FAGTOR REPRESENTATIONS AND FAGTOR STATES ON A C^{*}-ALGEBRA

JAMES A. SCHOEN

Let A be a C^{*}-algebra and H a Hilbert space of large enough (infinite at least) dimension so that every π_{f}, where f is a factor state on A, can be unitarily represented on H. Let Fac (A, H) denote the set of all factor representations of A on H. If π is in Fac (A, H) we call its essential subspace the smallest, closed, vector subspace K of H such that $\pi(A)$ is null on $H \ominus K$. We define $\mathrm{Fac}_{\infty}(A, H)$ to be the set of elements in $\operatorname{Fac}(A, H)$ whose essential subspace is H. Equip $\mathrm{Fac}_{\infty}(A, H)$ with the topology of strong pointwise convergence, i.e., $\pi_{\nu} \rightarrow \pi$ if $\left\|\pi_{\nu}(x) \alpha-\pi(x) \alpha\right\| \rightarrow 0$ for all x in A and α in H. Bichteler [1, p. 90] shows that this topology is the same as that of weak convergence. What we show in this paper is that there is a continuous open surjection of $\operatorname{Fac}_{\infty}(A, H)$ with this strong topology onto the set of factor states, $F(A)$, of A with the weak topology. It then follows from [3, Proposition 11] that the map $\pi \rightarrow[\pi]$ is a continuous open surjection of $\mathrm{Fac}_{\infty}(A, H)$ onto the quasi-dual of A.

Let α be a unit vector in H and $F(A)$ denote the set of factor states on A. Define the map w_{α} from $\operatorname{Fac}_{\infty}(A, H)$ to $F(A)$ by

$$
\left(w_{\alpha}(\pi)\right)(x)=(\pi(x) \alpha, \alpha) .
$$

We note that for each π in $\mathrm{Fac}_{\infty}(A, H), w_{\alpha}(\pi)$ is a state and the representation ρ induced by $w_{\alpha}(\pi)$ is unitarily equivalent to π restricted to $\mathrm{cl}\{\pi(x) \alpha \mid x \in A\}$. Hence $w_{\alpha}(\pi)$ is in $F(A)$ and $\rho \in[\pi]$, where $[\pi]$ is the quasi-equivalence class of π.

Let X be a subset of $\mathrm{Fac}_{\infty}(A, H)$. Then X^{\sim} will denote

$$
\left\{\rho \in \operatorname{Fac}_{\infty}(A, H) \mid \rho \in[\pi], \pi \in X\right\} .
$$

Let Y be a subset of $F(A)$. Then Y^{\sim} will denote $\left\{g \in F(A) \mid \pi_{g} \in\left[\pi_{f}\right], f \in Y\right\}$. The following lemma is clear.

Lemma 1. Let B be a subset of $\operatorname{Fac}_{\infty}(A, H)$ and α and β unit vectors in H.
(a) $w_{\alpha}(B)^{\sim}=w_{\alpha}\left(B^{\sim}\right)$.
(b) If $B=B^{\sim}, w_{\alpha}(B)=w_{\beta}(B)$.

Let π be in $\mathrm{Fac}_{\infty}(A, H)$ and $h_{1}=\alpha$, where α is fixed unit vector. We define $\pi_{1}=\pi \mid H_{1}$, where $H_{1}=\mathrm{cl}\left\{\pi(x) h_{1} \mid x \in A\right\}$. Assume that for all ordinal numbers $\nu<\nu^{\prime}$ we have defined h_{ν} such that $h_{\nu} \in H \ominus \mathrm{cl} \cup H_{\mu}, \mu<\nu$, where $H_{\mu}=$

Received February 3, 1975.
$\operatorname{cl}\left\{\pi(x) h_{\mu} \mid x \in A\right\} ; H_{\nu}=\operatorname{cl}\left\{\pi(x) h_{\nu} \mid x \in A\right\} ;$ and $\pi_{\nu}=\pi \mid H_{\nu}$. If $\mathrm{cl} \cup H_{\nu}, \nu<\nu^{\prime}$, is not H, pick $h_{\nu^{\prime}}$ in $H \ominus \mathrm{cl} \cup H_{\nu}, \nu<\nu^{\prime}$. Let $\pi_{\nu^{\prime}}=\pi \mid H_{\nu^{\prime}}$, where $H_{\nu^{\prime}}=$ $\mathrm{cl}\left\{\pi(x) h_{\nu^{\prime}} \mid x \in A\right\}$. Then, by transfinite induction, we may write $\pi=\Sigma \oplus \pi_{\nu}$, $H=\mathrm{cl}\left(\Sigma \oplus H_{\nu}\right)$, and for each $\nu, H_{\nu}=\mathrm{cl}\left\{\pi(x) h_{\nu} \mid x \in A\right\}$.

