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Abstract
How do individuals’ influence in a large social network change? Social scientists have difficulty answering

this question because measuring influence requires frequent observations of a population of individuals’

connections to each other, while sampling that social network removes information in a way that can bias

inferences. This paper introduces amethod tomeasure influenceover timeaccurately fromsamplednetwork

data. Ranking individuals by the sum of their connections’ connections—neighbor cumulative indegree

centrality—preserves the rank influence ordering that would be achieved in the presence of complete

network data, lowering the barrier tomeasuring influence accurately. The paper then shows how tomeasure

that variable changes each day, making it possible to analyze when and why an individual’s influence in a

network changes. This method is demonstrated and validated on 21 Twitter accounts in Bahrain and Egypt

from early 2011. The paper then discusses how to use themethod in domains such as voter mobilization and

marketing.

1 Introduction
Political scientists are increasingly interested in using network analysis to understand how

individuals, institutions, and states influence each other over time (Lazer et al. 2009). Such work

requires data on every connection each actor maintains with all other actors; these data are

prohibitively costly to obtain when networks are large or change frequently. This cost is why

existing time-series network analysis focuses on states at the year level (Dorussen andWard 2008;

Oatley et al. 2013).

This paper introduces a statistic, neighbor cumulative indegree centrality (NCC), that allows for

network time-series analysis of individuals at thedaily level. NCCmeasures influencewithout data

on every connection each actormaintains. Obviating the need for complete network data reduces

research costs, allowing for daily network analysis of individuals. Moreover, NCC recovers an

individual’s influence that would be observed if complete data were available, and it outperforms

the other measure, indegree centrality, that is currently used with incomplete data.

NCC works best when the researcher can perform a breadth-first search—record all the

connections for each individual being studied—and knows the number of connections each

connection has. This situation is common for online social network data, as platforms such

as Twitter and Instagram provide the number of connections each account has without the

researcher having to manually download those connections. These data can also be obtained

easily in surveys with a network component. For example, Karl-Dieter Opp and Christiane Gern

surveyed participants in the 1989 Leipzig protests and asked if they had friends or co-workerswho

participated; if theyhadalsoasked respondents to rate those friendsor co-workersonapopularity

Author’s note: I would like to thank the anonymous reviewers and editorial staff atPolitical Analysiswhoprovided insightful

feedback. Participants of the Human Nature Group saw this paper from its infancy to its current form, and I am grateful

for their patience. I am also fortunate to have had active audiences when this paper was presented at APSA and Sunbelt

conferences. I would especially like to thank Lawrence Broz, James Fowler, Scott Guenther, Emilie Hafner-Burton, Will

Hobbs, Alex Hughes, David Lake, David Lindsey, Mona Vakilifathi, and Barbara Walter for various forms of assistance. For

replication material, see Steinert-Threlkeld (2016). Though I wish I could say otherwise, all remaining errors are mine.
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scale, the authors could have also determined if protestors are more likely to be influential in a

network (high NCC) or not (low NCC) (Opp and Gern 1993).

NCC is also favorable when a researcher faces resource constraints. It is common for rate limits

to slow the amount of information that can bedownloaded fromdigital sources or limited funding

to restrict the amount of data that can be gathered via in-person enumeration. Since it does not

require complete network data, NCC uses much less data than common measures of influence

such as eigenvector, PageRank, or closeness centrality. Only in small or stable networks such as

a classroom, bill co-sponsorship, offices, or country alliances, among others, are other influence

measures preferable.

TheNCCmeasure is demonstrated in the context of activists and the Arab Spring. The influence

(NCC ranking) of 21 Bahraini and Egyptian Twitter accounts is tracked over a three-month

month period, as is those accounts’ communication patterns. Models show that accounts which

coordinateprotestsgain influenceaccording to theNCCmeasure,whiledegreecentrality influence

suggests that the use of hashtags alsomatters. This result stands in contrast towork using hashtag

analysis to suggest the periphery of social networks drives protest mobilization (Barberá et al.

2015; Steinert-Threlkeld et al. 2015; Steinert-Threlkeld 2017).

Section 2 explains longitudinal analysis with NCC. Section 3 explains why to prefer node

rankings instead of raw centrality scores, NCC to indegree centrality, and under what situations

NCC should be preferred to global centralitymeasures. Section 4 details a substantive application

of the new measures: activism during the Arab Spring in Bahrain and Egypt. The main result of

this analysis is that accounts that use more hashtags become more influential based on degree

centrality but not NCC, while both measures show that accounts become more influential when

their messages coordinate protest. Section 5 provides detail on other applications of longitudinal

NCC measurement; these methods can be used for scholars interested in identifying hidden

influentials as well as voter mobilization, among other areas. Section 6 concludes.

