INJECTIVE APPROXIMATIONS

BY

K. VARADARAJAN*

ABSTRACT. Let C be a cochain complex satisfying the condition that $\overline{\lim}$ inj.dim. $H^{\alpha}(C) < \infty$. Then we prove that C admits an injective approximation.

Introduction. Let *R* be an associative ring with $1 \neq 0$ and *R*-mod the category of unitary left *R*-modules. We will be considering cochain complexes in *R*-mod. If *C* is a cochain complex, we will denote the coboundary maps in C by $\delta_C^q: C^q \to C^{q+1}$. When there is no possibility of confusion we just write δ^q instead of δ_C^q . A cochain complex *I* in which each I^q is injective will be referred to as an injective complex. A cochain complex *C* is said to be bounded below if there exists some $k \in Z$ with $C^q = 0$ for q < k. By an injective approximation to a cochain complex *C* is said to be positive if a monomorphism $\tau: C \to I$ of cochain complexes satisfying $H^*(\tau): H^*(C) \simeq H^*(I)$. A cochain complex *C* is said to be positive if $C^q = 0$ for q < 0. It is well-known that if *C* is a cochain complex which is bounded below (resp. positive) then there exists an injective approximation $\tau: C \to I$ to *C* with *I* bounded below (resp. positive) [4, page 42]. It is also known that if *R* is of finite global dimension and *C* an arbitrary cochain complex over *R* then *C* admits an injective approximation [3].

For any $M \in R$ -mod, let i.d. M denote the injective dimension of M. Given a cochain complex C over R, let $e^q(C) = i.d. H^q(C)$. Let \mathscr{C} denote the class of cochain complexes C satisfying the condition that $\lim_{q \to -\infty} e^q(C) < \infty$. (Here \lim denotes lim sup). For any $C \in \mathscr{C}$, let $e(C) = \lim_{q \to -\infty} e^q(C)$. Then e(C) is an integer ≥ -1 . The object of the present paper is to prove the following.

THEOREM. Any cochain complex C in \mathscr{C} admits an injective approximation.

1. **Preliminary results**. In this section we present some preliminary results needed to prove the above Theorem. A cochain map $\tau: C \to D$ with $H^*(\tau): H^*(C) \simeq H^*(D)$ will be referred to as a quasi-isomorphism.

Received by the editors September 20, 1985.

^{*} Research done while the author was spending part of his sabbatical leave at the Forschungsinstitut für Mathematik, ETH, Zurich. The author was partially supported by NSERC grant A 8225 while this research was being carried out.

Key words: Cochain Complexes, injective approximations.

¹⁹⁸⁰ AMS Classification: 18G35, 55U15.

[©] Canadian Mathematical Society 1985.

Let $f: C \to D$ be a cochain map. By lowering the indices and changing signs we could regard *C* and *D* as chain complexes and *f* as a chain map. Let C_f be the mapping cone of *f*. We could convert C_f into a cochain complex by raising the indices and changing signs. The cochain complex C_f thus got will be referred to as the mapping cone of the cochain map *f*. More explicitly $C_f^q = D^q \oplus C^{q+1}$ for each *q* and $\delta_f^q(a, x) = (f(x) + \delta_D^q(a), -\delta_C^{q+1}(x))$ is the coboundary map in C_f . There is an associated exact sequence $0 \to D \xrightarrow{i} C_f \xrightarrow{\eta} \Gamma C \to 0$ of cochain complexes, where ΓC is the cochain complex defined by $(\Gamma C)^q = C^{q+1}$ for each *q* and $\delta_{\Gamma C}^q = -\delta_C^{q+1}$. The associated cohomology exact sequence is of the form

For later use, we define Γ_c^{-1} to be the cochain complex with $(\Gamma_c^{-1})^q = C^{q-1}$ for each q and $\delta_{\Gamma_c^{-1}}^{q-1} = -\delta_c^{q-1}$.

PROPOSITION 1.1. Let C be any cochain complex. Then there exists a monomorphism $f: C \to I$ of cochain complexes with I injective $H^*(f): H^*(C) \to H^*(I)$ a split monomorphism and $e^q(C_f) \leq Max(0, e^{q-1}(C) - 2)$.

