FACTOR REPRESENTATIONS AND FACTOR STATES ON A C*-ALGEBRA

JAMES A. SCHOEN

Let A be a C*-algebra and H a Hilbert space of large enough (infinite at least) dimension so that every π_f , where f is a factor state on A, can be unitarily represented on H. Let Fac (A, H) denote the set of all factor representations of A on H. If π is in Fac (A, H) we call its essential subspace the smallest, closed, vector subspace K of H such that $\pi(A)$ is null on $H \ominus K$. We define Fac_{∞}(A, H) to be the set of elements in Fac (A, H) whose essential subspace is H. Equip Fac_{∞}(A, H) with the topology of strong pointwise convergence, i.e., $\pi_{\nu} \to \pi$ if $||\pi_{\nu}(x) \alpha - \pi(x)\alpha|| \to 0$ for all x in A and α in H. Bichteler [1, p. 90] shows that this topology is the same as that of weak convergence. What we show in this paper is that there is a continuous open surjection of Fac_{∞}(A, H) with the veak topology. It then follows from [3, Proposition 11] that the map $\pi \to [\pi]$ is a continuous open surjection of Fac_{∞}(A, H) onto the quasi-dual of A.

Let α be a unit vector in H and F(A) denote the set of factor states on A. Define the map w_{α} from $\operatorname{Fac}_{\infty}(A, H)$ to F(A) by

 $(w_{\alpha}(\pi))(x) = (\pi(x)\alpha, \alpha).$

We note that for each π in $\operatorname{Fac}_{\infty}(A, H)$, $w_{\alpha}(\pi)$ is a state and the representation ρ induced by $w_{\alpha}(\pi)$ is unitarily equivalent to π restricted to cl $\{\pi(x)\alpha|x \in A\}$. Hence $w_{\alpha}(\pi)$ is in F(A) and $\rho \in [\pi]$, where $[\pi]$ is the quasi-equivalence class of π .

Let X be a subset of $Fac_{\infty}(A, H)$. Then X^{\sim} will denote

 $\{ \rho \in \operatorname{Fac}_{\infty}(A, H) | \rho \in [\pi], \pi \in X \}.$

Let Y be a subset of F(A). Then Y[~] will denote $\{g \in F(A) | \pi_g \in [\pi_f], f \in Y\}$. The following lemma is clear.

LEMMA 1. Let B be a subset of $\operatorname{Fac}_{\infty}(A, H)$ and α and β unit vectors in H. (a) $w_{\alpha}(B)^{\gamma} = w_{\alpha}(B^{\gamma})$.

(b) If $B = B^{\sim}$, $w_{\alpha}(B) = w_{\beta}(B)$.

Let π be in Fac_{∞}(A, H) and $h_1 = \alpha$, where α is fixed unit vector. We define $\pi_1 = \pi | H_1$, where $H_1 = \text{cl} \{ \pi(x) h_1 | x \in A \}$. Assume that for all ordinal numbers $\nu < \nu'$ we have defined h_{ν} such that $h_{\nu} \in H \ominus \text{cl} \bigcup H_{\mu}, \mu < \nu$, where $H_{\mu} =$

Received February 3, 1975.

cl $\{\pi(x)h_{\mu}|x \in A\}$; $H_{\nu} = cl \{\pi(x)h_{\nu}|x \in A\}$; and $\pi_{\nu} = \pi|H_{\nu}$. If $cl \cup H_{\nu}, \nu < \nu'$, is not H, pick $h_{\nu'}$ in $H \ominus cl \cup H_{\nu}, \nu < \nu'$. Let $\pi_{\nu'} = \pi|H_{\nu'}$, where $H_{\nu'} = cl \{\pi(x)h_{\nu'}|x \in A\}$. Then, by transfinite induction, we may write $\pi = \Sigma \oplus \pi_{\nu}$, $H = cl (\Sigma \oplus H_{\nu})$, and for each ν , $H_{\nu} = cl \{\pi(x)h_{\nu}|x \in A\}$.

LEMMA 2. Using the notation above, sets of the form

$$\bigcap_{i} \bigcap_{j} \left\{ \rho \left| \left| \left| \rho(x_{ij})h_{\nu_{i}} - \pi(x_{ij})h_{\nu_{i}} \right| \right| < \epsilon \right\}$$

is a neighborhood system for π .

