DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL 3-SPACE

N. D. LANE and F. A. SHERK

Introduction. This paper is a generalization of the classification of the differentiable points in the conformal plane given in (1). The main tools are the intersection and support properties of all the spheres through a differentiable point of an arc in conformal 3-space.

The discussion is also related to the classification (2) of the differentiable points of arcs in projective 4 -space, since conformal 3 -space can be represented on the surface of a 3 -sphere in projective 4 -space.

1. Pencils of spheres. In the following discussion, p, t, P, Q, and R will denote points of conformal space, while S and C will denote a sphere and a circle respectively. A sphere S decomposes the space into two open regions, its interior S and its exterior \dot{S}. If P is any fixed point which does not lie on S, the "interior" of S may be defined as the class of all points which do not lie on S and which are not separated from P by S. The exterior of S is then the class of points which are separated from P by S. The sphere through a proper circle C and a point $P \not \subset C$ will be denoted by $S(P ; C)$. Much of the following discussion will depend on the use of pencils π of spheres and circles, determined by certain incidence and tangency conditions. A circle (point) which is common to all the spheres (circles) of a pencil is called a fundamental circle (fundamental point) of the pencil. In the pencil π of spheres through a fundamental circle C, there exists one and only one sphere $S(P ; \pi)$ of π through any point P which does not lie on C. Similarly, in the pencil π of the spheres (circles) which touch a given sphere (circle) at a given point Q, there is one and only one sphere $S(P ; \pi)$ [circle $C(P ; \pi)$] of π which passes through any point $P \neq Q$. The fundamental point Q is regarded as a point-sphere (pointcircle) belonging to π.
2. Convergence. A sequence of points P_{1}, P_{2}, \ldots, is said to be convergent to P if to every sphere S with $P \subset S$, there corresponds a positive integer $N=N(S)$, such that $P_{\nu} \subset S$ if $\nu>N$. The convergence of spheres and circles to a point is defined in a similar fashion.

A sequence of spheres S_{1}, S_{2}, \ldots, is said to be convergent to S if to every pair of points $P \subset S$ and $Q \subset \dot{S}$, there corresponds a positive integer $N=N(P, Q)$, such that $P \subset S_{\nu}$ and $Q \subset \dot{S}_{\nu}$ for every $\nu>N$.

[^0]Finally a sequence of circles C_{ν} is said to be convergent to a circle C, if to every circle D which links with C, there corresponds a positive integer $N=N(D)$ such that C_{ν} links with D whenever ν is greater than N.
3. Arcs. An arc A is the continuous image of a real interval. If a sequence of points of this parameter interval converges to a point p, the corresponding sequence of image points is defined to be convergent to the image of p. The same small italics p, t, \ldots, will be used to denote both the points of the parameter interval and their images on A. The end-(interior-) points of A are the images of the end-(interior-) points of the parameter interval. A neighbourhood of p on A is the image of a neighbourhood of the parameter p on the parameter interval. If p is an interior point of A, this neighbourhood is decomposed by p into two (open) one-sided neighbourhoods. The images of distinct points of the parameter interval are considered to be different points of A, even though they may coincide in space. The notation $Q \neq P$ will indicate that the points Q and P do not coincide.
4. Differentiability. Let p be a fixed point of an arc A, and let t be a variable point of A. If P, Q, and p are mutually distinct points, the unique circle through these points will be denoted by $C\left(P, Q ; \gamma_{0}\right)$. The symbol γ_{0} itself will denote the family of all circles through p, including the pointcircle p.
A is called once-differentiable at p if the following condition Γ_{1} is satisfied:
Γ_{1} : If the parameter t is sufficiently close to, but different from, the parameter p, the circle $C\left(P, t ; \gamma_{0}\right)$ is uniquely defined, and converges if t tends to p.

Thus the limit circle, which will be denoted by $C\left(P ; \gamma_{1}\right)$, is independent of the way t converges to p. The family of all such circles, (i.e., the circles $C\left(P ; \gamma_{1}\right)$ for all points $\left.P \neq p\right)$, together with the point circle p, will be denoted by γ_{1}.
A is called twice-differentiable at p if, in addition to the condition Γ_{1}, the following condition is also satisfied:
Γ_{2} : If the parameter t is sufficiently close to, but different from, the parameter p, the circle $C\left(t ; \gamma_{1}\right)$ is uniquely defined, and converges if t tends to p.

The limit circle of the sequence $C\left(t ; \gamma_{1}\right)$ will be denoted by $C\left(\gamma_{2}\right)$, the osculating circle of A at p, and, occasionally, also by the symbol γ_{2} alone.
5. Structure of the families of circles through p. In this section, relations among the families of circles $\gamma_{0}, \gamma_{1}, \gamma_{2}$ are discussed.

Theorem 1. Suppose A satisfies condition Γ_{1} at p. Then t does not coincide with p if the parameter t is sufficiently close to, but different from, the parameter p.

Proof. Let P be any point different from p. By condition $\Gamma_{1}, C\left(P, t ; \gamma_{0}\right)$ is uniquely defined when the parameter t is close to, but different from, the parameter p. Thus $t \neq p$.

Theorem 2. Suppose A satisfies condition Γ_{1} at p. Then the angle at p between any two circles of γ_{1} is 0 .

Proof. Let P, Q, R_{1}, R_{2} be variable points, and let R_{1} and R_{2} converge to the same point R. Suppose there is a fixed sphere separating R from both P and Q. Then

$$
\begin{equation*}
\lim \angle\left[C\left(P, R_{1}, R_{2}\right), \quad C\left(Q, R_{1}, R_{2}\right)\right]=0 \tag{1}
\end{equation*}
$$

whether or not the circles themselves converge. In particular, the angle between $C\left(P ; \gamma_{1}\right)$ and $C\left(Q ; \gamma_{1}\right)$ is equal to 0 .

Corollary 1. If $C\left(P ; \gamma_{1}\right)$ and $C\left(Q ; \gamma_{1}\right)$ have another point in common, they are identical; thus there is one and only one circle of γ_{1} through each point $P \neq p$.

Corollary 2. $\quad \gamma_{1}$ consists of those circles C which meet a given circle of γ_{1} at p at the angle 0 . Thus the circles of γ_{1} all touch at p.

Proof. Let $P \subset C, P \neq p$. Suppose C meets some circle of γ_{1} at angle 0 at p. Then C and $C\left(P ; \gamma_{1}\right)$ also meet at angle 0 at p and have the point P in common. Hence they are identical.

