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Abstract

We prove that if W and W ′ are non-zero B-pairs whose tensor product is crystalline
(or semi-stable or de Rham or Hodge–Tate), then there exists a character µ such that
W (µ−1) and W ′(µ) are crystalline (or semi-stable or de Rham or Hodge–Tate). We also
prove that if W is a B-pair and if F is a Schur functor (for example Symn or Λn) such
that F (W ) is crystalline (or semi-stable or de Rham or Hodge–Tate) and if the rank
of W is sufficiently large, then there is a character µ such that W (µ−1) is crystalline
(or semi-stable or de Rham or Hodge–Tate). In particular, these results apply to p-adic
representations.

Introduction

Let K and E be finite extensions of Qp and let GK = Gal(Qp/K). Fontaine has defined the
notions of crystalline, semi-stable and de Rham E-linear representations of GK and proved that
the corresponding categories are stable under sub-quotient, direct sum and tensor product. The
goal of this note is to answer the following question: if V and V ′ are p-adic representations whose
tensor product is crystalline (or semi-stable or de Rham or Hodge–Tate), then what can be said
about V and V ′?

Berger has defined the tensor category of B⊗E|K -pairs, in which the objects are couples
W = (We, W

+
dR) such that We is a Be ⊗Qp E-representation of GK and W+

dR is a GK-stable
B+

dR ⊗Qp E-lattice of WdR = (BdR ⊗Qp E)⊗(B+
dR⊗QpE) We. If W = (We, W

+
dR) is a B⊗E|K -pair,

then the rank of W is defined to be rank(Be⊗QpE) We = rank(B+
dR⊗QpE) W

+
dR. If V is an

E-linear representation of GK , then W (V ) = ((Be ⊗Qp E)⊗E V, (B+
dR ⊗Qp E)⊗E V ) is a

B⊗E|K -pair, and the functor W (−) identifies the category of E-linear representations of GK
with a tensor subcategory of the category of B⊗E|K -pairs. The notions of crystalline, semi-stable,
de Rham, and Hodge–Tate objects may be extended in a natural way to objects in the category
of B⊗E|K -pairs in such a way that an E-linear representation V of GK is crystalline (or semi-stable

or de Rham or Hodge–Tate) if and only if the associated B⊗E|K -pair W (V ) is. Using Fontaine’s
theory of BdR-representations (see [Fon04]), we can show the following result.

Theorem 2.3.2. Let W and W ′ be non-zero B⊗E|K -pairs. If the B⊗E|K -pair W ⊗W ′ is

Hodge–Tate, then there is a finite extension F/E and a character µ :GK → F× such that
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the B⊗F|K -pairs W (µ−1) and W ′(µ) are Hodge–Tate. If, moreover, W ⊗W ′ is de Rham, then

so are W (µ−1) and W ′(µ).

It is known that every de Rham B⊗E|K -pair is potentially semi-stable, due to the results
of [And02, Ber02, Ked04, Meb02]. The properties of (ϕ, N,Gal(L/K))-modules allow us to
understand the situation when W and W ′ are both potentially semi-stable.

Theorem 3.2.1. Let W and W ′ be non-zero potentially semi-stable B⊗E|K -pairs. If the B⊗E|K -pair

W ⊗W ′ is semi-stable, then there is a finite extension F/E and a character µ :GK → F× such
that the B⊗F|K -pairs W (µ−1) and W ′(µ) are semi-stable. If, moreover, W ⊗W ′ is crystalline, then

so are W (µ−1) and W ′(µ).

In particular, the above two theorems may be used to deduce analogous results for
p-adic representations (see Corollaries 2.3.3 and 3.2.2).

The same methods used to prove Theorems 2.3.2 and 3.2.1 above may be used to understand
the situation when the image of a B-pair by a Schur functor is crystalline (or semi-stable or
de Rham or Hodge–Tate). An integer partition u= (u1, . . . , ur) ∈Nr

>0 with u1 > · · ·> ur of an
integer n gives rise to the Schur functor Schuru(−), which sends B⊗E|K -pairs to B⊗E|K -pairs. If
r = 1 or if u1 = u2 = · · ·= ur, then we put r(u) = r + 1 and we put r(u) = r when this is not the
case. In particular, if u= (n), then r(u) = 2 and the associated Schur functor is Symn(−) and if
u= (1, . . . , 1), then r(u) = n+ 1 and the associated Schur functor is Λn(−).

Theorem 2.4.2. Let W be a B⊗E|K -pair such that rank(W ) > r(u). If the B⊗E|K -pair Schuru(W )
is Hodge–Tate, then there is a finite extension F/E and a character µ :GK → F× such that
the B⊗F|K -pair W (µ−1) is Hodge–Tate. If, moreover, Schuru(W ) is de Rham, then W (µ−1) is
de Rham.

Theorem 3.3.2. Let W be a potentially semi-stable B⊗E|K -pair such that rank(W ) > r(u). If

the B⊗E|K -pair Schuru(W ) is semi-stable, then there is a finite extension F/E and a character µ :

GK → F× such that the B⊗F|K -pair W (µ−1) is semi-stable. If, moreover, Schuru(W ) is crystalline,

then so is W (µ−1).

The above two theorems may be used to deduce analogous results for p-adic representations
(see Corollaries 2.4.3 and 3.3.3).

In the discussion following Corollary 2.4.3, we show that the bounds on rank(W ) in
Theorems 2.4.2 and 3.3.2 are optimal.

It was shown by Skinner (see [Ski09, § 2.4.1]) that if V is a p-adic representation and
if Sym2(V ) is crystalline, then Wintenberger’s methods of [Win95, Win97] may be applied
to show that there exists a quadratic character µ such that V (µ) is crystalline. It is likely
that Wintenberger’s methods can be used in the same fashion to give another proof of our
Theorems 2.3.2, 3.2.1, 2.4.2, and 3.3.2.

