invariant density fn and the set {fn}n^\ is precompact in L\. 

Proof. It is enough to show that the assumptions of Theorem 1 are satisfied. 
The conditions (1) and (2) are satisfied by construction. For any n = 1,2,..., 
we can choose Kn = Û. It is then obvious that condition (3) is satisfied. 

We now define two specific families of Markov transformations associated 
with a piecewise expanding transformation r. 

Kosyakin-Sandier approximations of r. For any n = 1,2,... ,rn is defined as 
a Markov map with respect to /7(AZ), associated with r, satisfying the following 
conditions: 

(i) if / G On and / H Q° = </>, then rn\i = r|7; 
(ii) if I e<3{n) and / Pi g (0) ^ </>, then rn\j is a linear function. 

Piecewise-linear Markov approximation of r. For any n — 1,2,... ,rw is de­
fined as a Markov transformation (with respect to û^) associated with r which 
is linear on any / G fJ^n\ 

It is easy to see that both families are really families of Markov maps asso­
ciated with r. 

We now prove a result which will be used in the sequel. 

LEMMA 4. Let r be a piecewise expanding transformation, and {rn}n^\ a 
family of Markov maps associated with r. Moreover, we assume that rn —> r 
uniformly on the set 

[0,i]-(J^<2 (0 )> 

and r'n —> r' in L\asn^ oo. Then for any f G L\, 

WPrJ-Prfh^K 

as n —> oo. 

Proof It is enough to prove the convergence to 0 for any continuous function. 
Let/ be a continuous function. For any n = 1,2,..., and any / G^C = "Kn— $ 
we define 

</>«,/ = (Tn\,Tl and Anj = T„(7), 
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as well as 

^ = (T\jr{ and Aj^ril). 

We have 

\\PrJ-Prf\U 

= I I J2fWnj(xWnAx)\XA « 

-Y/f^i(xW,(x)\xA(x)\dx 
ieû 

^ f Tlf^njMM'njMl-fiMxWMlx^dx 

+ / ^\f(<t>nAxK,(x)\xAniXA(x)dx. 

The first integral is less than: 

Y, ( [ \f(4>n,i(x)) -KM*)) W,{x)\xA (x)dx 
,eû \Jo I / I ' 

+ / \4>'nl(x)-<l>'lW\\f(<l>nAx))\XA(x)dx) 
JO ' 

< (#û) wf sup \<t>nJ(.x) - <t>,(x)\ sup M 
xeA, 

•SUP l / l / Wnjto-tiWlxAxW 
Jo ' 

0 

as n —> oo, where uy is the modulus of continuity of / and #û denotes the 
cardinality of Û. We have used the fact that if r'n —* r' in L\ then for any 
/ en: 

<t>'nj(x)XA(x) —• <t>'iix)xA(x) in L\. 

The second integral is less than 

(#//) • sup l/l sup{|^7 / | : n = 1 , . . . , / G Û } supdiamGW*/). 
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Since sup{|<^-| : n = 1 , . . . / G i/} is bounded (the variation of | l / r ' J is 
uniformly bounded by construction) and 

diam(An,/\A/)^ l /A"-+0, 

the second integral also tends to 0 as n —> +oo. 
Now we will prove that under the assumptions of Lemma 4 any limit points 

of the family of rn-invariant densities {/„} is an invariant density for r. 

THEOREM 3. Let r be a piecewise expanding transformation, and {rn}n^\ a 
family of Markov maps associated with r. Moreover we assume that rn —• r 
uniformly on the set 

[o,i]\(Jô ( t ) 

and r'n —>r' in L\ as n —• oo. By Theorem 2, any rn has an invariant density fn 

and {fn}n^\ Is a precompact set in L\. We claim that any limit point of {fn}n^\ 
is an invariant density of r. 

Proof. Let / be a limit point of {fn}n^\- We can assume that/À —>f to avoid 
complicated notations. We will prove that PTf = / . We have 

\\PTf - / | | , ^ \\Prf-Pr.fh + \\PrJ ~ Prjnh 

+ \\Pr.fn-fn\\l+\\fn-fh-

The first summand goes to 0 by Lemma 4. The second one is less then 

M i l l / - / j . 

and goes to 0. The third summand is actually equal to 0 and the fourth one goes 
to 0 by assumption. This completes the proof. 

It is easy to see that our special families approximating r, namely the 
Kosyakin-Sandler Markov approximations to r and the piecewise-linear Markov 
approximations to r, satisfy the assumptions of Theorem 3. We, therefore, obtain 
the following two Propositions: 

PROPOSITION 1. Let rbe a piecewise expanding transformation. Let {rn }n^ i be 
the family of Kosyakin-Sandler Markov approximations of r. Then any rn, n = 
1,2,..., admits an invariant density fn, the set {fn}n^\ Is precompact in L\ and 
any of its limit points is an invariant density of r. 

PROPOSITION 2. Let rbe a piecewise expanding transformation. Let {rn}n^i be 
a family of piecewise-linear Markov approximations of r. Then the conclusion 
of Proposition 1 holds for this family. 
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We give an example which shows that condition (2) in Theorem 1 cannot be 
ommited (possibly it can be replaced by some weaker condition). 

Example. In [5] there is given an example of a piecewise Cl and expanding 
transformation r of an interval without absolutely continuous invariant measure. 
Actually the transformation r is Markov and transforms any of three intervals 
of the defining partition Û on the whole interval. 

Let us consider a sequence of piecewise linear Markov approximations of r : 
{Tn}n^\- They satisfy assumptions (1) and (3) of Theorem 1. They also satisfy 
the assumptions of Theorem 3. Both these facts imply that the set {fn}n^\ (where 
/„ is an invariant density for Tni n = 1,2,...) cannot be precompact in L\. If 
it were precompact, any limit point of it would be an invariant density of r, 
and r has no invariant density. Actually the set {fn}n^\ cannot even be weakly 
precompact in L\, by analogous argument using Lemma I of [4]. 

Final remarks. (1) Propositions 1 and 2 provide a useful method for approx­
imating the Lyapunov exponent, in [1], the Kosyakin-Sandler approximations 
are used to obtain a sequence of matrices whose left eigenvectors, when viewed 
as function on [0,1], approximate the invariant density of the tranformation, and 
are used to approximate the Lyapunov exponent. 

(2) The ideas of this paper are carried over to non-expanding maps in [4]. 
(3) The idea of the regularity functional which is used in [13, p. 37- 38] in 

place of variation, is not applicable in our case. When/ is piecewise C1 on 
possibly countably many pieces, the condition 

^ M 

does not imply 

e~M ûf{x)^eM, 

as erroneously concluded in [13]. Hence we cannot obtain a uniform bound on 
{fa}a€A, the invariant densities of the family {Ta}aeA-
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