Corollary 3. If Γ_{1} holds for a single point $P \neq p$, then it holds for all such points.

Proof. If $Q \neq p$, by (1)

$$
\lim \angle[C(Q, t, p), \quad C(P, t, p)]=0
$$

Thus $C\left(Q, t ; \gamma_{0}\right)$ converges to the unique circle through Q which touches $C\left(P ; \gamma_{1}\right)$ at p.

Theorem 3. Suppose A satisfies the conditions Γ_{1} and Γ_{2} at p. Then

$$
\begin{equation*}
\gamma_{0} \supset \gamma_{1} \supset \gamma_{2} \tag{2}
\end{equation*}
$$

Proof. It is clear that $\gamma_{0} \supset \gamma_{1}$. If $C\left(\gamma_{2}\right)=p$, it belongs to γ_{1} by definition. Suppose $C\left(\gamma_{2}\right) \neq p$. Then $C\left(\gamma_{2}\right)$, being the limit of a sequence of circles $C\left(t ; \gamma_{1}\right)$ each of which touches a given circle $C\left(P ; \gamma_{1}\right)$ of γ_{1}, must itself touch $C\left(P ; \gamma_{1}\right)$ at p. Thus $C\left(\gamma_{2}\right) \in \gamma_{1}$ (cf. Theorem 2, Corollary 2.)

Corollary. If $P \subset C\left(\gamma_{2}\right), P \neq p$, then $C\left(\gamma_{2}\right)=C\left(P ; \gamma_{1}\right)$.
The conditions Γ_{1} and Γ_{2} are independent. For example, suppose a rectangular cartesian coordinate system is introduced and the arc

$$
x=t, y=t^{2}, z=\left\{\begin{array}{cc}
\left(1-\sqrt{1-t^{2}-t^{4}}\right) \sin t^{-1}, & 0<|t| \leqslant \frac{1}{2} \\
0 \quad, & t=0
\end{array}\right.
$$

is considered. Γ_{1} is satisfied at $t=0$, but Γ_{2} is not satisfied there.
6. Differentiable points of arcs. In addition to the conditions Γ_{1} and Γ_{2}, three more conditions involving spheres are introduced. Suppose P, Q,
and R are any three fixed points such that P, Q, R, and p do not lie on the same circle. It will be convenient to denote the unique sphere through p and the points P, Q, and R by the symbol $S\left(P, Q, R ; \sigma_{0}\right)$. σ_{0} will denote the family of all spheres through p, including the point-sphere p.
A is called thrice-differentiable at p if the following three conditions are satisfied:
Σ_{1} : The sphere $S\left(P, Q, t ; \sigma_{0}\right)$ is uniquely defined when the parameter t is sufficiently close to, but different from, the parameter p, and converges, if t tends to p, to a limit sphere which will be denoted by $S\left(P, Q ; \sigma_{1}\right)$.
Σ_{2} : The sphere $S\left(P, t ; \sigma_{1}\right)$ is uniquely defined when the parameter t is sufficiently close to, but different from, the parameter p, and converges, if t tends to p, to a limit sphere which will be denoted by $S\left(P ; \sigma_{2}\right)$.
Σ_{3} : The sphere $S\left(t ; \sigma_{2}\right)$ is uniquely defined when the parameter t is sufficiently close to, but different from, the parameter p, and converges, if t tends to p, to a limit sphere which will be denoted by $S\left(\sigma_{3}\right)$.

The families of all the spheres $S\left(P, Q ; \sigma_{1}\right)$, (i.e., the spheres $S\left(P, Q ; \sigma_{1}\right)$ for all pairs of points P and Q such that $P \neq Q$ and $P, Q \neq p)$, together with the point-sphere p, will be denoted by σ_{1}. Similarly, the family of all the spheres $S\left(P ; \sigma_{2}\right)$ (including the point-sphere p if $C\left(\gamma_{2}\right)=p$) will be denoted by σ_{2}. The unique osculating sphere $S\left(\sigma_{3}\right)$ will occasionally be denoted by σ_{3} alone.

The point p is called a differentiable point of A if A is thrice-differentiable at p.
7. Structure of the families of spheres through p. Although the conditions Γ_{1} and Γ_{2} are independent, not all the conditions $\Gamma_{1}, \Gamma_{2}, \Sigma_{1}, \Sigma_{2}$, and Σ_{3} are independent. In addition, the families of spheres $\sigma_{0}, \sigma_{1}, \sigma_{2}$, and σ_{3} are closely connected with the families of circles γ_{0}, γ_{1}, and γ_{2}.

Theorem 4. Suppose A satisfies condition Σ_{1} at p. Let C be any fuxed circle . Then $t \not \subset C$ if the parameter t is sufficiently close to, but different from, the parameter p.

Proof. The assertion is clearly true if $p \not \subset C$. Suppose $p \subset C$, and let P, Q, p be mutually distinct points on C. By condition $\Sigma_{1}, S\left(P, Q, t ; \sigma_{0}\right)$ is defined when t is sufficiently close to p. Thus $t \not \subset C(P, Q, p)=C$.

The following example shows that Γ_{1} does not imply Σ_{1} in general (cf., however, Theorem 5). Consider the arc

$$
x=t, y=\left\{\begin{array}{ll}
t^{2} \cos t^{-1}, & 0<|t| \leqslant 1 \\
0 & , t=0
\end{array}, z= \begin{cases}t^{2} \sin t^{-1}, & 0<|t| \leqslant 1 \\
0 & , t=0\end{cases}\right.
$$

in the neighbourhood of $t=0$. If $P=\infty, Q=(1,0,0)$, and $p=(0,0,0)$, the sphere $S\left(P, Q, t ; \sigma_{0}\right)$ does not converge, while, e.g., $C\left(P, t ; \gamma_{0}\right)$ converges to the x-axis and by Theorem 2, Corollary $3, \Gamma_{1}$ is satisfied.

Theorem 5. If A satisfies Σ_{1} at p, then Γ_{1} holds there and

$$
\begin{equation*}
C\left(Q ; \gamma_{1}\right)=\bigcap_{P \neq Q, p} S\left(P, Q ; \sigma_{1}\right) . \tag{3}
\end{equation*}
$$

Conversely, let A satisfy Γ_{1} at p. Then Σ_{1} holds at p for all pairs P, Q such that $P \not \subset C\left(Q ; \gamma_{1}\right)$, and $S\left(P, Q ; \sigma_{1}\right)=S\left[P ; C\left(Q ; \gamma_{1}\right)\right]$.