1. Notation and generalities

1.1 Notation
Let Qp be an algebraic closure of Qp and let Cp be a p-adic completion of Qp. Let Qnr

p denote
the maximal non-ramified extension of Qp in Qp. If F/Qp is a finite extension, then we let FGal
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denote the Galois closure of F in Qp. Let BdR, B+
dR, Bcris, and Bst denote Fontaine’s rings as

in [Fon94a] and let Be = Bϕ=1
cris . In this note, E/Qp and K/Qp denote finite extensions. If B is any

of the above rings or any Galois sub-extension of Qp/K, then BE will denote the ring B⊗Qp E

endowed with an action of GK = Gal(Qp/K) defined by g(b⊗ e) = g(b)⊗ e for all g ∈GK . If W
is a free BE-module of finite rank endowed with a semi-linear action of GK , then we refer to W
as a BE-representation of GK .

1.2 The category of B⊗E
|K -pairs

A B⊗E|K -pair is a couple W = (We, W
+
dR) where We is a Be,E-representation of GK and W+

dR is
a GK-stable B+

dR,E-lattice of WdR := (BdR,E)⊗(Be,E) We. We define rank(W ) to be the rank of
We as a Be,E-module. If W and W ′ are B⊗E|K -pairs, then W ⊗W ′ = (We ⊗Be,E

W ′e, W
+
dR ⊗B+

dR,E

W ′+dR) is a B⊗E|K -pair. If F/E and L/K are finite extensions and if W is a B⊗E|K -pair, then

F ⊗E W |GL is a B⊗F|L -pair. If V is an E-linear representation of GK , then we let W (V )

denote the B⊗E|K -pair ((Be,E)⊗E V, (B+
dR,E)⊗E V ). The properties of B⊗E|K -pairs are developed

in [Ber08, BC10, Nak09]. In this note, we consider only tensor products of non-zero B⊗E|K -pairs.

1.3 Representations with coefficients in an extension

Let F/Qp be a finite extension such that K ⊃ FGal. If B ∈ {Cp,BdR} or if B is any Galois
sub-extension of Qp/K, then the map

B⊗Qp F '
⊕

h:F→Qp

B

(b⊗ f) 7→ (b · h(f))h

(1)

(where h runs over the embeddings of F into Qp) is an isomorphism of B-algebras which
commutes with the action of GK .

In particular, a BF -representation W of GK decomposes into a direct sum W =
⊕

h:F→Qp
Wh

as a B-representation of GK , where Wh is the sub-B-representation of rankB Wh = rankBF W
coming from the h-factor map (b⊗ f) 7→ b · h(f) : B⊗Qp F →B of the map (1) above. A
BdR,F -representationW ofGK is de Rham if and only if the BdR-representationsWh are de Rham
for each embedding h : F →Qp and a Cp,F -representation W of GK is Hodge–Tate if and only
if the Cp-representations Wh are Hodge–Tate for all embeddings h : F →Qp.

Lemma 1.3.1. If W and W ′ are BF -representations of GK and if W =
⊕

hWh and W ′ =
⊕

hW
′
h

are their decompositions as described above, then the decomposition of the BF -representation
W ⊗BF W

′ is given by
⊕

h:F→Qp
(Wh ⊗B W ′h).

1.4 Schur functors applied to B-pairs

Let n> 1 be an integer and let n= u1 + · · ·+ ur be an integer partition such that ui > ui+1 > 1
for all i ∈ {1, . . . , r − 1}, which we denote by u= (u1, . . . , ur). We represent u by its Young
diagram Yu, which is a diagram of n-many boxes arranged into left-justified rows such that the
ith row from the top contains ui-many boxes. We let vj denote the length of the jth column
from the left. Put r(u) = r + 1 if Yu is a rectangle (i.e., if u1 = · · ·= ur) and put r(u) = r if Yu
is not a rectangle.
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If d> 1 is an integer, then a tableau on Yu with values in {1, . . . , d} is a labeling of the boxes
of Yu with elements in {1, . . . , d} such that the labeling is weakly increasing from left to right
and strongly increasing from top to bottom; we let T = (tij) denote a tableau with the integer
tij ∈ {1, . . . , d} in the jth column of the ith row of Yu. If d> r, then there is a tableau on Yu
which has i in each box of the ith row from the top; we refer to this tableau as the standard
tableau, and we denote it by T1. If d> r(u), then there are tableaux T2, . . . , Td on Yu with values
in {1, . . . , d} such that for all i ∈ {1, . . . , d− 1}, there is an integer j ∈ {1, . . . , d− 1} such that
Tj and Tj+1 have the same entries in all but one box, and in this box Tj contains i and Tj+1

contains i+ 1.
Let R be a commutative ring with 1. The partition u gives rise to the Schur functor Schuru(−),

which sends R-modules to R-modules. If M is an R-module, then Schuru(M) may be realized as
a quotient of the R-module Λv1(M)⊗R · · · ⊗R Λvu1 (M). If {m1, . . . , mk} ⊂M and if T = (tij)
is a tableau on Yu with values in {1, . . . , k}, then we let mT denote the image of the element
(mt11 ∧ · · · ∧mtv11)⊗ · · · ⊗ (mt1u1

∧ · · · ∧mtvu1u1
) in Schuru(M). If M is a free R-module of

finite rank with basis (e1, . . . , ed), then Schuru(M) is a free R-module with basis (eT )T , where
T ranges over all tableaux on Yu with values in {1, . . . , d}.

For example, if M is an R-module, then the Schur module associated to the partition u= (n)
is Symn(M) and the Schur module associated to the partition u= (1, . . . , 1) is Λn(M). The
fundamental properties of tableaux and Schur modules are developed in [Ful97].

If W = (We, W
+
dR) is a B⊗E|K -pair, then Schuru(W ) = (Schuru(We), Schuru(W+

dR)) is a

B⊗E|K -pair. If V is an E-linear representation of GK , then we have an isomorphism of B⊗E|K -pairs

Schuru(W (V )) ∼→W (Schuru(V )).