2 Network Centrality, Over Time

2.1 Network centrality with incomplete data
In network analyses, centrality refers to a set of statistics that attempt to measure which nodes

are most influential, where the definition of influence varies according to the kind of network

studied. (“Node” means the entity that forms the network under study. It could be an individual,

a web page, an Internet router, an international organization, or a court case, for example. For the

rest of this paper, “node” means individual, individual means node.) In this paper, Individual A is

more influential than Individual B if the information he or she emits is seen by more people than

that from Individual B. There are three main classes of centrality: betweenness, closeness, and

degree-based. Each class of centrality measurement requires data on each node in the network

(every website on the Internet, every student in a school, or every nation in a trade network, for

example) and the connections between those nodes (every link between web pages, every friend

of each student, or the flow of trade between each country pair).

A node with a high betweenness centrality connects many nodes of a network; using this

measure, the most important node is that which is on the most paths connecting any two nodes.

Closeness centrality refers to themean distance between one node and all other nodes; using this

measure, the most important node is that which has the shortest average distance between itself

and all other nodes.1

The most common centrality measures focus on the number of connections a node has to

other nodes. The sum of these connections gives the degree of a node, and a node with higher

degree is assumed to havemore influence than onewith lower degree. Measuring only the sumof

1 Distance measures the number of steps between two nodes. If A and B are connected to each other, their distance is one.

If A is connected to C through B, the distance AC is two while the distance BC is 1.
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connections of a node is called degree centrality or, in a directed network, indegree or outdegree

centrality. Degree centrality is appealingbecauseof its simplicity, but it doesnot give an indication

of a node’s position in the larger network: a nodemayhavehighdegree centrality, but if thosewith

which it is connected have few connections, the node probably is not very important. Similarly,

a node may not be connected to many other nodes, but if the nodes to which it is connected are

themselves connected tomany nodes, that nodemay be influential. A node can also be influential

if it connects parts of a network that otherwise would not be connected.

Instead, a node’s influence is also a function of the connections of that node’s neighbors, its

neighbors’ neighbors, and so on. Many measures therefore take into account the importance of

a node’s neighbors to calculate a node’s centrality, the idea being that an important node has

neighbors thatarealso important. Therearevariousways tocalculate thesemeasures, someof the

most common being eigenvector centrality, Katz centrality, PageRank, and k-core; see Newman

(2010) for a mathematical explanation of these measures. For simplicity through the rest of the

paper, I call these measures global centrality measures.

Eigenvector, Katz, PageRank, and k-core centrality require having data on every connection in

a network. For example, studying how networks affect adolescent health in a high school would

require knowing not just demographic data about each student but also with whom students

interact; acquiring thosedata require large investments in timeandmoney, and thecostmultiplies

with the duration of the study. As the network being studied grows, e.g., if one wants to study

behaviors on Facebook or Twitter, calculating these centrality measures becomes exceedingly

costly. Given this difficulty, degree centrality is the most common measure of centrality in large-

scale studies, especially those using social media datasets (Kwak et al. 2010; Garcia-Herranz et al.

2014).

Degree centrality’s appeal is therefore based on its ease ofmeasurement, not itsmeasurement

validity. While it does correlate highly with global centrality measures (Bonner et al. 2008), that

correlation masks heterogeneous effects. Intuitively, a node with low degree could be connected

to a node with very high degree, meaning whatever that node does could influence the larger

network through its connection with the more well-connected one; degree centrality does not

capture this second-order effect, much less third or fourth-order ones. In a study using complete

network data from Twitter, Facebook, Livejournal, and the American Physical Society, Pei et al.

(2014) find that global centralitymeasures, especially k-core centrality, better identifywhichnodes

spread themost information (Pei et al. 2014).2 Degree centrality andPageRank are shown to create

different rankings in a studyof 41millionTwitter users from2009 (Kwak et al.2010). In otherwords,

while the correlation between degree centrality and global centrality measures is high, the rank

ordering correlation is much lower.