Proof. Suppose Σ_{1} holds at p. Theorem 4 implies that $t \neq p$ if t is close to p. Let $Q \neq p$. Since $C\left(Q, t ; \gamma_{0}\right) \subset S\left(P, Q, t ; \sigma_{0}\right)$, any limit circle of $C\left(Q, t ; \gamma_{0}\right)$ lies on $S\left(P, Q ; \sigma_{1}\right)$ for every choice of $P \neq Q, p$. Thus if $P_{1} \not \subset S\left(P_{2}, Q ; \sigma_{1}\right)$, any limit circle of $C\left(Q, t ; \gamma_{0}\right)$ lies on $S\left(P_{1}, Q ; \sigma_{1}\right) \cap S\left(P_{2}, Q ; \sigma_{1}\right)$ and is therefore uniquely determined. Hence $C\left(Q, t ; \gamma_{0}\right)$ converges and we have

$$
C\left(Q ; \gamma_{1}\right)=\bigcap_{P \neq Q \cdot p} S\left(P, Q ; \sigma_{1}\right) .
$$

Conversely, suppose that Γ_{1} holds. If $P \not \subset C\left(Q ; \gamma_{1}\right)$, then $P \not \subset C\left(Q, t ; \gamma_{0}\right)$ when t is sufficiently close to p and

$$
\begin{equation*}
S\left[P ; C\left(Q ; \gamma_{1}\right)\right]=\lim _{t \rightarrow p} S\left[P ; C\left(Q, t ; \gamma_{0}\right)\right]=\lim _{t \rightarrow p} S\left(P, Q, t ; \sigma_{0}\right) . \tag{4}
\end{equation*}
$$

Thus for all pairs of points P and Q such that $P \not \subset C\left(Q ; \gamma_{1}\right), S\left(P, Q, t ; \sigma_{0}\right)$ converges, Σ_{1} is satisfied, and $S\left(P, Q ; \sigma_{1}\right)$ is the sphere through P and $C\left(Q ; \gamma_{1}\right)$.

Corollary. There is only one sphere of σ_{1} which contains two points not on the same circle of γ_{1}.

Remark. Condition Γ_{1} is still satisfied when Σ_{1} is replaced by a weaker assumption:

Suppose $S^{\prime}{ }_{1}=S\left(P_{1}, Q_{1}, t ; \sigma_{0}\right) \rightarrow S_{1}, S^{\prime}{ }_{2}=S\left(P_{2}, Q_{2}, t ; \sigma_{0}\right) \rightarrow S_{2}$, and suppose further that $S_{1} \cap S_{2}=C \neq p$. Then Γ_{1} holds at p. For, let $S^{\prime}{ }_{1} \cap S^{\prime}{ }_{2}=C^{\prime}$. Then $C^{\prime} \rightarrow C$ and $C^{\prime} \supset p$ and t. As in equation (1), $\lim \angle\left[C\left(P_{1}, t ; \gamma_{0}\right), C^{\prime}\right]=0$. Thus $C\left(P_{1}, t ; \gamma_{0}\right)$ converges to the unique circle through P_{1} which touches C at p. By Theorem 2 , Corollary $3, \Gamma_{1}$ holds at p.

If, however, $S_{1} \cap S_{2}=p, \Gamma_{1}$ need not hold; e.g., take $P_{1}=\infty, Q_{1}=(1,0,0)$, $P_{2}=(0,0,2), Q_{2}=(1,0,1), p=(0,0,0)$, and let A be the arc,

$$
x=\left\{\begin{array}{ll}
t \sin t^{-1}, & 0<|t| \leqslant 1 \\
0, & t=0
\end{array}, y=t, z=t^{2} .\right.
$$

$S^{\prime}{ }_{1}$ converges to the $x y$-plane, $S^{\prime}{ }_{2}$ converges to the sphere $x^{2}+y^{2}+z^{2}-2 z=0$, but Γ_{1} does not hold.

Theorem 6. Suppose Σ_{1} holds at p. Choose $C \in \gamma_{1}, C \neq p$. Then σ_{1} is the set of all spheres which touch C at p.

Proof. Suppose a sphere $S\left(P, Q ; \sigma_{1}\right)$ of σ_{1} meets C in a point $R \neq p$. If $R \subset C\left(Q ; \gamma_{1}\right)$, by Theorem 5 and Theorem 2, Corollary 1,

$$
S\left(P, Q ; \sigma_{1}\right) \supset C\left(Q ; \gamma_{1}\right)=C
$$

while if $R \not \subset C\left(Q ; \gamma_{1}\right)$,

$$
\begin{aligned}
S\left(P, Q ; \sigma_{1}\right) & =S\left[R ; C\left(Q ; \gamma_{1}\right)\right]=S\left(R, Q ; \sigma_{1}\right) \\
& =S\left[Q ; C\left(R ; \gamma_{1}\right)\right]=S(Q ; C) \supset C .
\end{aligned}
$$

Conversely, suppose a sphere S touches C at p. If $S \supset C$, then $S \in \sigma_{1}$ (Theorem 5). If $S \cap C=p$, choose a point $Q \subset S, Q \neq p$. Let $C_{0}=S(Q ; C) \cap$ S. Then C_{0} touches C at p. By Theorem 2, Corollary $2, C_{0} \in \gamma_{1}$. Since $S \supset C_{0}$ and $C_{0} \in \gamma_{1}$, it follows from Theorem 5 that $S \in \sigma_{1}$.

Theorem 7. If A satisfies Σ_{1} and Σ_{2} at p, then Γ_{1} and Γ_{2} will also hold at p, and equations (3) and

$$
\begin{equation*}
C\left(\gamma_{2}\right)=\bigcap_{P \neq p} S\left(P ; \sigma_{2}\right) \tag{5}
\end{equation*}
$$

will be satisfied there. Conversely, let A satisfy Γ_{1} and Γ_{2} at p and let $C\left(\gamma_{2}\right) \neq p$. If $P \not \subset C\left(\gamma_{2}\right)$, then Σ_{2} will hold at p for P, and $S\left(P ; \sigma_{2}\right)$ will be the sphere through P and $C\left(\gamma_{2}\right)$.