Lemma 1.4.1. Let F/Qp be a finite extension such that K ⊃ FGal and let B ∈ {Cp,BdR}. If
W is a BF -representation of GK and if W =

⊕
h:F→Qp

Wh is the decomposition of W as a

B-representation of GK as in § 1.3, then the decomposition of the BF -representation Schuru(W )
as a B-representation is given by Schuru(W ) =

⊕
h:F→Qp

Schuru(Wh).

2. Hodge–Tate tensor products and Schur B-pairs

2.1 Sen’s theory of Cp-representations
Let χ :GK → Z×p denote the cyclotomic character, HK = Gal(Qp/K∞) its kernel, and ΓK =
Gal(K∞/K). In [Sen80], Sen associates to a Cp,E-representation W of GK a K∞,E-module
Dsen(W ), which is free of rank d= rankCp,E

(W ) and is endowed with a K∞-semi-linear E-linear
action of ΓK , together with a K∞,E-linear operator ΘW which gives the action of Lie(ΓK) on
Dsen(W ). The action of ΓK commutes with ΘW , and therefore the characteristic polynomial PW
of ΘW has coefficients in KΓK

∞,E =K ⊗Qp E.

Suppose that E contains KGal for the remainder of this subsection. If h :K→ E is an
embedding, then we may associate to W the set of its h-weights Wth(W ) := {x ∈Qp|P hW (x) = 0}
of roots of P hW counted with multiplicity, where P hW is the polynomial of degree d with coefficients
in E obtained by applying the map (k, e) 7→ h(k) · e :K ⊗Qp E→ E to the coefficients of PW .
For example, if Cp,E(i) denotes the Cp,E-representation associated to the i-fold twist by the
cyclotomic character (i ∈ Z) and if h :K→ E is an embedding, then the h-weight of Cp,E(i) is i.

Sen showed in [Sen80, 2.3] that a Cp-representation W of GK is Hodge–Tate if and only
if it is semi-simple with integer Sen weights. In particular, a Cp,E-representation W of GK is
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Hodge–Tate if and only if it is semi-simple as a Cp-representation of GK and for each embedding
h : E→K, the h-weights of W are in Z.

If all Sen weights of a Cp-representation W are in Z, then [Fon04, Theorem 2.14] implies
that W is a direct sum of indecomposable Cp-representations of the form Cp[i; d] := Cp(i)⊗Zp

Zp(0; d) where i ∈ Z is a Sen weight of W and Zp(0; d) is the Zp-module of polynomials in log t
of degree less than or equal to d with coefficients in Zp. The Cp-representation Cp[i; d] is simple
if and only if d= 0.

The K∞,E-representation Dsen(W ) and its operator ΘW satisfy the following properties.

Proposition 2.1.1. Let E and K be finite extensions of Qp and let W and W ′ be
Cp,E-representations of GK .

(i) If W ′ is a sub-representation of W , then ΘW |W ′ = ΘW ′ and ΘW/W ′ is the canonical
operator induced by ΘW . In particular, if 0→W ′→W →W ′′→ 0 is an exact sequence
of Cp,E-representations, then PΘW = PΘW ′PΘW ′′ . If E ⊃KGal, then Wth(W ) = Wth(W ′) t
Wth(W ′′) (counted with multiplicity).

(ii) If F/E is a finite extension, then Dsen(F ⊗E W ) = F ⊗E Dsen(W ) and ΘF⊗W is the
F -linearization of ΘW . In particular, if E ⊃KGal, then the h-weights of W are the same as
those of F ⊗E W .

(iii) We have a natural isomorphism Dsen(W ⊗Cp,E
W ′) =Dsen(W )⊗K∞,E

Dsen(W ′) of
K∞,E-representations of ΓK and the Sen operator on Dsen(W ⊗Cp,E

W ′) is ΘW ⊗
Id + Id⊗ΘW ′ . In particular, if E ⊃KGal, then for each embedding h :K→ E the h-weights
of W ⊗Cp,E

W ′ are the elements s+ s′, where s is an h-weight of W and s′ is an h-weight
of W ′.

(iv) If L/K is a finite Galois extension, then Dsen(W |GL) = L∞ ⊗K∞ Dsen(W ) as an
L∞,E-representation of ΓL, and ΘW |GL

is the L∞-linearization of ΘW .

Corollary 2.1.2. Suppose E ⊃KGal and let W be a Cp,E-representation of GK . If h :K→ E
is an embedding and if a1,h, . . . , ad,h denote the h-weights of W , then the h-weights of Schuru(W )
are the elements aT =

∑
i,j atij ,h for any tableau T = (tij) on the Young diagram of u with values

in {1, . . . , d}.

Lemma 2.1.3. Suppose E ⊃KGal, let h1, . . . , hr denote the embeddings of K into E, and
let ω1, . . . , ωr be elements of E. There exists a finite Galois extension F/E and a character
µ :GK → F× such that Wthi(F (µ)) = {ωi} for i= 1, . . . , r.

Proof. Let χK :GK →O×K be the character associated to a Lubin–Tate module over OK . The
h-weight of K(χK) is 1 if h is the inclusion of K in E, and 0 otherwise [Col93, Theorem I.2.1].

If ω ∈ E, then ω = p−nω′ for some ω′ ∈ OE , and some integer n> 0. Consider the topological
factorization O×K = [k×K ]× (1 + mK). Consider a topological factorization of the Zp-module
1 + mK into Z/paZ× Zrp, where a> 0 and r = [K : Qp]. Let 〈χK〉 denote the projection of χK
onto the submodule Zrp in this factorization. If y1, . . . , yr are a Zp-basis of Zrp, and if F/E is an
extension containing z1, . . . , zr ∈ 1 + mF such that zp

n

i = yi, then the map µ(ya1
1 · · · · · yarr ) :=

zω
′a1

1 · · · · · zω′ar
r composed with 〈χK〉 is a character whose h-weight is p−nω′ = ω when h= id

and 0 otherwise. We denote this character by 〈χK〉ω.
We may suppose that F is Galois over K. Given ω1, . . . , ωr ∈ E, the product of characters∏
〈h−1
i (χK)〉ωi has hi-weight equal to ωi for each 1 6 i6 r, where h−1

i : F → F is the inverse of
an automorphism hi : F → F extending hi :K→ E ⊂ F . 2
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In particular, if W = (We, W
+
dR) is a B⊗E|K -pair, then all of the above may be applied to

the Cp,E-representation W =W+
dR/tW

+
dR. We say that a B⊗E|K -pair W is Hodge–Tate if the

Cp,E-representation W is Hodge–Tate. We let Wt(W ) denote the set of all Sen weights associated
to W .