Thispaper introducesameasure thatusesmoredata thandegree centrality but less thanglobal

centralitymeasures. Specifically, a node’sneighbor cumulative indegree centrality (NCC) is the sum

of the indegree of the node’s neighbor’s. Formally:

NCCi =

j∑

1

dj . (1)

For each node i , the neighbor cumulative indegree centrality is the sum of the indegree

centrality dj for each neighbor j . This measure is first introduced in Pei et al. (2014) and has been

used independently in Kim et al. (2015), though it does not appear to have yet gained widespread

2 A k-core is a subset of nodes in the network in which all nodes have at least degree k .
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Figure 1. Degree centrality = 5; neighbor cumulative indegree centrality = 9.

use. To the best of my knowledge, this paper is the first in political science to use it. Figure 1

presents an illustration of NCC.3

2.1.1 Simulations
A series of simulations demonstrates that ranking by NCC instead of indegree centrality more

accurately recovers rankings based on eigenvector, PageRank, and closeness centrality. (Section 3

explains why rankings are preferred instead of raw scores.) For a series of networks ranging

in size from 100 to 10,000 nodes, a power-law degree distribution with a scaling exponent of

2.089, the scaling parameter found from three hours of streamed tweets, is used to assign

connections between nodes, and each network contains ten times as many edges as nodes. The

neighbor cumulative indegree, eigenvector, PageRank, and closeness centrality of each node is

then measured, and a node’s influence is then determined by its rank ordering based on each

centrality score. For each network, a node’s position in the NCC and indegree rank orderings is

compared to its position in the rank ordering based on eigenvector, PageRank, and closeness

centrality. This comparison generates two bivariate graphs, one for NCC ranking and another for

indegree centrality. The correlation coefficients from those graphs are compared to each other for

each network.

Figure 2 shows the result of this simulation. It shows that the rank ordering of nodes generated

by neighbor cumulative indegree centrality preserves 70 to 90 percent of the rank ordering

created by eigenvector, PageRank, and closeness centrality. Compared to indegree centrality, this

correlation represents a 7.89% improvement in rank correlation for PageRank centrality, 26.35%

for closeness, and 26.77% for eigenvector. These results corroborate the empirical results of

Pei et al. (2014).

In many situations, however, the complete network is unavailable. I therefore also simulated

networks, calculatedglobal centralitymeasures, samplednodes from thenetwork, and compared

the rank correlation of NCC and indegree centrality to those global centrality measures. Figure 3

shows these results comparing NCC and indegree centrality to eigenvector centrality, and

Section 1 of the Supplementary Materials shows the same for closeness and PageRank centrality.

In sampled networks, NCC ranking continues to outperform indegree centrality ranking.

3 For replication code of Figure 1, see this paper’s repository at Harvard Dataverse (Steinert-Threlkeld 2016). That repository

contains replication code and data for the rest of the paper as well.
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Figure 2. Neighbor cumulative indegree centrality better measures influence than indegree centrality.

2.2 Over time
To measure neighbor cumulative indegree centrality over time, a network needs to be measured

at different points in time. If the network requires in-person measurement—surveying a school

or canvassing a neighborhood, for example—that sampling procedure can be repeated and NCC

measured a second time. If the network is measured digitally, such as via Twitter, the steps

required to measure NCC longitudinally most likely differ from the steps required to measure it

initially. Because Twitter is one of, if not the, most common digital sources of network data, this

section explains how tomeasure NCC over time using that platform.4

Twitter does not reveal when one user starts to follow the other, so a researcher only knows

that a connection exists but not when it formed.5 Two pieces of information from the REST API

ameliorate this situation. First, the list of followers (or friends) that Twitter provides is sorted

4 See Section 5 of the Supplementary Materials for a discussion of why Twitter is so popular, limitations of working with its

data, and nonfollower networks that Twitter data canmeasure.

5 “Following” is the fundamental building block of Twitter. When this paper refers to two accounts in a relationship or a

connection existing between two accounts, it means that one follows the other.

Zachary C. Steinert-Threlkeld � Longitudinal Network Centrality Using Incomplete Data 312

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
7.

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2017.6


Figure 3. NCC and eigenvector ranking with sampled data.

in reverse chronological order, meaning one knows the relative ordering of connection dates.6

Second, the REST API provides the date when an account was created. These two pieces of

information make it possible to accurately reconstruct when connections are formed.