Lemma 2. Using the notation above, sets of the form

$$
\bigcap_{i} \bigcap_{j}\left\{\rho \mid\left\|\rho\left(x_{i j}\right) h_{\nu_{i}}-\pi\left(x_{i j}\right) h_{\nu_{i}}\right\|<\epsilon\right\}
$$

is a neighborhood system for π.
Proof. It is sufficient to show that contained in a set of the form

$$
\{\rho \mid\|\rho(x) h-\pi(x) h\|<\epsilon\}
$$

is a set of the form $\cap_{i}\left\{\rho \mid\left\|\rho\left(x_{i}\right) h_{\nu_{i}}-\pi\left(x_{i}\right) h_{\nu_{i}}\right\|<\delta\right\}$. We may assume $x \neq 0$ and we can find a vector $\beta=\sum_{i} \pi\left(x_{i}\right) h_{\nu_{i}}$ such that $\|h-\beta\|<\epsilon /(3\|x\|)$. Then, by the triangle inequality, we have that

$$
\|\rho(x) h-\pi(x) h\|<2 \epsilon / 3+\|\rho(x) \beta-\pi(x) \beta\| .
$$

Since $H_{\nu_{i}}$ is orthogonal to $H_{\nu_{j}}$, for $i \neq j$, we can find a $\delta>0$ such that

$$
\begin{aligned}
& t \in \cap_{i}\left\{\rho \mid \| \rho\left(x_{i}\right) h_{\nu_{i}}\right. \\
& \left.\quad-\pi\left(x_{i}\right) h_{\nu_{i}} \|<\delta\right\} \cap \cap_{i}\left\{\rho \mid\left\|\rho\left(x x_{i}\right) h_{\nu_{i}}-\pi\left(x x_{i}\right) h_{\nu_{i}}\right\|<\delta\right\}
\end{aligned}
$$

implies that $\|t(x) \alpha-\pi(x) \alpha\|<\epsilon$.
Lemma 3. Let π be in $\operatorname{Fac}_{\infty}(A, H)$ and

$$
O=\bigcap_{i} \bigcap_{j}\left\{\rho \mid\left\|\rho\left(x_{i j}\right) h_{\nu_{i}}-\pi\left(x_{i j}\right) h_{\nu_{i}}\right\|<\epsilon\right\}
$$

where the $h_{\nu_{i}}$'s satisfy the conditions of 2 . Then

$$
w_{\alpha}(O)=\bigcap_{i} w_{\alpha}\left(\bigcap_{j}\left\{\rho \mid\left\|\rho\left(x_{i j}\right) h_{\nu_{i}}-\pi\left(x_{i j}\right) h_{\nu_{i}}\right\|<\epsilon\right\}\right) .
$$

Proof. The left side is obviously contained in the right. Let

$$
f \in \bigcap_{i} w_{\alpha}\left(\bigcap_{j}\left\{\rho \mid\left\|\rho\left(x_{i j}\right) h_{\nu_{i}}-\pi\left(x_{i j}\right) h_{\nu_{i}}\right\|<\epsilon\right\}\right) .
$$

This means that for each $i=1,2, \ldots, N$, there is a ρ_{i} such that

$$
\left\|\rho_{i}\left(x_{i j}\right) h_{\nu_{i}}-\pi\left(x_{i j}\right) h_{\nu_{i} i}\right\|<\epsilon
$$

for $j=1,2, \ldots, M$ and $w_{\alpha}\left(\rho_{i}\right)=f$. We may assume $h_{\nu_{1}}=\mu$. Let K_{i} be the finite dimensional Hilbert space generated by

$$
\left\{\pi\left(x_{i j}\right) h_{\nu_{i}} \mid j=1,2, \ldots, M\right\} \cup\left\{h_{\nu_{i}}\right\} .
$$