Proof. It is sufficient to show that contained in a set of the form

 $\{\rho| ||\rho(x)h - \pi(x)h|| < \epsilon\}$

is a set of the form $\bigcap_i \{\rho \mid ||\rho(x_i)h_{\nu_i} - \pi(x_i)h_{\nu_i}|| < \delta\}$. We may assume $x \neq 0$ and we can find a vector $\beta = \sum_i \pi(x_i)h_{\nu_i}$ such that $||h - \beta|| < \epsilon/(3 ||x||)$. Then, by the triangle inequality, we have that

$$||
ho(x)h - \pi(x)h|| < 2\epsilon/3 + ||
ho(x)eta - \pi(x)eta||.$$

Since H_{ν_i} is orthogonal to H_{ν_i} , for $i \neq j$, we can find a $\delta > 0$ such that

$$t \in \bigcap_{i} \{ \rho | || \rho(x_{i}) h_{\nu_{i}} \}$$

$$-\pi(x_{i})h_{\nu_{i}}|| < \delta \} \cap \cap_{i} \{\rho | ||\rho(x x_{i})h_{\nu_{i}} - \pi(x x_{i})h_{\nu_{i}}|| < \delta \}$$

implies that $||t(x)\alpha - \pi(x)\alpha|| < \epsilon$.

LEMMA 3. Let π be in $\operatorname{Fac}_{\infty}(A, H)$ and

$$O = \bigcap_{i} \bigcap_{j} \{\rho | ||\rho(x_{ij})h_{\nu_i} - \pi(x_{ij})h_{\nu_i}|| < \epsilon \}$$

where the h_{ν_i} 's satisfy the conditions of 2. Then

$$w_{\alpha}(O) = \bigcap_{i} w_{\alpha} \left(\bigcap_{j} \{ \rho | || \rho(x_{ij}) h_{\nu_i} - \pi(x_{ij}) h_{\nu_i} || < \epsilon \} \right).$$

Proof. The left side is obviously contained in the right. Let

$$f \in \bigcap_{i} w_{\alpha} \left(\bigcap_{j} \{ \rho | || \rho(x_{ij}) h_{\nu_{i}} - \pi(x_{ij}) h_{\nu_{i}} || < \epsilon \} \right).$$

This means that for each i = 1, 2, ..., N, there is a ρ_i such that

$$||\rho_i(x_{ij})h_{\nu_i} - \pi(x_{ij})h_{\nu_i}|| < \epsilon$$

for j = 1, 2, ..., M and $w_{\alpha}(\rho_i) = f$. We may assume $h_{\nu_1} = \mu$. Let K_i be the finite dimensional Hilbert space generated by

 $\{\pi(x_{ij})h_{\nu_i}|j=1,2,\ldots,M\} \cup \{h_{\nu_i}\}.$

Then the K_i 's are mutually orthogonal. Let H_N be the direct sum of N copies of H. The subspace

$$H_N \ominus (K_1 \oplus K_2 \oplus \ldots \oplus K_N)$$

has dimension equal to that of H_N and so there is an isometric isomorphism of $H_N \ominus (K_1 \oplus K_2 \oplus \ldots \oplus K_N)$ onto $H \ominus (K_1 \oplus K_2 \oplus \ldots \oplus K_N)$. Thus there is an isometric isomorphism U of H_N onto H such that

 $U(\xi_1,\xi_2,\ldots,\xi_N) = \xi_1 + \xi_2 + \ldots + \xi_N \text{ for } (\xi_1,\xi_2,\ldots,\xi_N) \text{ in } \Sigma \oplus K_i.$

Let ρ be the representation $U(\Sigma \oplus \rho_i)U^{-1}$ on H. Then ρ is in O and $w_{\alpha}(\rho) = f$.

The next lemma is a result that was pointed out to me by Herbert Halpern.

LEMMA 4. Let H be a Hilbert space, let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be vectors in H, and let $\epsilon > 0$ be given. There is a $\delta > 0$ such that for any vectors $\beta_1, \beta_2, \ldots, \beta_n$ in H with

$$||\alpha_1|| = ||\beta_1|| and |(\beta_i, \beta_j) - (\alpha_i, \alpha_j)| < \delta,$$

there is a unitary operator U on H with

 $U\beta_1 = \alpha_1 and ||U\beta_i - \alpha_i|| < \epsilon.$

Proof. For n = 1, there is a unitary U with $U\beta_1 = \alpha_1$. Now suppose that for any set $\{\beta_{1,\delta}, \beta_{2,\delta}, \ldots, \beta_{n,\delta}\}$ of vectors in H, with