2.2 Fontaine’s theory of BdR-representations
Let W be a BdR-representation of GK and letW ⊂W be a GK-stable B+

dR-lattice. The quotient
W :=W/tW is a Cp-representation of GK , and we may therefore associate to it the set Wt(W)
of its Sen weights, which is a set of elements of Qp of cardinal dimBdR

W which is stable by the
action of GK . The following proposition shows that all lattices of W have the same Sen weights
up to integers, so that the set of Sen weights modulo Z of a lattice W is an invariant of W .

Proposition 2.2.1. Let W be a BdR-representation of GK . If W and W ′ are two GK-stable
B+

dR-lattices of W , then each Sen weight of W ′ may be written in the form α+ i where α is a
Sen weight of W and i ∈ Z.

Proof. Let c> 0 be an integer such that the lattice tcW ′ is contained in W and let c′ > 0 be an
integer such that the lattice tc

′W is contained in tcW ′.
Consider the sequence of GK-stable lattices,

tcW ′ = tcW ′ + tc
′W ⊂ tcW ′ + tc

′−1W ⊂ · · · ⊂ tcW ′ + tW ⊂ tcW ′ +W =W,

and let Xk denote the lattice tcW ′ + tc
′−kW (for 0 6 k 6 c′). We have GK-equivariant

inclusions tXk+1 ⊂Xk ⊂Xk+1 for k = 0, 1, . . . , c′ − 1; we therefore have exact sequences of
Cp-representations,

Xk+1/tXk+1→Xk+1/Xk→ 0 and 0→ tXk+1/tXk→Xk/tXk→Xk+1/tXk+1,

which, taken together with parts (i) and (iii) of Proposition 2.1.1, and since x 7→ tx induces an
isomorphism of (Xk+1/Xk)(1) onto tXk+1/tXk, implies that Wt(Xk)⊂Wt(Xk+1) ∪ (Wt(Xk+1) +
1). By recurrence, the Sen weights of X0 = tcW ′ are all of the form α+ i, where α is a Sen weight
of Xc′ =W and i is an integer. Again by part (iii) of Proposition 2.1.1, the Sen weights of W ′
are of the form α+ i where α is a Sen weight of W. 2

If W is a BdR-representation of GK and ifW ⊂W is a GK-stable lattice, we call the image of
the set Wt(W) modulo Z the set of de Rham weights of W , and we denote this set by WtdR(W ).
The set of de Rham weights of W is endowed with an action of GK . Fontaine’s theorem [Fon04,
3.19] shows that any BdR-representation W decomposes along the set of GK-orbits in WtdR(W ),
and that W is de Rham if and only if it is semi-simple with de Rham weights in Z.

If the de Rham weights of W are all in Z, then Fontaine’s theorem [Fon04, 3.19] implies that
W is a direct sum of indecomposable objects of the form BdR[{0}; d] := BdR ⊗Zp Zp(0; d) where
Zp(0; d) is the Zp-module of polynomials in one variable X = log t of degree less than or equal to
d with coefficients in Zp, such that g(X) =X + log(χ(g)) for all g ∈GK . The BdR-representation
BdR[{0}; d] is simple if and only if d= 0.

2.3 Hodge–Tate and de Rham tensor products of B-pairs
Let W = (We, W

+
dR) be a B⊗E|K -pair. We say that W is de Rham if the BdR-representation WdR

of GK is de Rham. We say that W is Hodge–Tate if the Cp,E-representation W =W+
dR/tW

+
dR of

GK is Hodge–Tate.
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Lemma 2.3.1. If W and W ′ are Cp-representations of GK with Sen weights in Z such that
W ⊗Cp W

′ is Hodge–Tate, then W and W ′ are Hodge–Tate.

If W andW ′ are BdR-representations ofGK with de Rham weights in Z such thatW ⊗BdR
W ′

is de Rham, then W and W ′ are de Rham.

Proof. Let W and W ′ be BdR-representations of GK with de Rham weights in Z. By Fontaine’s
theorem [Fon04, 3.19], W and W ′ admit unique decompositions W '

⊕r
i=1 BdR[{0}; di]ei and

W ′ '
⊕r′

j=1 BdR[{0}; d′j ]
e′
j . The BdR-representations W and W ′ are de Rham if and only if all of

the di and d′j are equal to zero. If W ⊗BdR
W ′ is de Rham, then BdR[{0}; di]⊗BdR

BdR[{0}; d′j ]
is de Rham for every 1 6 i6 r and 1 6 j 6 r′. Suppose, for example, that W is not de Rham,
so that we may assume d1 > 0. Let U = BdR[{0}; d1]⊗BdR

BdR[{0}; d′1], let v1 = 1⊗ 1, and let
(v1, v2, . . . , vf ) be a K-basis of DdR(U) = UGK , where f = (d1 + 1)(d′1 + 1). If U is de Rham,
then the element X ⊗ 1 ∈ U may be written as a sum X ⊗ 1 = b1(1⊗ 1) +

∑f
i=2 bivi with

bi ∈BdR for all 1 6 i6 f . Since g(X ⊗ 1) =X ⊗ 1 + log(χ(g))(1⊗ 1) for all g ∈GK , we have
g(b1)− b1 = log(χ(g)) for all g ∈GK . If b1 ∈B+

dR, then g(θ(b1))− θ(b1) = log χ(g) for all g ∈GK ,
which is impossible since g 7→ log χ(g) is a generator of the one-dimensional K-vector space
H1(GK ,Cp). If b1 ∈ thB+

dR\t
h+1B+

dR for some h < 0, then b1 = thb′ for a unique b′ ∈B+
dR\tB

+
dR

and χ(g)hg(b′)− b′ ∈ t−hB+
dR ⊂ tB

+
dR, so that reducing modulo t would imply that θ(b′) ∈

Cp(h)GK = {0}, which is a contradiction. We therefore see that W and W ′ must be de Rham.