PROOF. Let $0 \to C^q/B^q(C) \xrightarrow{\alpha^q} J^q$ be exact with J^q injective. Let $K^q = \alpha^q(Z^q(C)/B^q(C))$. Then $\alpha^q|H^q(C) = Z^q(C)/B^q(C)$ is an isomorphism of $H^q(C)$ onto K^q . Moreover α^q induces a monomorphism $\bar{\alpha}^q: C^q/Z^q(C) \to J^q/K^q$. Let $0 \to J^q/K^q \xrightarrow{\beta^q} T^{q+1}$ be exact with T^{q+1} injective. Write $\gamma^q: J^q \to T^{q+1}$ for the map $\gamma^q(a) = \beta^q(a + K^q)$ for any $a \in J^q$. Since T^{q+1} is injective, there exists a map $g^{q+1}: C^{q+1} \to T^{q+1}$ with

Diagram 1

commutative.

We define a cochain complex *I* as follows: $I^q = J^q \oplus T^q$ for every $q \in Z$. The map δ_I^q : $I^q \to I^{q+1}$ is given by $\delta_I^q(x, y) = (0, \gamma^q(x))$ for every $x \in J^q$, $y \in T^q$. It is clear that (I, δ_I) is an injective cochain complex. Define f^q : $C^q \to I^q$ by $f^q(c) = (\alpha^q(c + B^q(C)), g^q(c))$ for any $c \in C^q$. Then $\delta_I^q f^q(c) = (0, \gamma^q \alpha^q(c + B^q(C))) = (0, \beta^q \alpha^{-q}(c + Z^q(C))) = (0, g^{q+1} \delta^{-q}(c + Z^q(C))) = (0, g^{q+1} \delta_C^q(c))$ and $f^{q+1} \delta_C^q(c) = (\alpha^{q+1} (\delta_C^q(c) + B^{q+1}(C)), g^{q+1} (\delta_C^q(c))) = (0, g^{q+1} \delta_C^q(c))$ since $\delta_C^q(c) + B^{q+1}(C) = 0$ in $C^{q+1}/B^{q+1}(C)$. Thus the maps f^q : $C^q \to I^q$ defined above yield a cochain map $f: C \to I$. Also, $f^q(c) = 0 \Rightarrow \alpha^q(c + B^q(C)) = 0$ and $g^q(c) = 0$. Since $\alpha^q: C^q/B^q(C) \to J^q$ is monic, we get $c \in B^q(C)$. Let $c = \delta_C^{q-1}y$ with $y \in C^{q-1}$. Then $0 = g^q(c) = g^q(\delta_C^{q-1}y) = \beta^{q-1}\alpha^{q-1}(y + Z^{q-1}(C))$ from diagram 1. Since β^{q-1} is monic, we get $\alpha^{-q-1}(y + Z^{q-1}(C)) = 0$. This means $\alpha^{q-1}(y + \beta^{q-1}(C)) \in K^{q-1}$. This in turn implies $y \in Z^{q-1}(C)$. Hence $c = \delta_C^{q-1}y = 0$. Thus $f^q(c) = 0 \Rightarrow c = 0$. This proves that $f: C \to I$ is a monomorphism.

From the definition of δ_I^q we see immediately that $Z^q(I) = \text{Ker } \gamma^q \oplus T^q = K^q \oplus T^q$ and that $B^q(I) = 0 \oplus \text{Im } \gamma^{q-1}$. Hence $H^q(I) = K^q \oplus (T^q/\text{Im } \gamma^{q-1})$. If $p^q:H^q(I) \to K^q$ denotes the projection onto K^q , it is clear that $p^q \circ H^q(f):H^q(C) \to K^q$ is the same as the isomorphism $\alpha^q:H^q(C) \simeq K^q$. This proves that $H^*(f):H^*(C) \to H^*(I)$ is a split injection, with coker $H^q(f) \simeq T^q/\text{Im } \gamma^{q-1} = T^q/\text{Im } \beta^{q-1}$ for each q. From the exactness of $0 \to K^{q-1} \to J^{q-1} \xrightarrow{\gamma^{q-1}} T^q \to T^q/\text{Im } \gamma^{q-1} \to 0$ with J^{q+1} and T^q injective, we get inj dimn Coker $H^q(f) = \text{inj dim } T^q/\text{Im } \gamma^{q-1} \leq \text{Max } (0, \text{ inj dim } K^{q-1} - 2)$. But $H^{q-1}(C) \simeq K^{q-1}$. Hence inj dim Coker $H^q(f) \leq \text{Max } (0, \text{ inj dim } H^{q-1}(C) - 2) = \text{Max}$ $(0, e^{q^{-1}}(C) - 2)$. From the exactness of

using the fact that all the $H^{j}(f)$ are monomorphisms, we see that $H^{q}(C_{f}) \simeq \operatorname{Coker} H^{q}(f)$ for every q. Hence inj dim $H^{q}(C_{f}) \leq \operatorname{Max}(0, e^{q-1}(C) - 2)$ or $e^{q}(C_{f}) \leq \operatorname{Max}(0, e^{q-1}(C) - 2)$. This completes the proof of proposition 1.1

PROPOSITION 1.2. Let C be a cochain complex satisfying the condition that $e^q(C) \le 1$ for all q. Then C admits an injective approximation.