Proof. Suppose Σ_{1} and Σ_{2} hold at p. In view of Theorem 5 , we have only to show that Σ_{2} implies Γ_{2}, and that (5) holds. If t is close to p, (3) implies that $C\left(t ; \gamma_{1}\right) \subset S\left(P, t ; \sigma_{1}\right)$ for every point $P \neq p$. Hence any limit circle of $C\left(t ; \gamma_{1}\right)$ lies on $S\left(P ; \sigma_{2}\right)$. Thus if $P_{1} \not \subset S\left(P_{2} ; \sigma_{2}\right)$ this limit circle lies on $S\left(P_{1} ; \sigma_{2}\right)$ $\cap S\left(P_{2} ; \sigma_{2}\right)$ and is therefore uniquely determined. Hence $C\left(t ; \gamma_{1}\right)$ converges, and

$$
C\left(\gamma_{2}\right)=\bigcap_{P \neq p} S\left(P ; \sigma_{2}\right) .
$$

Thus Σ_{2} implies Γ_{2} and (5) holds.
Conversely, suppose that Γ_{1} and Γ_{2} hold and $C\left(\gamma_{2}\right) \neq p$. If $P \not \subset C\left(\gamma_{2}\right)$, then $P \not \subset C\left(t ; \gamma_{1}\right)$ when t is sufficiently close to p, and by Theorem 5 ,

$$
S\left[P ; C\left(\gamma_{2}\right)\right]=\lim _{t \rightarrow p} S\left[P ; C\left(t ; \gamma_{1}\right)\right]=\lim _{t \rightarrow p} S\left(P, t ; \sigma_{1}\right) .
$$

Hence $S\left(P, t ; \sigma_{1}\right)$ exists and converges. Thus $S\left(P ; \sigma_{2}\right)=S\left[P ; C\left(\gamma_{2}\right)\right]$.
Corollary 1. If A satisfies $\Sigma_{1}\left(\Sigma_{1}\right.$ and $\left.\Sigma_{2}\right)$ at p, then A is once-(twice-) differentiable there.

In particular, this implies
Corollary 2. If p is a differentiable point of A, then Γ_{1} and Γ_{2} hold there.
Corollary 3. $S\left(\sigma_{3}\right) \supset C\left(\gamma_{2}\right)$.
Proof. By (5),

$$
S\left(t ; \sigma_{2}\right) \supset \bigcap_{P \neq p} S\left(P ; \sigma_{2}\right)=C\left(\gamma_{2}\right)
$$

Hence $S\left(\sigma_{3}\right) \supset C\left(\gamma_{2}\right)$.
This implies

Corollary 4. If $S\left(\sigma_{3}\right)=p$, then $C\left(\gamma_{2}\right)=p$.
Corollary 5. If $C\left(\gamma_{2}\right) \neq p, \sigma_{2}$ consists of the spheres through $C\left(\gamma_{2}\right)$.
The conditions Γ_{1} and Γ_{2} by themselves do not imply Σ_{1} in general, whether or not $C\left(\gamma_{2}\right)=p$. Consider, for example, the arc

$$
x=t, y=\left\{\begin{array}{ll}
t^{3} \sin t^{-1}, & 0<|t| \leqslant 1 \\
0 & , t=0
\end{array}, z= \begin{cases}t^{3} \cos t^{-1}, & 0<|t| \leqslant 1 \\
0 & , t=0\end{cases}\right.
$$

which satisfies Γ_{1} and Γ_{2} at $t=0, C\left(\gamma_{2}\right)$ being the x-axis. When $P=\infty$, $Q=(1,0,0)$, the sphere $S\left(P, Q, t ; \sigma_{0}\right)$ is a plane through the x-axis, and this plane does not converge when $t \rightarrow 0$. Thus Σ_{1} is not satisfied.

Condition Σ_{1} is a very strong one for it implies not only Γ_{1}, but, as the following theorems show, Σ_{2} and Γ_{2} as well, and even Σ_{3} in the case $C\left(\gamma_{2}\right) \neq p$.

Theorem 8. Suppose A satisfies Σ_{1} at p. Then A also satisfies Σ_{2} at p.
Proof. Let P be any point $\neq p$. Theorem 4 implies that t does not lie on $C\left(P ; \gamma_{1}\right)$ if t is close to p. Hence by Theorem $5, S\left(P, t ; \sigma_{1}\right)=S\left[t ; C\left(P ; \gamma_{1}\right)\right]$. Let $Q \subset C\left(P ; \gamma_{1}\right), Q \neq P, p$. Then $C\left(P ; \gamma_{1}\right)=C\left(P, Q ; \gamma_{0}\right)$. Thus $S\left(P, t ; \sigma_{1}\right)=$ $S\left[t ; C\left(P, Q ; \gamma_{0}\right)\right]=S\left(P, Q, t ; \sigma_{0}\right)$, and Σ_{1} now implies that

$$
\begin{equation*}
\lim _{t \rightarrow p} S\left(P, t ; \sigma_{1}\right)=S\left(P, Q ; \sigma_{1}\right) . \tag{6}
\end{equation*}
$$

Since $S\left(P ; \sigma_{2}\right)$ exists for each point $P \neq p, \Sigma_{2}$ is satisfied.
Corollary 1. If A satisfies Σ_{1} at p, it also satisfies Γ_{2} there.
Proof. By Theorem 7, condition Σ_{2} implies Γ_{2}.
Corollary 2. If A satisfies Σ_{1} at p, p is a differentiable point of A if and only if $S\left(t ; \sigma_{2}\right)$ converges when t tends to p.

Relation (6) implies
Corollary 3. $S\left(P ; \sigma_{2}\right) \in \sigma_{1}$.
Theorem 9. Suppose A satisfies Σ_{1} (and hence Σ_{2}, Γ_{1}, and Γ_{2}) at p, and suppose $C\left(\gamma_{2}\right) \neq p$. Then A also satisfies Σ_{3} at p.

Proof. If t is close to but different from $p, S\left(t ; \sigma_{2}\right)$ is defined. By Theorem $4, t \not \subset C\left(\gamma_{2}\right)$, and by Theorem $7, S\left(t ; \sigma_{2}\right)=S\left[t ; C\left(\gamma_{2}\right)\right]$. Let $P \subset C\left(\gamma_{2}\right), P \neq p$. Then by the corollary of Theorem 3, C(γ_{2}) $=C\left(P ; \gamma_{1}\right)$ and hence $S\left(t ; \sigma_{2}\right)=$ $S\left[t ; C\left(P, \gamma_{1}\right)\right]=S\left(P, t ; \sigma_{1}\right) . \Sigma_{2}$ now implies that

$$
\begin{equation*}
\lim _{t \rightarrow p} S\left(t ; \sigma_{2}\right)=\lim _{t \rightarrow p} S\left(P, t ; \sigma_{1}\right)=S\left(P ; \sigma_{2}\right) \tag{7}
\end{equation*}
$$

Thus $S\left(t ; \sigma_{2}\right)$ converges and Σ_{3} holds.
Corollary. If A satisfies condition Σ_{1} at p and if $C\left(\gamma_{2}\right) \neq p$, then p is a differentiable point of A.