The same arguments together with Fontaine’s theorem [Fon04, 2.14] show that if W and W ′

are Cp-representations of GK with Sen weights in Z such that W ⊗Cp W
′ is Hodge–Tate, then

W and W ′ are Hodge–Tate. 2

Theorem 2.3.2. Let W and W ′ be non-zero B⊗E|K -pairs. If the B⊗E|K -pair W ⊗W ′ is

Hodge–Tate, then there is a finite extension F/E and a character µ :GK → F× such that the
B⊗F|K -pairs W (µ−1) and W ′(µ) are Hodge–Tate. If, moreover, W ⊗W ′ is de Rham, then so are

W (µ−1) and W ′(µ).

Proof. Let W and W ′ be B⊗E|K -pairs and suppose that the B⊗E|K -pair W ⊗W ′ is Hodge–Tate.
By extending scalars if necessary, we may suppose that E/Qp is finite Galois and contains K,
so that the methods of § 2.1 apply.

Let r = rank(W ) and let r′ = rank(W ′). For each embedding h :K→ E, let a1,h, . . . , ar,h
denote the h-weights of the Cp,E-representation W and let a′1,h, . . . , a

′
r′,h denote the h-weights

of W ′. Part (iii) of Proposition 2.1.1 implies that if h :K→ E is an embedding, then the
h-weights of W ⊗W ′ are the elements ai,h + a′j,h for 1 6 i6 r and 1 6 j 6 r′, which are integers
since the Cp,E-representation W ⊗W ′ =W ⊗Cp,E

W ′ is Hodge–Tate. By Lemma 2.1.3, there
is a finite Galois extension F/E and a character µ :GK → F× such that for all embeddings
h :K→ E ⊂ F , the h-weight of the Cp,F -representation W (F (µ)) is a1,h.

We now show that the B⊗F|K -pairs W (µ−1) and W ′(µ) are Hodge–Tate. If h :K→ E ⊂ F
is an embedding, then parts (ii) and (iii) of Proposition 2.1.1 imply that the h-weights
of W (µ−1) are the integers ai,h − a1,h (for 1 6 i6 r) and the h-weights of W ′(µ) are the
integers a1,h + a′j,h for 1 6 j 6 r′. Since being Hodge–Tate is the same as being potentially
Hodge–Tate, it suffices to show that the B⊗F|F -pairs W (µ−1)|GF and W ′(µ)|GF are Hodge–

Tate. Let W (µ−1) =
⊕

h:F→F W (µ−1)h and W ′(µ) =
⊕

h:F→F W
′(µ)h be the decompositions of

Cp,F -representations of GF as described in § 1.3. The Cp-representations W (µ−1)h and W ′(µ)h
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have weights in Z for every h. The isomorphism

W (µ−1)⊗W ′(µ)'
⊕

h:F→F
W (µ−1)h ⊗Cp W

′(µ)h

of Cp-representations of GF as in Lemma 1.3.1 implies that W (µ−1)h ⊗Cp W
′(µ)h is

Hodge–Tate for each embedding h : F → F . By Lemma 2.3.1, W (µ−1)h and W ′(µ)h are
Hodge–Tate for each embedding h : F → F , and therefore W (µ−1) and W ′(µ) are Hodge–Tate.
Therefore, the B⊗F|K -pairs W (µ−1) and W ′(µ) are Hodge–Tate.

Suppose now that E/Qp is a finite Galois extension and that W and W ′ are
B⊗E|K -pairs such that the B⊗E|K -pair W ⊗W ′ is de Rham. By the above, there is a finite Galois

extension F/E and a character µ :GK → F× such that the B⊗F|K -pairs W (µ−1) and W ′(µ) are
Hodge–Tate. We now show that W (µ−1) and W ′(µ) are de Rham. It suffices to show that the
restrictions of W (µ−1) and W ′(µ) to GF are de Rham. Let W (µ−1)dR =

⊕
h:F→F W (µ−1)dR,h

and W ′(µ)dR =
⊕

h:F→F W
′(µ)dR,h be the decompositions of BdR-representations of GF as in

§ 1.3. For each embedding h : F → F , the BdR-representations W (µ−1)dR,h and W ′(µ)dR,h have
de Rham weights in Z. By Lemma 1.3.1, the BdR-representation W (µ−1)dR,h ⊗BdR

W ′(µ)dR,h

is de Rham for each embedding h : F → F , and therefore so are W (µ−1)dR,h and W ′(µ)dR,h by
Lemma 2.3.1. Therefore, the B⊗F|K -pairs W (µ−1) and W ′(µ) are de Rham. 2

Corollary 2.3.3. Let E/Qp and K/Qp be finite extensions, and let V and V ′ be non-zero
E-linear representations of GK . If V ⊗E V ′ is Hodge–Tate, then there is a finite extension F/E
and a character µ :GK → F× such that V (µ−1) and V ′(µ) are Hodge–Tate. If, moreover, V ⊗E V ′
is de Rham, then so are V (µ−1) and V ′(µ).

2.4 Hodge–Tate and de Rham Schur B-pairs
In what follows, let n> 1 be an integer and let u= (u1, . . . , ur) denote an integer partition
n= u1 + · · ·+ ur (ui > ui+1 > 1) of n. If u1 = · · ·= ur, put r(u) = r + 1. Otherwise, put r(u) = r.

Lemma 2.4.1. IfW is a Cp-representation ofGK having Sen weights in Z such that dimCp(W ) >
r(u) and Schuru(W ) is Hodge–Tate, then W is Hodge–Tate.