PROOF. If $e^q(C) \le 1$ for all q, from $H^q(C) \simeq K^q$ and J^q injective (in the proof of proposition 1.1) we see that J^q/K^q is injective for each q. Hence we can choose $T^{q+1} = J^q/K^q$ and $\beta^q = \operatorname{Id} J^q/K^q$ for each q. For the map $f: C \to I$ constructed as in proposition 1.1, we have $H^*(f): H^*(C) \to H^*(I)$ a split mono with coker zero. Thus $f: C \to I$ is an injective approximation to C. \Box

PROPOSITION 1.3. Let φ : $C \rightarrow I$ be a cochain map with I injective. Suppose C_{φ} admits an injective approximation. Then C also admits an injective approximation.

PROOF. Let $\tau: C_{\varphi} \to J$ be an injective approximation to C_{φ} . Let $i: I \to C_{\varphi}$ denote the inclusion and $\eta: C_{\varphi} \to \Gamma C$ the quotient map. Let $\mu = \tau \circ i: I \to J$. Then μ is an inclusion of injective cochain complexes. Let $L = \operatorname{coker} \mu$ and $\epsilon: J \to L$ the projection. We know that $0 \to I \xrightarrow{i} C_{\varphi} \xrightarrow{\eta} \Gamma C \to 0$ is exact and that

$$\begin{array}{ccc} 0 \to I \stackrel{i}{\to} C_{\mathfrak{q}} \\ \| & \downarrow \\ 0 \to I \stackrel{i}{\to} J \end{array}$$

is commutative. Hence τ yields a cochain map $\overline{\tau}$: $\Gamma C \rightarrow L$ making

$$0 \to I \xrightarrow{i} C_{\varphi} \xrightarrow{\eta} \Gamma C \to 0$$
$$\downarrow \tau \qquad \qquad \downarrow \bar{\tau}$$
$$0 \to I \xrightarrow{\mu} J \xrightarrow{\epsilon} L \to 0$$
Diagram 2

commutative. Since I^q is injective for each q, the lower exact sequence splits for each q. Since J^q is injective for q, it follows that L^q is injective for each q. From diagram 2, using the fact that τ is monic, it is easily checked that $\bar{\tau}$ is monic. Five lemma and exact cohomology sequences show that $H^*(\bar{\tau}):H^*(\Gamma C) \to H^*(L)$ is an isomorphism. Hence $C \xrightarrow{\Gamma^{-1}\bar{\tau}} \Gamma^{-1}L$ is an injective approximation to C. \Box

PROPOSITION 1.4. The following are equivalent for a cochain complex. (1) C admits an injective approximation (2) There exists a quasi-isomorphism $\varphi: C \rightarrow I$ with I injective.

PROOF. The implication $(1) \rightarrow (2)$ is trivial. $(2) \rightarrow (1)$: Assume (2). Then C_{φ} is a cochain complex satisfying $H^*(C_{\varphi}) = 0$. From proposition 1.2 we see that C_{φ} admits an injective approximation. Now, applying proposition 1.3 we see that *C* itself admits an injective approximation. \Box

DEFINITION 1.5. A cochain complex C is said to be cohomologically bounded below if there exists a $k \in Z$ with $H^q(C) = 0$ for q < k.

LEMMA 1.6. Let C be a cochain complex which is cohomologically bounded below. Then there exists a quasi-isomorphism $\theta: C \to D$ with D bounded below.

PROOF. Let $H^q(C) = 0$ for q < k. The map $\delta^{k-1}: C^{k-1} \to C^k$ induces a monomorphism $\delta^{-k-1}: C^{k-1}/Z^{k-1}(C) \to C^k$. Let $\epsilon^{k-1}: C^{k-1} \to C^{k-1}/Z^{k-1}(C)$ denote the canonical quotient map. Let $\Box(C)$ be the cochain complex defined as follows. $\Box(C)^q = C^q$ for $q \ge k$, $\Box(C)^{k-1} = C^{k-1}/Z^{k-1}(C)$ and $\Box(C)^q = 0$ for q < k - 1. Let $\delta^q_{\Box(C)} = \delta^q_C$ for $q \ge k$, $\delta^{k-1}_{\Box(C)} = \delta^{-k-1}$. Let $\theta: C \to \Box(C)$ be defined by, $\theta^q = \operatorname{Id}_C q$ for $q \ge k$, $\theta^{k-1} = \epsilon^{k-1}$. Then $\theta: C \to \Box(C)$ is a quasi-isomorphism. Clearly $\Box(C)$ is a cochain complex which is bounded below. \Box

COROLLARY 1.7. Any cochain complex C which is cohomologically bounded below admits an injective approximation.