Using the date followers join Twitter allows for the approximation of connection formation

date, as shown inTable 1; becauseonedoesnot know theprecise date a connection forms, bounds

around the actual date need to be created.7 The lower bound of the bounds is calculated as

follows: for each follower in a user’s follower list, the earliest that follower could have started

6 Twitter is an asymmetric network, and the terms “follower” and “friend” have different meanings. A “follower” is an

accountwhich has indicated to Twitter that it wants to automatically bemade aware of the tweets of an account it follows,

while a “friend” is the account being followed. If B follows A, B is A’s follower while A is B’s friend.

7 Twitter provides an account’s followers list via the GET followers/ids or GET followers/list REST API endpoints. Twitter’s

GET users/ids endpoint of its REST API provides users’ metadata. This information includes the user’s screen name,

self-reported location, preferred language, number of friends, number of followers, and, most importantly, date the user

joined Twitter. Passing the ID numbers from GET followers/ids to GET users/ids is faster than downloading the followers

via GET followers/list.

Zachary C. Steinert-Threlkeld � Longitudinal Network Centrality Using Incomplete Data 313

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

01
7.

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2017.6


Table 1. Inferring follower relationship formation.

Follower* Date joined Lower bound of Lower bound of upper bound Upper bound of upper bound

Twitter+ connection date# of connection date# of connection date#

A 12.29.2010 12.07.2013 Day of API request Day of API request

B 12.07.2013 12.07.2013 Day of API request Day of API request

C 12.29.2010 06.20.2012 12.07.2013 Day of API request

D 06.20.2012 06.20.2012 12.07.2013 Day of API request

E 08.16.2009 03.15.2011 06.20.2012 Day of API request

F 03.15.2011 03.15.2011 06.20.2012 Day of API request

G 01.25.2011 01.25.2011 03.15.2011 Day of API request

H 11.26.2008 08.16.2009 01.25.2011 Day of API request

I 08.16.2009 08.16.2009 01.25.2011 Day of API request

* From Twitter’s GET followers/ids endpoint on the REST API.

+ From Twitter’s GET users/lookup.

# Calculated by the researcher.

following is the most recent Twitter joining date of all followers below that follower; this date is

the lower bound of the estimate of the true connection forming date.

Estimating the upper bound on the connection formation date is more difficult; in fact, the

upper bound itself has a lower and upper bound. The upper bound on the upper bound (UBUB)

of the estimate of the connection formation date is the day the data were downloaded, as it is

theoretically possible an account’s followers all started following that account earlier that day.

The lower bound on the upper bound (LBUB) of the estimate of the connection date is the first

Twitter joining date greater than that follower’s Twitter joining date for the followers above that

follower in the follower list. If no follower matches this criteria, the LBUB is the day the data were

downloaded.

Table 1 clarifies this algorithm, and Section 2 of the Supplementary Materials provides

pseudocode for it. Suppose User 1 has followers A, B, C, D, E, F, G, H, and I, with A the newest

follower and I the oldest. Follower A joined Twitter on 12.29.2010 but could not have followedUser

1 before 12.07.2013 because that is the most recent Twitter joining date of the nine followers.

Follower C joined at the same time as A but could have started following User 1 as early as

06.20.2012 because the latest any of Followers C through I joined Twitter was that day. Follower

G’s earliest possible connection date is the same as the day it joined Twitter because neither of

the two already existing followers joined Twitter after Follower G. These dates, the third column

of Table 1, are the lower bound of the estimate of the connection formation date.

The LBUBandUBUBof the estimateof the connectiondate is calculated as follows. Follower A’s

latest possible connection date is whatever day the follower list was downloaded, since Follower

A is the newest follower of User 1; the same is true of Follower B because no subsequent follower

(which is only Follower A) joined Twitter after Follower B. We can infer that Follower I connected

to User 1 at least no later than 01.25.2011 because the first follower who connectedwith User 1 and

had a Twitter joining date later than Follower 1 (Follower G) joined Twitter on 01.25.2011. Since

FollowerGcouldnot followUser 1before01.25.2011, theLBUB for Follower I andUser 1 is 01.25.2011;

because we do not observe when Follower I actually started following User 1, the UBUB is the day

the followers list was downloaded from Twitter. The same is true for Follower H; Follower H could

not have connected to User 1 before Follower I, even though Follower H joined Twitter earlier,

because Follower H is closer to the top of the follower list. The LBUB for Follower E and User 1

is 06.20.2012, the first joining date of Followers A to D that is greater than Follower E’s joining date

of 08.16.2009.
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The inability to establish a precise upper bound for the following date is theoretically

problematic but pragmatically not. To return to Table 1, a researcher interested in the network of