IfW is a BdR-representation ofGK having de Rham weights in Z such that dimBdR
(W ) > r(u)

and Schuru(W ) is de Rham, then W is de Rham.

Proof. Let W be a BdR-representation of GK having de Rham weights in Z such that
dimBdR

(W ) > r(u). If W is not de Rham, then Fontaine’s theorem [Fon04, 3.19] gives a
decomposition W = BdR[{0}; d]⊕W ′ for some d > 0, so that

Schuru(W )'
⊕
λ,µ

(Schurλ(BdR[{0}; d])⊗BdR
Schurµ(W ′))⊕c

u
λ,µ

as a BdR-representation ofGK , where cuλ,µ > 0 denotes the Littlewood–Richardson number. There
are λ and µ such that cuλ,µ and Schurλ(BdR[{0}; d])⊗BdR

Schurµ(W ′) are non-zero, and such
that d+ 1 > r(λ). This can be seen by using the fact that cuλ,µ is equal to the number of pairs
of tableaux T of shape λ and U of shape µ such that the product tableau T · U is equal to the
standard tableau T1 on the Young diagram of u. Details on this combinatorial argument may be
found in the author’s forthcoming thesis.

The BdR-representations Schurλ(BdR[{0}; d]) and Schurµ(W ′) have de Rham weights in Z
by Lemma 2.1.1. If Schuru(W ) is de Rham, then so is Schurλ(BdR[{0}; d])⊗BdR

Schurµ(W ′)
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and Lemma 2.3.1 implies that Schurλ(BdR[{0}; d]) is de Rham. Let (1, X, X2, . . . , Xd) denote
the standard BdR-basis of BdR[{0}; d]. If T1 is the standard tableau defined in § 1.4, then
the element eT1 ∈ Schurλ(BdR[{0}; d]) is such that g(eT1) = eT1 for all g ∈GK . Let T ′ be the
tableau with values in {1, . . . , d+ 1} which is obtained from T1 by adding 1 to the value in
the bottom-most cell of the right-most column of Yλ; this tableau T ′ exists since d+ 1 > r(λ).
A calculation shows that g(eT ′ ) = eT ′ + ν log χ(g)eT1 , where ν is the length of the right-most
column of Yλ. If Schurλ(BdR[{0}; d]) is de Rham, then it admits a basis (eT1 , e2, . . . , ef ) of
elements such that, for all i= 2, . . . , f , g(ei) = ei for all g ∈GK . If b1, . . . , bf ∈BdR are elements
such that eT ′ = b1eT +

∑
i>2 biei, then g(b1)− b1 = ν log χ(g) for all g ∈GK , which is impossible.

Therefore, W and W ′ must be de Rham.

One can prove the claim for Cp-representations by using Fontaine’s theorem [Fon04, 2.14]
and applying the same arguments. 2

Theorem 2.4.2. Let W be a B⊗E|K -pair such that rank(W ) > r(u). If the B⊗E|K -pair Schuru(W )
is Hodge–Tate, then there is a finite extension F/E and a character µ :GK → F× such that
the B⊗F|K -pair W (µ−1) is Hodge–Tate. If, moreover, Schuru(W ) is de Rham, then W (µ−1) is
de Rham.

Proof. Let W be a B⊗E|K -pair such that d= rank(W ) > r(u) and suppose that Schuru(W ) is
Hodge–Tate. By extending scalars if necessary, we may suppose that E/Qp is finite Galois and
contains K.

If h :K→ E is an embedding, then let a1,h, . . . , ad,h denote the h-weights of W . By
Corollary 2.1.2, the h-weights of the Cp,E-representation Schuru(W ) = Schuru(W ) are the
elements of the form aT,h =

∑
atij ,h for any tableau T = (tij) with values in {1, . . . , d} on

the Young diagram of u. Since Schuru(W ) is Hodge–Tate, the elements aT,h are in Z. Since
d= rank(W ) > r(u), considering the tableaux T1, . . . , Td in § 1.4 allows us to conclude that
ai,h − a1,h ∈ Z for all 1 6 i6 d. By Lemma 2.1.3, there is a finite Galois extension F/E and
a character µ :GK → F× such that the B⊗F|K -pair W (F (µ)) has a1,h as its h-weight for each
embedding h :K→ E ⊂ F .

We now show that theB⊗F|K -pairW (µ−1) is Hodge–Tate. It suffices to show that the restriction

of W (µ−1) to GF are Hodge–Tate. Let W (µ−1) =
⊕

h:F→F W (µ−1)h be the decomposition as a
Cp-representation of GF as described in § 1.3. The Cp-representation W (µ−1)h has Sen weights
in Z for each embedding h : F → F . By Lemma 1.4.1, the Cp-representation Schuru(W (µ−1)h)
of GF is Hodge–Tate for each embedding h : F → F . Since dimCp W (µ−1)h = rank(W ) > r(u),
Lemma 2.4.1 implies that W (µ−1)h is Hodge–Tate for each embedding h : F → F . The B⊗F|K -pair
W (µ−1) is therefore Hodge–Tate.

Suppose now that W is a B⊗E|K -pair such that rank(W ) > r(u) and Schuru(W ) is
de Rham. There is a finite Galois extension F/E and a character µ :GK → F× such that the
B⊗E|K -pair W (µ−1) is Hodge–Tate. We now show that W (µ−1) is de Rham. Let W (µ−1)dR '⊕

h:F→F W (µ−1)dR,h be the decomposition as a BdR-representation of GF as described in
§ 1.3. The BdR-representation W (µ−1)dR,h has de Rham weights in Z for each embedding
h : F → F . By Lemma 1.4.1, Schuru(W (µ−1)dR,h) is a de Rham BdR-representation of GF for
each embedding h : F → F and therefore W (µ−1)dR,h is de Rham for each embedding h since
dimBdR

W (µ−1)dR,h = rank(W ) > r(u). Therefore, the B⊗F|K -pair W (µ−1) is de Rham. 2
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Corollary 2.4.3. Let n> 1 be an integer, let u be a partition of n, and let V be an
E-linear representation of GK such that dimE(V ) > r(u). If Schuru(V ) is Hodge–Tate, then
there is a finite extension F/E and a character µ :GK → F× such that V (µ−1) is Hodge–Tate.
If, moreover, Schuru(V ) is de Rham, then V is de Rham.