The following example shows that p need not be a differentiable point of A when Σ_{1} is satisfied and $C\left(\gamma_{2}\right)=p$. Consider the arc defined by

$$
x=t^{2}, y=t^{3}, z= \begin{cases}t^{4} \sin t^{-1}, & 0<|t| \leqslant 1 \\ 0 & , t=0\end{cases}
$$

It can readily be verified that A satisfies Σ_{1} at $t=0$, and that the spheres of σ_{2} touch the $x y$-plane at the origin. Thus $C\left(\gamma_{2}\right)$ is a point circle. However, as t tends to $0, S\left(t ; \sigma_{2}\right)$ oscillates and $x^{2}+y^{2}+z^{2} \pm z=0$ are two accumulation spheres of the sequence $S\left(t ; \sigma_{2}\right)$. Thus Σ_{3} does not hold at $t=0$.

Theorem 10. Let Σ_{1} hold at p, and let $C\left(\gamma_{2}\right)=p$. Then σ_{2} is the set of spheres which touch a given sphere of σ_{2} at p.

Proof. Let P and Q be variable points and let C be a variable circle converging to a fixed point. Suppose there is a fixed sphere which separates this point from P and Q. Then

$$
\lim \angle[S(P ; C), S(Q ; C)]=0
$$

whether or not the spheres $S(P ; C)$ and $S(Q ; C)$ themselves converge. In particular, let P and Q be fixed points $\neq p$ and let $C=C\left(t ; \gamma_{1}\right) \rightarrow p$, as $t \rightarrow p$, $t \subset A, t \neq p$. Then

$$
\begin{equation*}
\angle\left[S\left(P ; \sigma_{2}\right), S\left(Q ; \sigma_{2}\right)\right]=\lim _{t \rightarrow p} \angle\left[S\left(P, t ; \sigma_{1}\right), S\left(Q, t ; \sigma_{1}\right)\right]=0 . \tag{8}
\end{equation*}
$$

Hence any two spheres of σ_{2} touch at p.
Conversely, let S be a sphere which touches $S\left(P ; \sigma_{2}\right)$. Choose a point $Q \subset S, Q \neq p$. Then $S\left(Q ; \sigma_{2}\right)$ also touches $S\left(P ; \sigma_{2}\right)$ at p and $S\left(Q ; \sigma_{2}\right)=S$. Thus $S \in \sigma_{2}$.

Corollary 1. σ_{2} is the family of spheres, the intersection of any two of which is $C\left(\gamma_{2}\right)$ (cf. Theorem 7, Corollary 5).

Corollary 2. There is one and only one sphere of σ_{2} through each point $\not \subset C\left(\gamma_{2}\right)$; that is, if $Q \subset S\left(P ; \sigma_{2}\right), Q \not \subset C\left(\gamma_{2}\right)$, then $S\left(P ; \sigma_{2}\right)=S\left(Q ; \sigma_{2}\right)$.

Theorem 11. If p is a differentiable point of A, then

$$
\begin{equation*}
\sigma_{0} \supset \sigma_{1} \supset \sigma_{2} \supset \sigma_{3} \tag{9}
\end{equation*}
$$

Proof. Evidently $\sigma_{0} \supset \sigma_{1}$. Theorem 8, Corollary 3 shows that $\sigma_{1} \supset \sigma_{2}$. This can also be seen as follows:

Let $P \neq p$. By Theorem 6 , any sphere $S\left(P ; \sigma_{2}\right)$ of σ_{2} is the limit of a sequence of spheres $S\left(P, t ; \sigma_{1}\right)$ each of which touches a proper circle $C \in \gamma_{1}$ at p. Thus $S\left(P ; \sigma_{2}\right)$ also touches C at p, and $S\left(P ; \sigma_{2}\right) \in \sigma_{1}$.

Let $C\left(\gamma_{2}\right) \neq p$. By Theorem 7, Corollary $5, \sigma_{2}$ is the set of all the spheres through $C\left(\gamma_{2}\right)$. Hence $S\left(\sigma_{3}\right)$, being the limit of a sequence of spheres through $C\left(\gamma_{2}\right)$, is itself a sphere through $C\left(\gamma_{2}\right)$, and thus a sphere of σ_{2}. Relation (7) also implies that $\sigma_{2} \supset \sigma_{3}$ when $C\left(\gamma_{2}\right) \neq p$.

Suppose $C\left(\gamma_{2}\right)=p$. By Theorem 10, σ_{2} is the set of all the spheres which touch a given sphere $\neq p$ of σ_{2} at p. Hence $S\left(\sigma_{3}\right)$, being the limit of a sequence of such tangent spheres, is itself a sphere of σ_{2}.

This section can be summarized by the following remark:
Let p be a differentiable point of an $\operatorname{arc} A$. Let $P \neq p$. In addition, if $S\left(\sigma_{3}\right) \neq p, \operatorname{let} P \subset S\left(\sigma_{3}\right)$.
Let

$$
C=\left\{\begin{array}{l}
C\left(\gamma_{2}\right) \text { if } C\left(\gamma_{2}\right) \neq p \\
C\left(P ; \gamma_{1}\right) \text { if } C\left(\gamma_{2}\right)=p
\end{array}, S=\left\{\begin{array}{l}
S\left(\sigma_{3}\right) \text { if } S\left(\sigma_{3}\right) \neq p \\
S\left(P ; \sigma_{2}\right) \text { if } S\left(\sigma_{3}\right)=p
\end{array}\right.\right.
$$

Then $C \subset S$, and the structures of γ_{1}, σ_{1}, and σ_{2} are completely determined by C and S.
8. Support and intersection. Let p be an interior point of an arc A. Then we call p a point of support (intersection) with respect to a sphere S, if a sufficiently small neighbourhood of p is decomposed by p into two one-sided neighbourhoods which lie in the same region (in different regions) bounded by $S . S$ is then called a supporting (intersecting) sphere of A at p. Thus S supports A at p if $p \not \subset S$. By definition, the point-sphere p always supports A at p.