User 1 on 01.26.2011 can be certain that User 1 had atmost two followers on that day. Theoretically,

User 1 may have had 0 followers, if they all started following User 1 after 01.26.2011. But users gain

followers over time; while bursty, users gaining all their followers on one day, which is whatwould

be necessary for the upper bound of the confidence interval, is rare to nonexistent (Hutto, Yardi,

and Gilbert 2013; Antoniades and Dovrolis 2015; Myers and Leskovec 2014). Section 4.1 uses a

dataset where users’ true number of followers are known to show that the estimate accurately

recovers the true number of followers. Meeder et al. (2011) show that the estimate of the lower

bound of the connection time accurately recovers the true connection time for celebrity accounts.

Section 3 of the Supplementary Materials show that using the earliest latest date a connection

forms quickly converges to the earliest date for accounts with hundreds of followers.

Meeder et al. (2011) provide an analytic explanation of this process, and this paper builds on

that work in threeways. First, it provides amethod for estimating the upper bound of the follower

connection date formation. Having a lower and upper bound for follower connection dates allows

for more precise estimation of connection formation, though the bounds approach each other

as the number of followers increases. Second, Meeder et al. (2011) work with celebrity accounts

because they rapidly gain followers; the accounts in this sample show that this technique extends

beyond celebrities. Third, the results show that measuring true changes in followers is accurate

when combining the streaming and REST APIs, whereas Meeder et al. (2011) use the REST API

to crawl specific accounts. Since a large number of studies using Twitter, perhaps most, start

with data from the streaming API, this paper provides a more realistic validation for estimating

connection formation dates.

3 Ranking, NCC, andWhen to Use Ranked NCC
Ranking nodes based on a centrality measure is preferable to using raw centrality measures, and

ranking based onNCC is preferable to ranking on indegree centrality, including in studies of offline

social networks. NCC is to be preferred over global centrality measures when global network data

are not available; global network data are rarely available because of cost.

3.1 Ranking instead of raw score
There are two reasons to evaluate nodes by their rank instead of the absolute value of NCC.

First, ranking individuals facilitates interpretation by controlling for unobserved heterogeneity.

For example, individuals in the United States will have higher degree centrality and NCC than

individuals in Suriname because the United States has more people; a user in Suriname with

the same number of followers as one in the United States should therefore be more influential.

Rank ordering at the country level, or whatever grouping makes the most sense for the research

question, therefore acts as a fixed effect. Similarly, individuals in both countries should see an

increase in their degree centrality and NCC because of population growth.8 Increases indegree

centrality or NCC could erroneously be ascribed to a variable of interest when in fact the changes

are a time effect. Rank ordering is thereforemore likely to change as a result of a node’s behaviors

instead of unobservables. If using unranked NCC or indegree centrality, individuals from a more

populous setting will drive results.

Second, even if there is no concern about unobserved heterogeneity (all the observations

are from the same school or country, for example), ranking has greater measurement validity

than absolute values for most, perhaps all, social behaviors. Forbes publishes the 500 wealthiest

individuals and largest corporations, not those worth $1 billion or with revenue over an arbitrary

8 Because online social networks grow by registering new users, population growth on the platforms academics study is

higher than actual population growth.
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threshold. Olympic medals are given for the top three finishers, not everyone attaining a certain

score or finishing below a certain time. Search engines return pages in rank order of estimated

relevance, not just those pages above a relevance threshold and certainly not randomly sorted.

An A on an exam is less impressive if that is the modal grade than if a C is most common. In

other words, social outcomes such as happiness, status, or influence, to name a few, derive from

comparison to others, not to an abstract notion of those concepts (Brickman, Coates, and Janoff-

Bulman 1978; Veenhoven 1991; Adler et al. 2000). For researchers interested in influence in a

network, relative influence (ranked NCC or indegree centrality) should therefore alsomattermore

than absolute influence (raw NCC or indegree centrality).

Using ranking to evaluate nodes does not lead to different inferences than using absolute

values. Samplednetworksaccurately recover the rankingofnodesbasedondegree, betweenness,

and closeness centrality (Kim 2007). A canonical simulation of scale-free network growth,

the Barabási–Albert model, relies on new nodes knowing the degree of existing nodes (the

“preferential attachment” mechanism) (Barabási and Albert 1999); it turns out that the same

network can grow when new nodes only know the rank of existing nodes (Fortunato, Flammini,

and Menczer 2006). Even in gene regulatory networks, ranking by degree strongly correlates with

complete centrality measures (Koschutzki and Schreiber 2008).