$$||\beta_{1,\delta}|| = ||\alpha_1|| = 1 \text{ and } (\beta_{i,\delta}, \beta_{j,\delta}) \to (\alpha_i, \alpha_j) \text{ as } \delta \to 0,$$

the relation

$$\lim_{\delta\to 0} \inf_{U(\beta_1,\delta,\alpha_1)} \left(||U\beta_{1,\delta} - \alpha_1|| + \ldots + ||U\beta_{n,\delta} - \alpha_n|| \right) = 0,$$

where $U(\beta_{1,\delta}, \alpha_1)$ is the set of unitary operators on H with $U\beta_{1,\delta} = \alpha_1$, holds. Let $\{\beta_{1,\delta}, \beta_{2,\delta}, \ldots, \beta_{n+1,\delta}\}$ be vectors in H with

$$||\beta_{1,\delta}|| = ||\alpha_1|| = 1 \text{ and } (\beta_{i,\delta}, \beta_{j,\delta}) \to (\alpha_i, \alpha_j) \text{ for } 1 \leq i \leq n+1.$$

We may find U_{δ} in $U(\beta_{1,\delta}, \alpha_1)$ such that

$$||U_{\delta}\beta_{1,\delta} - \alpha_1|| + \ldots + ||U_{\delta}\beta_{n,\delta} - \alpha_n|| \to 0 \text{ as } \delta \to 0.$$

Let H' be the space generated by $\alpha_1, \alpha_2, \ldots, \alpha_n$, let $H'' = H \ominus H'$, let P' be the projection onto H', and P'' the projection onto H''. For $1 \leq i \leq n$, we have that

 $|(P'\alpha_{n+1} - P'U_{\delta}\beta_{n+1,\delta}, \alpha_i)| \to 0 \text{ as } \delta \to 0.$

Thus, $P' U_{\delta}\beta_{n+1,\delta} \to P' \alpha_{n+1}$ in H' since H' is finite dimensional. Also,

$$||U_{\delta}eta_{n+1,\delta}||^2 = ||eta_{n+1,\delta}||^2
ightarrow ||lpha_{n+1}||^2.$$

Thus,

$$||P''U_{\delta}\beta_{n+1,\delta}||^2 = ||\beta_{n+1,\delta}||^2 - ||P'U_{\delta}\beta_{n+1,\delta}||^2$$

converges to

$$|\alpha_{n+1}||^2 - ||P'\alpha_{n+1}||^2 = ||P''\alpha_{n+1}||^2.$$

Then there is a unitary operator V_{δ} on H such that V_{δ} is the identity on H' and

$$V_{\delta}P^{\prime\prime}U_{\delta}\beta_{n+1,\delta} \rightarrow P^{\prime\prime}\alpha_{n+1,\delta}$$

Thus, for $1 \leq i \leq n$,

 $||P^{\prime\prime}U_{\delta}\beta_{i,\delta}|| \to ||P^{\prime\prime}\alpha_{i}|| = 0$

and so

$$||V_{\delta}U_{\delta}\beta_{i,\delta} - U_{\delta}\beta_{i,\delta}|| \to 0.$$

This means that $||V_{\delta}U_{\delta}\beta_{i,\delta} - \alpha_i||$ converges to zero. Also, $V_{\delta}U_{\delta}\beta_{1,\delta} = V_{\delta}\alpha_1 = \alpha_1$. Furthermore,

$$||V_{\delta}U_{\delta}\beta_{n+1,\delta} - \alpha_{n+1}||^2 = ||P'U_{\delta}\beta_{n+1,\delta} - P'\alpha_{n+1}||^2 + ||V_{\delta}P''U_{\delta}\beta_{n+1,\delta} - P''\alpha_{n+1}||^2 \to 0 \text{ as } \delta \to 0.$$

Hence, our result follows.

We are now ready for our major result.

THEOREM 5. Let A be a C*-algebra, H be a Hilbert space of large enough dimension (at least infinite) so that each factor representation induced by a factor state on A can be unitarily represented on H, and α be a fixed unit vector in H. Then the map, w_{α} , is a continuous open surjection from Fac_{∞}(A, H) onto F(A).