Then the K_{i} 's are mutually orthogonal. Let H_{N} be the direct sum of N copies of H. The subspace

$$
H_{N} \Theta\left(K_{1} \oplus K_{2} \oplus \ldots \oplus K_{N}\right)
$$

has dimension equal to that of H_{N} and so there is an isometric isomorphism of $H_{N} \ominus\left(K_{1} \oplus K_{2} \oplus \ldots \oplus K_{N}\right)$ onto $H \oplus\left(K_{1} \oplus K_{2} \oplus \ldots \oplus K_{N}\right)$. Thus there is an isometric isomorphism U of H_{N} onto H such that

$$
U\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right)=\xi_{1}+\xi_{2}+\ldots+\xi_{N} \text { for }\left(\xi_{1}, \xi_{2}, \ldots, \xi_{N}\right) \text { in } \Sigma \oplus K_{i} .
$$

Let ρ be the representation $U\left(\Sigma \oplus \rho_{i}\right) U^{-1}$ on H. Then ρ is in O and $w_{\alpha}(\rho)=f$.
The next lemma is a result that was pointed out to me by Herbert Halpern.
Lemma 4. Let H be a Hilbert space, let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ be vectors in H, and let $\epsilon>0$ be given. There is $a \delta>0$ such that for any vectors $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ in H with

$$
\left\|\alpha_{1}\right\|=\left\|\beta_{1}\right\| \text { and }\left|\left(\beta_{i}, \beta_{j}\right)-\left(\alpha_{i}, \alpha_{j}\right)\right|<\delta
$$

there is a unitary operator U on H with

$$
U \beta_{1}=\alpha_{1} \text { and }\left\|U \beta_{i}-\alpha_{i}\right\|<\epsilon .
$$

Proof. For $n=1$, there is a unitary U with $U \beta_{1}=\alpha_{1}$. Now suppose that for any set $\left\{\beta_{1, \delta}, \beta_{2, \delta}, \ldots, \beta_{n, \delta}\right\}$ of vectors in H, with

$$
\left\|\beta_{1, \delta}\right\|=\left\|\alpha_{1}\right\|=1 \text { and }\left(\beta_{i, \delta}, \beta_{j, \delta}\right) \rightarrow\left(\alpha_{i}, \alpha_{j}\right) \text { as } \delta \rightarrow 0
$$

the relation

$$
\lim _{\delta \rightarrow 0} \inf _{U\left(\beta_{1}, \delta, \alpha_{1}\right)}\left(\left\|U \beta_{1, \delta}-\alpha_{1}\right\|+\ldots+\left\|U \beta_{n, \delta}-\alpha_{n}\right\|\right)=0
$$

where $U\left(\beta_{1, \delta}, \alpha_{1}\right)$ is the set of unitary operators on H with $U \beta_{1, \delta}=\alpha_{1}$, holds.
Let $\left\{\beta_{1, \delta}, \beta_{2, \delta}, \ldots, \beta_{n+1, \delta}\right\}$ be vectors in H with

$$
\left\|\beta_{1, \delta}\right\|=\left\|\alpha_{1}\right\|=1 \text { and }\left(\beta_{i, \delta}, \beta_{j, \delta}\right) \rightarrow\left(\alpha_{i}, \alpha_{j}\right) \text { for } 1 \leqq i \leqq n+1
$$

We may find U_{δ} in $U\left(\beta_{1, \delta}, \alpha_{1}\right)$ such that

$$
\left\|U_{\delta} \beta_{1, \delta}-\alpha_{1}\right\|+\ldots+\left\|U_{\delta} \beta_{n, \delta}-\alpha_{n}\right\| \rightarrow 0 \text { as } \delta \rightarrow 0
$$

Let H^{\prime} be the space generated by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, let $H^{\prime \prime}=H \ominus H^{\prime}$, let P^{\prime} be the projection onto H^{\prime}, and $P^{\prime \prime}$ the projection onto $H^{\prime \prime}$. For $1 \leqq i \leqq n$, we have that

$$
\left|\left(P^{\prime} \alpha_{n+1}-P^{\prime} U_{\delta} \beta_{n+1, \delta}, \alpha_{i}\right)\right| \rightarrow 0 \text { as } \delta \rightarrow 0
$$