It is possible for a sphere to have points $\neq p$ in common with every neighbourhood of p on A (cf., e.g., equation II, §10). In this case S neither supports nor intersects A at p.
9. Intersection and support properties of the families $\sigma_{0}-\sigma_{1}$, $\sigma_{1}-\sigma_{2}$, and $\sigma_{2}-\sigma_{3}$. Throughout the remainder of the paper, the point p is assumed to be a differentiable interior point of A.

Theorem 12. Every sphere $\neq S\left(\sigma_{3}\right)$ either supports or intersects A at p.
Proof. If a sphere S neither supports nor intersects A at p, then $p \subset S$ and there exists a sequence of points $t \rightarrow p, t \subset A \cap S, t \neq p$. We may assume that conditions Σ_{1}, Σ_{2}, and Σ_{3} hold for this sequence. Choose points P and Q on S such that P, Q, and p are mutually distinct. Then condition Σ_{1} implies $S=S\left(P, Q, t ; \sigma_{0}\right)$ for each t, and hence $S=S\left(P, Q ; \sigma_{1}\right)$.

By Theorem $5, S=S\left(P, Q ; \sigma_{1}\right) \supset C\left(P ; \gamma_{1}\right)$. By Theorem 4, $t \not \subset C\left(P ; \gamma_{1}\right)$ and again by Theorem $5, S=S\left[t ; C\left(P ; \gamma_{1}\right)\right]=S\left(P, t ; \sigma_{1}\right)$. Condition Σ_{2} now implies that $S=S\left(P ; \sigma_{2}\right)$.

Finally, by Theorem 7, $S \supset C\left(\gamma_{2}\right)$, and by Theorem $4, t \not \subset C\left(\gamma_{2}\right)$. If $C\left(\gamma_{2}\right) \neq$ p, Theorem 7 implies that $S=S\left[t ; C\left(\gamma_{2}\right)\right]=S\left(t ; \sigma_{2}\right)$, while if $C\left(\gamma_{2}\right)=p$, Theorem 10 implies that $S=S\left(t ; \sigma_{2}\right)$. Applying the condition Σ_{3}, we are led to the conclusion $S=S\left(\sigma_{3}\right)$.

Theorem 13. If $S\left(\sigma_{3}\right)=p$, then the spheres of $\sigma_{2}-\sigma_{3}$ all intersect A at p, or they all support.

Proof. Let S^{\prime} and $S^{\prime \prime}$ be two distinct spheres of $\sigma_{2}-\sigma_{3}$. Since $S\left(\sigma_{3}\right)=p$, Theorem 7, Corollary 4 implies that $C\left(\gamma_{2}\right)=p$, and Theorem 10 implies
that S^{\prime} and $S^{\prime \prime}$ touch at p. Thus we may assume that $S^{\prime \prime} \subset\left(p \cup \dot{S}^{\prime}\right)$ and $S^{\prime} \subset\left(p \cup S^{\prime \prime}\right)$. Suppose now, for example, that S^{\prime} supports A at p while $S^{\prime \prime}$ intersects. Then $A \cap \dot{S}^{\prime \prime}$ is not void and hence we may assume $A \subset\left(p \cup \dot{S}^{\prime}\right)$. Let $t \rightarrow p$ in $A \cap S^{\prime \prime}$; thus $t \subset S^{\prime \prime} \cap \dot{S}^{\prime}$. Hence $S\left(t ; \sigma_{2}\right) \subset\left(S^{\prime \prime} \cap \dot{S}^{\prime}\right) \cup p$. Consequently $S\left(t ; \sigma_{2}\right)$ cannot converge to $S\left(\sigma_{3}\right)=p$ as $t \rightarrow p$. Thus S^{\prime} and $S^{\prime \prime}$ must both support or both intersect A at p.

Theorem 14. If $S\left(\sigma_{3}\right) \neq p$ and $C\left(\gamma_{2}\right)=p$, then every sphere of $\sigma_{2}-\sigma_{3}$ supports A atp.

Proof. Suppose $C\left(\gamma_{2}\right)=p$, so that the spheres of σ_{2} all touch at p (Theorem 10). Let $S \in \sigma_{2}, S \neq S\left(\sigma_{3}\right), S \neq p$. If a sequence of points t exists such that $t \subset A \cap \dot{S}, t \rightarrow p$, then each $S\left(t ; \sigma_{2}\right)$ lies in the closure of \dot{S}. Hence $S\left(\sigma_{3}\right)$ will lie in the same domain, and therefore even in $p \cup \dot{S}$. Similarly, the existence of a sequence $t^{\prime} \subset S \cap A, t^{\prime} \rightarrow p$, implies that $S\left(\sigma_{3}\right) \subset p \cup S S$. Thus if S intersects A at $p, S\left(\sigma_{3}\right) \subset(p \cup \dot{S}) \cap(p \cup S)=p$; in other words, $S\left(\sigma_{3}\right)=p$.

Theorem 15. All the spheres of $\sigma_{0}-\sigma_{1}\left(\sigma_{1}-\sigma_{2} ; \sigma_{2}-\sigma_{3}\right)$ support A at p, or they all intersect.

Proof. Let S^{\prime} and $S^{\prime \prime}$ be two distinct spheres of $\sigma_{0}-\sigma_{1}\left(\sigma_{1}-\sigma_{2} ; \sigma_{2}-\sigma_{3}\right)$. Suppose, for the moment, that the intersection $S^{\prime} \cap S^{\prime \prime}$ is a proper circle $C_{0}=C\left(P, Q ; \gamma_{0}\right)\left[C_{1}=C\left(P ; \gamma_{1}\right) ; C_{2}=C\left(\gamma_{2}\right)\right]$ (cf. equations (3) and (5)). Suppose, for example, that S^{\prime} intersects while $S^{\prime \prime}$ supports A at p. With no loss in generality, we may assume that $A \subset \dot{S}^{\prime \prime} \cup p$. Thus $A \cap S^{\prime}$ and $A \cap \dot{S}^{\prime}$ are not void. If $t \subset A \cap S^{\prime}$, by Theorems 4, 5, and $7, S\left(P, Q, t ; \sigma_{0}\right)=$ $S\left(t ; C_{0}\right)\left[S\left(P, t ; \sigma_{1}\right)=S\left(t ; C_{1}\right) ; S\left(t ; \sigma_{2}\right)=S\left(t ; C_{2}\right)\right]$ lies in the closure of

$$
\left(\underline{S}^{\prime} \cap \dot{S}^{\prime \prime}\right) \cup\left(\dot{S}^{\prime} \cap S^{\prime \prime}\right) .
$$