We now show that the bound on rank(W ) in Theorem 2.4.2 is optimal. If W is a B⊗E|K -pair
such that rank(W )< r(u), then Schuru(W ) is of rank 1 if u1 = · · ·= ur and Schuru(W ) = 0
otherwise. In the former case, rank(W ) = r and Schuru(W ) =

⊗r
i=1 det(W ). Let V denote a

two-dimensional Qp-vector space endowed with an action of GQp such that g ∈GQp acts on
a basis E = (e1, e2) by the matrix (

1 logp(χ(g))
0 1

)
so that V is not Hodge–Tate since Cp ⊗Qp V = Cp[{0}; 1], but GQp acts trivially on Λ2V . There
is no character µ :GQp → E× such that V (µ−1) is Hodge–Tate; such a character would necessarily
have weights in Z, and Lemma 2.4.1 would imply that V itself is Hodge–Tate.

3. Semi-stable tensor products and Schur B-pairs

3.1 Semi-stable B-pairs

Let W = (We, W
+
dR) be a B⊗E|K -pair. We say that W is crystalline if the Bcris-representation

(Bcris,E)⊗Be,E
We of GK is trivial. Similarly, we say that W is semi-stable if the

Bst-representation (Bst,E)⊗Be,E
We of GK is trivial. We say that W is potentially crystalline

(or potentially semi-stable) if there is a finite extension L/K such that the B⊗E|L -pair W |GL
is crystalline (or semi-stable). Note that if V is an E-linear representation of GK , then V is
crystalline (or semi-stable) if and only if the B⊗E|K -pair W (V ) is crystalline (or semi-stable).

Let L/K be a finite Galois extension and let L0 = L ∩Qnr
p . If W is a B⊗E|K -pair which is

semi-stable when restricted to GL, then Dst,L(W ) = (Bst,E ⊗Be,E
We)GL is a free L0,E-module

such that rankL0,E
(Dst,L(W )) = rank(W ), and it is endowed with an injective additive self-map ϕ

that is E-linear and semi-linear for the absolute Frobenius automorphism σ on L0, an L0,E-linear
nilpotent endomorphism N such that Nϕ= pϕN , and an E-linear and L0-semi-linear action of
Gal(L/K) which commutes with ϕ and N . The following follows from [Fon94b, 4.2.6, 5.1.5].

Proposition 3.1.1. Let W be a potentially semi-stable B⊗E|K -pair, semi-stable when restricted

to GL where L/K is finite and Galois. The B⊗E|K -pair W is semi-stable if and only if the inertia

group IL/K acts trivially on Dst,L(W ), and W is crystalline if and only if it is semi-stable and
N = 0 on Dst,L(W ).

3.2 Semi-stable tensor products

Theorem 3.2.1. Let W and W ′ be non-zero potentially semi-stable B⊗E|K -pairs. If the B⊗E|K -pair

W ⊗W ′ is semi-stable, then there is a finite extension F/E and a character µ :GK → F× such
that the B⊗F|K -pairs W (µ−1) and W ′(µ) are semi-stable. If, moreover, W ⊗W ′ is crystalline, then

so are W (µ−1) and W ′(µ).
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Proof. Let L/K be a finite Galois extension such that W and W ′ are semi-stable as B⊗E|L -pairs.
By [Fon94b, 5.1.7], we have an isomorphism of E -(ϕ, N,Gal(L/K))-modules:

Dst,L(W ⊗W ′) ∼←Dst,L(W )⊗L0,E
Dst,L(W ′).

Let E ⊂Dst,L(W ) and E ′ ⊂Dst,L(W ′) be L0,E-bases, so that the set E ⊗ E ′ of elementary
tensors is a basis of Dst,L(W ⊗W ′). For all g ∈GK , let Ug = Mat(g|E) ∈GLd(L0,E) and let
U ′g = Mat(g|E ′) ∈GLd′ (L0,E). By Proposition 3.1.1, IL/K acts trivially onDst,L(W ⊗W ′), and we
have Mat(g|E ⊗ E ′) = Ug ⊗ U ′g = Id for all g ∈ IL/K , so that Ug = ηg Id and U ′g = η−1

g Id with ηg ∈
(L0,E)×. The relation ϕg = gϕ on Dst,L(W ) translates to the matrix relation Mat(ϕ|E) · σ(Ug) =
Ug · g(Mat(ϕ|E)) for all g ∈Gal(L/K), so that for all g ∈ IL/K , we have ηg ∈ (L0,E)σ=1 = E and
therefore ηg ∈ E×.

We now show that there is a finite extension F/E such that the character η : IL/K → E×

can be extended to a character µ : Gal(L/K)→ F×. Let ω ∈Gal(L/K) be such that its residual
image generates the cyclic group Gal(kL/kK). If g ∈Gal(L/K), then we can write g = g′ωi for
a unique g′ ∈ IL/K and unique 0 6 i6 f − 1, where f = [kL : kK ]. Let ξ ∈Qp be an fth root of
η(ωf ). Since η(ωg′ω−1) = η(g′) for all g′ ∈ IL/K , putting F = E(ξ) and µ(g) := η(g′)ξi defines a
homomorphism µ :GK → F×.

The B⊗F|K -pairs W (µ−1) and W ′(µ) are semi-stable, by Proposition 3.1.1. If, moreover,

W ⊗W ′ is crystalline, then the B⊗F|K -pair W (µ−1)⊗W ′(µ) is crystalline as well and by the
isomorphism of F -(ϕ, N,Gal(L/K))-modules recalled above, we have

Dst,L(W (µ−1)⊗W ′(µ)) ∼←Dst,L(W (µ−1))⊗L0,F
Dst,L(W ′(µ)).