Thus, $P^{\prime} U_{\delta} \beta_{n+1, \delta} \rightarrow P^{\prime} \alpha_{n+1}$ in H^{\prime} since H^{\prime} is finite dimensional. Also,

$$
\left\|U_{\delta} \beta_{n+1, \delta}\right\|^{2}=\left\|\beta_{n+1, \delta}\right\|^{2} \rightarrow\left\|\alpha_{n+1}\right\|^{2}
$$

Thus,

$$
\left\|P^{\prime \prime} U_{\delta} \beta_{n+1, \delta}\right\|^{2}=\left\|\beta_{n+1, \delta}\right\|^{2}-\left\|P^{\prime} U_{\delta} \beta_{n+1, \delta}\right\|^{2}
$$

converges to

$$
\left\|\alpha_{n+1}\right\|^{2}-\left\|P^{\prime} \alpha_{n+1}\right\|^{2}=\left\|P^{\prime \prime} \alpha_{n+1}\right\|^{2}
$$

Then there is a unitary operator V_{δ} on H such that V_{δ} is the identity on H^{\prime} and

$$
V_{\delta} P^{\prime \prime} U_{\delta} \beta_{n+1, \delta} \rightarrow P^{\prime \prime} \alpha_{n+1}
$$

Thus, for $1 \leqq i \leqq n$,

$$
\left\|P^{\prime \prime} U_{\delta} \beta_{i, \delta}\right\| \rightarrow\left\|P^{\prime \prime} \alpha_{i}\right\|=0
$$

and so

$$
\left\|V_{\delta} U_{\delta} \beta_{i, \delta}-U_{\delta} \beta_{i, \delta}\right\| \rightarrow 0 .
$$

This means that $\left\|V_{\delta} U_{\delta} \beta_{i, \delta}-\alpha_{i}\right\|$ converges to zero. Also, $V_{\delta} U_{\delta} \beta_{1, \delta}=V_{\delta} \alpha_{1}=\alpha_{1}$. Furthermore,

$$
\begin{aligned}
\left\|V_{\delta} U_{\delta} \beta_{n+1, \delta}-\alpha_{n+1}\right\|^{2}=\left\|P^{\prime} U_{\delta} \beta_{n+1, \delta}-P^{\prime} \alpha_{n+1}\right\|^{2} & +\| V_{\delta} P^{\prime \prime} U_{\delta} \beta_{n+1, \delta} \\
& -P^{\prime \prime} \alpha_{n+1} \|^{2} \rightarrow 0 \text { as } \delta \rightarrow 0 .
\end{aligned}
$$

Hence, our result follows.
We are now ready for our major result.
Theorem 5. Let A be a C^{*}-algebra, H be a Hilbert space of large enough dimension (at least infinite) so that each factor representation induced by a factor state on A can be unitarily represented on H, and α be a fixed unit vector in H. Then the map, w_{α}, is a continuous open surjection from $\operatorname{Fac}_{\infty}(A, H)$ onto $F(A)$.

Proof. We first show that w_{α} is onto. Let f be in $F(A), \pi_{f}$ be the factor representation defined by f on the Hilbert space H_{f}, and h_{f} be in H_{f} such that $f(x)=\left(\pi_{f}(x) h_{f}, h_{f}\right)$. Let N be the cardinality of a maximal set of orthonormal vectors in H. We form the Hilbert space K by taking the direct sum of H_{f} with itself N times. Let $\left\{\beta_{\nu}\right\}_{\nu \in I}$ (resp. $\left\{\gamma_{\nu}\right\}_{\nu \in I}$) be a maximal set of orthonormal vectors in K (resp. H) such that $\beta_{1}=h_{f} \oplus O \oplus O \oplus \ldots\left(\right.$ resp. $\gamma_{1}=\alpha$). We define an isometric isomorphism U of K onto H by $U \beta_{\nu}=\gamma_{\nu}$ for each $\nu \in I$. Let π^{\prime} be the representation of A on K formed by taking $\Sigma \oplus \pi_{f}$. Let $\pi=$ $U \pi^{\prime} U^{-1}$. Then π is in $\operatorname{Fac}_{\infty}(A, H)$ and $w_{\alpha}(\pi)=f$. Hence w_{α} is onto.