Letting $t \rightarrow p$ on A, we conclude that $S\left(P, Q ; \sigma_{1}\right)\left[S\left(P ; \sigma_{2}\right) ; S\left(\sigma_{3}\right)\right]$ lies in the same closed domain. By letting t^{\prime} converge to p through $\dot{S}^{\prime} \cap A$, we obtain symmetrically that $S\left(P, Q ; \sigma_{1}\right)\left[S\left(P ; \sigma_{2}\right) ; S\left(\sigma_{3}\right)\right]$ also lies in the closure of

$$
\left(S^{\prime} \cap S^{\prime \prime}\right) \cup\left(\dot{S}^{\prime} \cap \dot{S}^{\prime \prime}\right)
$$

Hence $S\left(P, Q ; \sigma_{1}\right)\left[S\left(P ; \sigma_{2}\right) ; S\left(\sigma_{3}\right)\right]$ lies in the intersection $S^{\prime} \cup S^{\prime \prime}$ of these two domains, i.e., $S\left(P, Q ; \sigma_{1}\right)\left[S\left(P ; \sigma_{2}\right) ; S\left(\sigma_{3}\right)\right]$ is either S^{\prime} or $S^{\prime \prime}$, contrary to our assumptions. Thus S^{\prime} and $S^{\prime \prime}$ both support or they both intersect in this case.

Suppose now that $S^{\prime} \cap S^{\prime \prime}=p$. In view of Theorems 13 and 14 there remain to be considered only the cases where S^{\prime} and $S^{\prime \prime}$ belong to the family $\sigma_{0}-\sigma_{1}$, or both belong to $\sigma_{1}-\sigma_{2}$.

By Theorem 6, any sphere S through p which does not touch a circle C of γ_{1} belongs to $\sigma_{0}-\sigma_{1}$; by Theorem 6, Theorem 7, Corollary 5, and Theorem 10, any sphere S which touches a circle C of γ_{1}, but does not contain $C\left(\gamma_{2}\right)$ in case $C\left(\gamma_{2}\right) \neq p$, and does not touch a sphere of σ_{2} in case $C\left(\gamma_{2}\right)=p$, belongs to $\sigma_{1}-\sigma_{2}$. Hence there exists a sphere S of $\sigma_{0}-\sigma_{1}$ $\left(\sigma_{1}-\sigma_{2}\right)$ which intersects S^{\prime} and $S^{\prime \prime}$ respectively in a proper circle. From the
above, S and S^{\prime}, and also S and $S^{\prime \prime}$, both support or both intersect A at p. Thus S^{\prime} and $S^{\prime \prime}$ both support or both intersect A at p.

Theorem 16. If $C\left(\gamma_{2}\right) \neq p$, every sphere of $\sigma_{1}-\sigma_{2}$ supports A at p.
Proof. Suppose $S \in \sigma_{1}-\sigma_{2}$ intersects A at p. Let $t \rightarrow p, t \subset A \cap S$, $t \neq p$. By Theorem 6, $C\left(t ; \gamma_{1}\right)$ touches S at p and hence $C\left(t ; \gamma_{1}\right) \subset S \cup \dot{p}$. Since $C\left(t ; \gamma_{1}\right) \rightarrow C\left(\gamma_{2}\right)$ it follows that $C\left(\gamma_{2}\right) \subset S \cup S$. If t^{\prime} converges to p through $A \cap \dot{S}$, it follows symmetrically that $C\left(\gamma_{2}\right) \subset \dot{S} \cup S$. Thus $C\left(\gamma_{2}\right) \subset S$. Since $S \notin \sigma_{2}$, however, Theorem 7, Corollary 5 implies that $C\left(\gamma_{2}\right)=p$.

10. Characteristics and a classification of the differentiable points.

The characteristic ($a_{0}, a_{1}, a_{2}, a_{3} ; i$) of a differentiable point p of an $\operatorname{arc} A$ is defined as follows:
$a_{0}, a_{1}, a_{2}=1$ or $2 ; \quad a_{3}=1,2$, or $\infty ; \quad i=1,2$, or 3.
a_{0} is even or odd according as the spheres of $\sigma_{0}-\sigma_{1}$ support or intersect.
$a_{0}+a_{1}$ is even or odd according as the spheres of $\sigma_{1}-\sigma_{2}$ support or intersect.
$a_{0}+a_{1}+a_{2}$ is even or odd according as the spheres of $\sigma_{2}-\sigma_{3}$ support or intersect.
$a_{0}+a_{1}+a_{2}+a_{3}$ is even if $S\left(\sigma_{3}\right)$ supports and odd if $S\left(\sigma_{3}\right)$ intersects, while $a_{3}=\infty$ if $S\left(\sigma_{3}\right)$ neither supports nor intersects.
$i=1$ if $C\left(\gamma_{2}\right) \neq p ; i=2$ if $C\left(\gamma_{2}\right)=p$ and $S\left(\sigma_{3}\right) \neq p$; and $i=3$ if $S\left(\sigma_{3}\right)=p$.
Theorems 16, 14, and the convention that $S\left(\sigma_{3}\right)$ supports when it is the point-sphere, lead to the restriction on the characteristic ($a_{0}, a_{1}, a_{2}, a_{3} ; i$) that $a_{0}+\ldots+a_{i}$ is even. As a result, there are just 32 types of differentiable points; 12 when $i=1,12$ when $i=2$, and 8 when $i=3$.

Examples of each of the 32 types are given by the curves

$$
\begin{equation*}
x=t^{m}, \quad y=t^{n}, \quad z=t^{r} \tag{I}
\end{equation*}
$$

for the cases $a_{3}=1$ or 2 , and

$$
x=t^{m}, y=t^{n}, z= \begin{cases}t^{\tau} \sin t^{-1}, & \text { if } 0<|t| \leqslant 1 \tag{II}\\ 0 & , t=0\end{cases}
$$

for the cases $a_{3}=\infty$, all relative to the point $t=0$. The indices, m, n, and r are positive integers and $m<n<r$. The different types are determined by the parities of the indices m, n, and r and the relative magnitudes of m, n, r, and $2 m$. In each of these examples the circles of γ_{1} and the spheres of σ_{1} touch the x-axis at the origin. In the case $i=1, \sigma_{2}$ is the family of planes through the x-axis; while in each of the cases $i=2$ or $3, \sigma_{2}$ is the family of spheres which touch the $x y$-plane at the origin (cf. Remark at the end of §7).