PROOF. Immediate consequence of 1.4, 1.6 and the known fact [4] that any bounded cochain complex admits an injective approximation. \Box

2. Proof of the main theorem.

LEMMA 2.1. Let C be a cochain complex belonging to the class \mathscr{C} . Then there exists a monomorphism $f: C \to I$ of cochain complexes with I injective, $C_f \in \mathscr{C}$ and $e(C_f) \leq \operatorname{Max}(0, e(C) - 2)$.

PROOF. This is an immediate consequence of proposition 1.1.

PROPOSITION 2.2. Let C be a cochain complex belonging to \mathcal{C} . Suppose $e(C) \leq 1$. Then there exists a monomorphism $f: C \to I$ with I injective and C_f cohomologically bounded below.

PROOF. Since $\lim_{q \to -\infty} e^q(C) \le 1$, there exists an integer $k \in Z$ with $e^q(C) \le 1$ for all q < k. In the proof of proposition 1.1, we have $H^q(C) \simeq K^q$ and J^q injective with

1986]

K. VARADARAJAN

 $J^q \supset K^q$. From $e^q(C) \le 1$ we see that J^q/K^q is injective for q < k. Hence we can choose $T^{q+1} = J^q/K^q$ and $\beta^q = \operatorname{Id}_{J^d/K^q}$ for q < k. Then for C_f with $f: C \to I$ constructed in the proof of proposition 1.1, we have $H^q(C_f) \simeq \operatorname{Coker} H^q(f) \simeq T^q/\operatorname{Im} \beta^{q-1} = 0$ for q < k + 1. Thus C_f is cohomologically bounded below. \Box

COROLLARY 2.3. Let $C \in \mathcal{C}$. Suppose $e(C) \leq 1$. Then C has an injective approximation.

PROOF. By proposition 2.2 there exists a cochain map $f: C \to I$ with I injective and C_f cohomologically bounded below. By Corollary 1.7, C_f has an injective approximation. From proposition 1.3 it follows that C itself has an injective approximation. \Box

THEOREM 2.4. Any cochain complex C in \mathscr{C} admits an injective approximation.

PROOF. By induction on e(C). If $e(C) \le 1$, corollary 2.3 implies that *C* has an injective approximation. Suppose e(C) > 1. Then from lemma 2.1 we get a cochain map $f: C \to I$ with *I* injective, $C_f \in \mathcal{C}$ and $e(C_f) \le e(C) - 2$. By the inductive assumption C_f has an injective approximation. Now proposition 1.3 implies that *C* itself has an injective approximation. \Box

REMARK 2.5. In [7] we have shown that any chain complex over any ring whatsoever admits a free approximation. The proof combines the techniques used in [5] and [6] with a result of *I*. Berstein [1] on the projective dimension of countable direct limits. Also that homology commutes with direct limits plays a role in the proof given in [7]. There are no dual results dealing with injective dimension of countable inverse limits. We do not know whether every cochain complex over any ring *R* whatsoever admits an injective approximation.

Finally I wish to thank Professors Eckmann and Mislin for giving me an opportunity to spend part of my sabbatical leave at the Forschungsinstitut für Mathematik, ETH.

REFERENCES

1. I. Berstein, On the dimension of modules and algebras IX: Nagoya Math. J. 13 (1958) pp. 83-84.

2. H. Cartan and S. Eilenberg, Homological Algebra; Princeton University Press, 1956.

3. A. Dold, Zur Homotopietheorie der Kettencomplexe; Math. Annalen 140 (1960) pp. 278-298.

4. R. Hartshorne, Residues and Duality: Springer Lecture Notes 20 (1966).

5. K. Varadarajan, Projective approximation; Canadian Journal of Math. 36 (1984) pp. 178-192.

6. K. Varadarajan, *Projective and free approximations;* Contemporary Mathematics, **37** (1985) pp. 153–161.

7. K. Varadarajan, Free approximations: To appear in "Questiones Mathematicae".

THE UNIVERSITY OF CALGARY CALGARY, ALBERTA, CANADA T2N 1N4

Forschungsinstitut für Mathematik ETH, Zurich.

382