Proof. We first show that w_{α} is onto. Let f be in F(A), π_f be the factor representation defined by f on the Hilbert space H_f , and h_f be in H_f such that $f(x) = (\pi_f(x)h_f, h_f)$. Let N be the cardinality of a maximal set of orthonormal vectors in H. We form the Hilbert space K by taking the direct sum of H_f with itself N times. Let $\{\beta_r\}_{r\in I}$ (resp. $\{\gamma_r\}_{r\in I}$) be a maximal set of orthonormal vectors in K (resp. H) such that $\beta_1 = h_f \oplus O \oplus O \oplus \ldots$ (resp. $\gamma_1 = \alpha$). We define an isometric isomorphism U of K onto H by $U\beta_r = \gamma_r$ for each $\nu \in I$. Let π' be the representation of A on K formed by taking $\Sigma \oplus \pi_f$. Let $\pi = U\pi' U^{-1}$. Then π is in $\operatorname{Fac}_{\infty}(A, H)$ and $w_{\alpha}(\pi) = f$. Hence w_{α} is onto.

Let $f_0 \in F(A)$ and $\pi_0 \in \operatorname{Fac}_{\infty}(A, H)$ such that $w_{\alpha}(\pi_0) = f_0$. Then

$$w_{\alpha}^{-1}(\{ f \in F(A) | | f(x) - f_0(x) | < \epsilon \})$$

$$= \{\pi | |(\pi(x)\alpha, \alpha) - (\pi_0(x)\alpha, \alpha)| < \epsilon \}.$$

Hence, w_{α} is continuous.

Our final task is to show w_{α} is open. By 2 and 3, we need only show that sets of the form

 $w_{\alpha}(\cap \{\rho | || \rho(x_i)\alpha - \pi(x_i)\alpha || < \epsilon\})$

and of the form

$$w_{\alpha}(\cap \{\rho | || \rho(x_i)\beta - \pi(x_i)\beta || < \epsilon\}),$$

where α is orthogonal to cl $\{\pi(x)\beta|x\in A\}$, are open in F(A). We treat the

latter case first. Let

 $O = \bigcap \{ \rho | || \rho(x_i)\beta - \pi(x_i)\beta || < \epsilon \}, \rho \in O,$

and $f \in F(A)$ such that π_f is quasi-equivalent to ρ . Let $\rho_0 = \pi_f \oplus \rho$ on $H_f \oplus H$. Then there is an isometric isomorphism U from $H_f \oplus H$ onto H such that $U(h_f \oplus O) = \alpha$ and $U(O \oplus \beta) = \beta$. Then $U\rho_0 U^{-1} \in O$ and $w_\alpha(U\rho_0 U^{-1}) = f$. Hence, $w_\alpha(O)$ is saturated. By 1, $w_\alpha(O) = w_\alpha(O^{\sim}) = w_\beta(O^{\sim})$. By [1, Proposition 4] and [3, Proposition 11], it now follows that $w_\alpha(O)$ is open in F(A). (We now assume

$$O = \bigcap \{ \rho | || \rho(x_i) \alpha - \pi(x_i) \alpha || < \epsilon \}$$

and observe that it is sufficient to replace O by an open set O' containing π , such that $w_{\alpha}(O') = w_{\alpha}(O' \cap O)$. We construct O'. By 4, there is a $\delta > 0$ and a unitary operator U on H such that $U\alpha = \alpha$ and if t is in

$$O' = \left(\bigcap_{i} \left\{ \rho | \left| \left(\rho(x_{i})\alpha, \alpha \right) - \left(\pi(x_{i})\alpha, \alpha \right) \right| < \delta \right\} \right) \cap \left(\bigcap_{i} \bigcap_{j} \left\{ \rho | \left| \left(\rho(x_{j}^{*}x_{i})\alpha, \alpha \right) - \left(\pi(x_{j}^{*}x_{i})\alpha, \alpha \right) \right| < \delta \right\} \right),$$

then UtU^{-1} is in O. Thus, O may be replaced by O' and $w_{\alpha}(O')$ is open in F(A). Our result then follows.

COROLLARY 6. Let A be a C*-algebra. Then the map $\pi \to [\pi]$ of $\operatorname{Fac}_{\infty}(A, H)$ onto the quasi-dual of A is continuous and open.

Proof. This map is the composition of the maps defined in 5 and [3, Proposition 11].

References

- K. Bichteler, A generalization to the non-separable case of Takesaki's duality theorem for C*-algebras, Invent. Math. 9 (1969), 89-98.
- J. Dixmier, Les C*-algebres et leurs representations, Cahiers Scientifiques, fasc. 29 (Gauthier Villars, Paris, 1969).
- 3. H. Halpern, Open projections and Borel structures for C*-algebras, Pacific J. Math. 50 (1974), 81-98.

University of Wisconsin, LaCrosse, Wisconsin

134