The first of the following tables lists examples of all the types of differentiable points together with their characteristics, while the second table summarizes the properties of these types. Congruences are mod 2.

TABLE I
$\left(a_{0}, a_{1}, a_{2}, a_{3} ; i\right)$

Equation	$i=1 \quad m<2 m<n<r$			$i=2$	$m<n<2 m<r$		$i=3$	$m<n<r<2 m$		
I	$\begin{aligned} & (1,1,1,1 ; 1) \\ & (1,1,1,2 ; 1) \\ & (1,1,2,1 ; 1) \\ & (1,1,2,2 ; 1) \end{aligned}$		$\begin{aligned} & r \equiv 0 \\ & r \equiv 1 \end{aligned}$	$\begin{aligned} & (1,1,2,1 ; 2) \\ & (1,1,2,2 ; 2) \end{aligned}$	$\begin{array}{c\|c} & n \equiv 0 \\ & n \equiv 1 \end{array}$	$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \end{aligned}$	$\begin{aligned} & (1,1,1,1 ; 3) \\ & (1,1,2,2 ; 3) \end{aligned}$	$\mid m \equiv 1$	$n \equiv 0$$n \equiv 1$	$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \\ & r \equiv 1 \\ & r \equiv 0 \end{aligned}$
			$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \end{aligned}$	$\begin{aligned} & (1,2,1,1 ; 2) \\ & (1,2,1,2 ; 2) \end{aligned}$		$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \end{aligned}$	$\begin{aligned} & (1,2,2,1 ; 3) \\ & (1,2,1,2 ; 3) \end{aligned}$			
	$\begin{aligned} & (2,2,1,1 ; 1) \\ & (2,2,1,2 ; 1) \end{aligned}$	$n \equiv 1$	$\begin{aligned} & r \equiv 0 \\ & r \equiv 1 \end{aligned}$	$\begin{aligned} & (2,1,1,1 ; 2) \\ & (2,1,1,2 ; 2) \end{aligned}$	$n \equiv 1$	$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \end{aligned}$	$\begin{aligned} & (2,1,1,2 ; 3) \\ & (2,1,2,1 ; 3) \end{aligned}$		$n \equiv 1$	$\begin{aligned} & r \equiv 0 \\ & r \equiv 1 \end{aligned}$
	$\begin{aligned} & (2,2,2,1 ; 1) \\ & (2,2,2,2 ; 1) \end{aligned}$	$n \equiv 0$	$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \end{aligned}$	$\begin{aligned} & (2,2,2,1 ; 2) \\ & (2,2,2,2 ; 2) \end{aligned}$	$n \equiv 0$	$r \equiv 19 \text { } \begin{aligned} & r \equiv 0 \end{aligned}$	$\begin{aligned} & (2,2,1,1 ; 3) \\ & (2,2,2,2 ; 3) \end{aligned}$		$n \equiv 0$	$\begin{aligned} & r \equiv 1 \\ & r \equiv 0 \end{aligned}$
	$\begin{aligned} & (1,1,1, \infty ; 1) \\ & (1,1,2, \infty ; 1) \end{aligned}$	$m \equiv 1 \begin{aligned} & n \equiv 1 \\ & n \equiv 0\end{aligned}$		$\begin{aligned} & (1,1,2, \infty ; 2) \\ & (1,2,1, \infty ; 2) \end{aligned}$	$m \equiv 1 . \begin{aligned} & n \equiv 0 \\ & n \equiv 1\end{aligned}$					
	$\begin{aligned} & (2,2,1, \infty ; 1) \\ & (2,2,2, \infty ; 1) \end{aligned}$	$m \equiv 0 \left\lvert\, \begin{aligned} & n \equiv 1 \\ & n \equiv 0\end{aligned}\right.$		$\begin{aligned} & (2,1,1, \infty ; 2) \\ & (2,2,2, \infty ; 2) \end{aligned}$	$m \equiv 0 \left\lvert\, \begin{aligned} & n \equiv 1 \\ & n \equiv 0 \end{aligned}\right.$					

TABLE II

i	$C\left(\gamma_{2}\right)$	$S\left(\sigma_{3}\right)$	Characteristic$\left(a_{0}, a_{1}, a_{2}, a_{3} ; i\right)$	Restrictions		Examples: (I) or (II)				$\begin{gathered} \text { No. } \\ \text { of } \\ \text { types } \end{gathered}$
								$C\left(\gamma_{2}\right)$	$S\left(\sigma_{3}\right)$	
1	$\neq p$	$\neq p$	$\begin{aligned} & \left(a_{0}, a_{1}, a_{2}, a_{3} ; 1\right) \\ & a_{3}=1 \text { or } 2 \\ & \left(a_{0}, a_{1}, a_{2}, \infty ; 1\right) \end{aligned}$	$\sigma_{1}-\sigma_{2}$ supports	$a_{0}+a_{1} \equiv 0$	$m<2 m<n<r$	I II	x-axis	$x y$-plane	8
2	$=p$	$\neq p$	$\begin{gathered} \left(a_{0}, a_{1}, a_{2}, a_{3} ; 2\right) \\ a_{8}=1 \text { or } 2 \\ \left(a_{0}, a_{1}, a_{2}, \infty ; 2\right) \end{gathered}$	$\sigma_{2}-\sigma_{3}$ supports	$a_{0}+a_{1}+a_{3} \equiv 0$	$m<n<2 m<r$	I II	$x=y=z=0$	$x y$-plane	8 4
3	$=p$	$=p$	$\begin{array}{r} \left(a_{0}, a_{1}, a_{2}, a_{3} ; 3\right) \\ a_{3}=1 \text { or } 2 \end{array}$	σ_{3} supports	$a_{0}+a_{1}+a_{2}+a_{3} \equiv 0$	$m<n<r<2 m$	I	$x=y=z=0$	$x=y=z=0$	8

References

1. N. D. Lane and P. Scherk, Differentiable points in the conformal plane, Can. J. Math., 5 (1953), 512-518.
2. P. Scherk, Über differenzierbare Kurven und Bögen I. Zum Begriff der Characteristik, Časopis pro pěst mat a fys., 66 (1937), 165-171.

Hamilton College,

McMaster University

[^0]: Received April 4, 1955.