Let $f_{0} \in F(A)$ and $\pi_{0} \in \operatorname{Fac}_{\infty}(A, H)$ such that $w_{\alpha}\left(\pi_{0}\right)=f_{0}$. Then

$$
\begin{aligned}
w_{\alpha}^{-1}\left(\left\{f \in F(A)| | f(x)-f_{0}(x) \mid<\epsilon\right\}\right) & \\
& =\left\{\pi| |(\pi(x) \alpha, \alpha)-\left(\pi_{0}(x) \alpha, \alpha\right) \mid<\epsilon\right\} .
\end{aligned}
$$

Hence, w_{α} is continuous.
Our final task is to show w_{α} is open. By 2 and 3 , we need only show that sets of the form

$$
w_{\alpha}\left(\cap\left\{\rho \mid\left\|\rho\left(x_{i}\right) \alpha-\pi\left(x_{i}\right) \alpha\right\|<\epsilon\right\}\right)
$$

and of the form

$$
w_{\alpha}\left(\cap\left\{\rho \mid\left\|\rho\left(x_{i}\right) \beta-\pi\left(x_{i}\right) \beta\right\|<\epsilon\right\}\right)
$$

where α is orthogonal to $\mathrm{cl}\{\pi(x) \beta \mid x \in A\}$, are open in $F(A)$. We treat the
latter case first. Let

$$
O=\cap\left\{\rho \mid\left\|\rho\left(x_{i}\right) \beta-\pi\left(x_{i}\right) \beta\right\|<\epsilon\right\}, \rho \in O
$$

and $f \in F(A)$ such that π_{f} is quasi-equivalent to ρ. Let $\rho_{0}=\pi_{f} \oplus \rho$ on $H_{f} \oplus H$. Then there is an isometric isomorphism U from $H_{f} \oplus H$ onto H such that $U\left(h_{f} \oplus O\right)=\alpha$ and $U(O \oplus \beta)=\beta$. Then $U \rho_{0} U^{-1} \in O$ and $w_{\alpha}\left(U \rho_{0} U^{-1}\right)=f$. Hence, $w_{\alpha}(O)$ is saturated. By $1, w_{\alpha}(O)=w_{\alpha}\left(O^{\sim}\right)=w_{\beta}\left(O^{\sim}\right)$. By [1, Proposition 4] and [3, Proposition 11], it now follows that $w_{\alpha}(O)$ is open in $F(A)$. (We now assume

$$
O=\cap\left\{\rho \mid\left\|\rho\left(x_{i}\right) \alpha-\pi\left(x_{i}\right) \alpha\right\|<\epsilon\right\}
$$

and observe that it is sufficient to replace O by an open set O^{\prime} containing π, such that $w_{\alpha}\left(O^{\prime}\right)=w_{\alpha}\left(O^{\prime} \cap O\right)$. We construct O^{\prime}. By 4 , there is a $\delta>0$ and a unitary operator U on H such that $U \alpha=\alpha$ and if t is in

$$
\begin{aligned}
O^{\prime}=\left(\bigcap_{i}\left\{\rho| |\left(\rho\left(x_{i}\right) \alpha, \alpha\right)-\left(\pi\left(x_{i}\right) \alpha, \alpha\right) \mid<\delta\right\}\right) \cap & \left(\bigcap _ { i } \bigcap _ { i } \left\{\rho| |\left(\rho\left(x_{j}^{*} x_{i}\right) \alpha, \alpha\right)\right.\right. \\
& \left.\left.-\left(\pi\left(x_{j}^{*} x_{i}\right) \alpha, \alpha\right) \mid<\delta\right\}\right)
\end{aligned}
$$

then $U t U^{-1}$ is in O. Thus, O may be replaced by O^{\prime} and $w_{\alpha}\left(O^{\prime}\right)$ is open in $F(A)$. Our result then follows.

Corollary 6. Let A be a C^{*}-algebra. Then the map $\pi \rightarrow[\pi]$ of $\operatorname{Fac}_{\infty}(A, H)$ onto the quasi-dual of A is continuous and open.

Proof. This map is the composition of the maps defined in 5 and [3, Proposition 11].

References

1. K. Bichteler, A generalization to the non-separable case of Takesaki's duality theorem for C^{*}-algebras, Invent. Math. 9 (1969), 89-98.
2. J. Dixmier, Les C^{*}-algebres et leurs representations, Cahiers Scientifiques, fasc. 29 (Gauthier Villars, Paris, 1969).
3. H. Halpern, Open projections and Borel structures for C*-algebras, Pacific J. Math. 50 (1974), 81-98.

University of Wisconsin,
LaCrosse, Wisconsin