The monodromy operator N ⊗ Id + Id⊗N ′ is zero, and therefore the matrices of N and N ′ are
scalar multiples of the identity. Since N and N ′ are nilpotent, these scalars are necessarily zero
since L0,F is reduced, and thus W (µ−1) and W ′(µ) are crystalline by Proposition 3.1.1. 2

Corollary 3.2.2. Let V and V ′ be non-zero potentially semi-stable E-linear representations of
GK . If V ⊗E V ′ is semi-stable, then there is a finite extension F/E and a character µ :GK → F×

such that the F -linear representations V (µ−1) and V ′(µ) are semi-stable. If, moreover, V ⊗E V ′
is crystalline, then so are V (µ−1) and V ′(µ).

3.3 Semi-stable Schur B-pairs
In this subsection, n> 1 is an integer and u= (u1, . . . , ur) denotes an integer partition n=
u1 + · · ·+ ur such that ui > ui+1 > 1 for all i ∈ {1, . . . , r − 1}.

Lemma 3.3.1. Let L/K be a finite Galois extension and let D be an E -(ϕ, N,Gal(L/K))-
module such that rank(D) > r(u). If IL/K acts trivially on Schuru(D), then IL/K acts on D via
a character η : IL/K → E×. If N = 0 on Schuru(D), then N = 0 on D.

Proof. By extending scalars if necessary, we may suppose that E ⊃ L. We have an isomorphism
of rings, L0,E

∼→
⊕

h:L0→Qp
E on which IL/K acts trivially on both sides. We therefore see

that D decomposes as an E-linear representation of IL/K into D '
⊕

h Dh where Dh is
the E-linear representation of IL/K coming from the h-factor map (λ, e) 7→ h(λ)e : L0,E → E.
The corresponding decomposition of Schuru(D) is given by Schuru(D)'

⊕
h Schuru(Dh), and

by assumption IL/K acts trivially on each E-linear representation Schuru(Dh). Let IL/K
act Qp-linearly on Dh = Qp ⊗E Dh. Let g ∈ IL/K . Since IL/K is finite, there is a Qp-basis
Egh = (eg1,h, . . . , e

g
d,h) of Dh and elements λg1,h, . . . , λ

g
d,h ∈Qp such that g(egi,h) = λgi,he

g
i,h for
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all i ∈ {1, . . . , d}. Consider the Qp-basis of Schuru(Dh) consisting of elements egT,h, where T

ranges over all tableaux on Yu with values in {1, . . . , d}. One has g(egT,h) = λgT,he
g
T,h, where

λgT,h =
∏d
i=1(λgi,h)mT (i) and mT (i) denotes the number of times that i appears in the tableau T .

Since dimQp
Dh = rank(D) > r(u), one sees that λg1,h = λg2,h = · · ·= λgd,h = λgh by considering

the tableaux T1, . . . , Td as in § 1.4, and therefore g(z) = λghz for all z ∈Dh. Note that we
necessarily have λgh ∈ E. We therefore see that for each embedding h : L0→ E, IL/K acts on Dh

by a character ηh : IL/K → E×, which translates to saying that IL/K acts on D by a character
η : IL/K → (L0,E)×. Since ϕg = gϕ for all g ∈ IL/K and (L0,E)σ=1 = E, we see that η : IL/K → E×.

Moreover, since N is an L0,E-linear map, the factors in the decomposition D '
⊕

h Dh are
N -stable. We let N again denote the E-linear nilpotent map induced on Dh. Since N = 0 on
Schuru(D) =

⊕
h Schuru(Dh), we see that N = 0 on Schuru(Dh) for each embedding h : L0→Qp.

Let (e′1,h, . . . , e
′
d,h) denote a Jordan canonical basis for N on Dh. Suppose that N 6= 0, so that

we may suppose N(e′2,h) = e′1,h. If T is the tableau on Yu in which i appears in all boxes of the
ith row, except in the right-most column where i+ 1 appears, then a calculation shows that
N(eT,h) = eT ′,h, where T ′ is another tableau, therefore contradicting the fact that N = 0 on Dh.
We therefore see that N = 0 on each Dh, so that N = 0 on D and thus N = 0 on D. 2

Theorem 3.3.2. Let W be a potentially semi-stable B⊗E|K -pair such that rank(W ) > r(u). If

the B⊗E|K -pair Schuru(W ) is semi-stable, then there is a finite extension F/E and a character µ :

GK → F× such that the B⊗F|K -pair W (µ−1) is semi-stable. If, moreover, Schuru(W ) is crystalline,

then so is W (µ−1).

Proof. Let L/K be a finite Galois extension such that W is semi-stable as a B⊗E|L -pair, so that
[Fon94b, 5.1.7] implies that we have an isomorphism of E -(ϕ, N,Gal(L/K))-modules

Schuru(Dst,L(W )) ∼→Dst,L(Schuru(W )).

If Schuru(W ) is semi-stable, then Proposition 3.1.1 implies that IL/K acts trivially on
Schuru(Dst,L(W )). Lemma 3.3.1 implies that IL/K acts on Dst,L(W ) via a character η : IL/K →
E×. By the same reasoning as in the proof Theorem 3.2.1, there is a finite extension F/E and a
character µ : Gal(L/K)→ F× such that µ|IL/K = η. By Proposition 3.1.1, W (µ−1) is semi-stable.

If Schuru(W ) is crystalline, then N = 0 on Schuru(Dst,L(W )). Lemma 3.3.1 implies that N = 0
on Dst,L(W ), which implies the same for Dst,L(W (µ−1)), so that W (µ−1) is crystalline. 2

Theorem 3.3.2 implies the following.

Corollary 3.3.3. Let V be a potentially semi-stable E-linear representation of GK such that
dimE V > r(u). If the E-linear representation Schuru(V ) of GK is semi-stable, then there is a
finite extension F/E and a character µ :GK → F× such that the F -linear representation V (µ−1)
of GK is semi-stable. If, moreover, Schuru(V ) is crystalline, then so is V (µ−1).
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