3.2 NCC instead of indegree centrality
Neighbor cumulative indegree centrality has three advantages that compel its usage: it recovers

influence rankings of global centrality measures better than indegree centrality, does so at a

significantly lower cost than those global centrality measures, and allows for centrality analysis

on large offline networks.

First, the key benefit of NCC is that it recovers other centrality measures that require complete

network data while using much less data. NCC works because it captures information on nodes

up to two degrees away from the node for which NCC is calculated, incorporating much of

information that global centralitymeasures incorporatewhileminimizing data requirements. The

global centrality measures operate recursively, meaning they capture information on a node’s

3rd, 4th, 5th, ... nth connections. While the contribution to importance of a node’s third to n-th

degree connections may matter, these far-away neighbors should have less of an effect than a

node’s immediate and second-degree connections; empirically, this is the case (Christakis and

Fowler 2012). On the other hand, indegree centrality, as shown in the previous sections, generates

misleading inferences about influence.

Another way to think about NCC is that it takes advantage of the power-law distribution of

network degree that creates the friendship paradox (Feld 1991). Since a person’s contactswill have

more contacts, on average, than the original person, it is possible to monitor the emergence of

behaviors by taking a sample of individuals and sampling the people towhom they are connected

(Christakis and Fowler 2010; Garcia-Herranz et al. 2014).

Second, usingmuch less datamarkedly lowers the cost of data collection. For example, Larson

et al. (2016) collect the Twitter social network out to twodegrees (the connections’ connections) of

1,764 accounts from France, resulting in 199,126,639 additional nodes (111,618.07 connections per

original account). The first-degree crawl this paper performs for the 21 activist accounts (discussed

shortly) generates 90,863.52 connections per account. Gathering enough data to start analyzing

network structure therefore requires at least 22.84% more data; because this paper samples

prominent accounts while Larson et al. sample more randomly, the computation differences are

probably greater than 22.84%.

While Larson et al. (2016) do not undertake centrality analysis because it is not the focus of

their research question, note that they would still have biased results because they do not have

complete data. A comparison of sample strategies on four different networks finds that each
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sampling procedure requires a large network sample (over 50% of all nodes) before that sample’s

network characteristics converge to the full network’s value (Lee et al. 2006). They could, however,

calculateNCC, andbecauseTwitter provides thenumberof followers for eachaccount, calculating

NCC from Twitter only requires a one-degree crawl.

Third, the need to collect data on all connections in a network in order to calculate centrality

means that offline networks that have been studied are small. A canonical example is Zachary’s

karate club, where the social interactions of 34 members were observed over multiple years to

understand why the club cleaved (Zachary 1977). A seven year study of dolphin social networks in

a New Zealand fjord followed 83 dolphins (Lusseau et al. 2003). Scholars have made productive

useof offline social networkdata for the 12,067 individuals in theFraminghamHeart Study, though

that study has received decades of generous institutional support that could not be replicated by

an individual researcher (Christakis and Fowler 2007, 2008; Fowler and Christakis 2008).

NCC increases the scale of network analysis that can be conducted without computers. For

example, studies of social networks and political participation using surveys ask participants

if they know people who also participated (McAdam 1986; Opp and Gern 1993) or observe the

participation of individuals known to be connected to those treated by a survey instrument

(Nickerson 2008) or online mobilization messages (Bond et al. 2012). These studies do not,

however, askwhether influence varies by how central individuals are in a network, as determining

that centrality would have required each survey respondent to identify their friends, surveying

those friends, asking those friends to name their friends, survey the friends’ friends, and so on.

Instead, if the survey asks each respondent to estimate the number of friends each friend has, the

researcher can calculate NCC. This approach has been used in one study to optimize the spread of

positivehealthbehaviors, allowing researchers to identify influential individuals to treat (Kimetal.

2015). Since the data to calculate NCC can be gathered at the same time a survey is administered,

centrality in larger offlinenetworks cannowbe studiedby smaller teamsof researchers. Nickerson

(2008), for example, surveyed 956 households, while Opp and Gern (1993) interviewed 1,300

individuals.

3.3 When to use
Neighbor cumulative indegree centrality is best suited for situations in which the researcher has a

samplednetwork (which ismost of the time) and canmeasure thenumberof connections anode’s

connections has.

Online social networks commonlyprovide thenumberof accounts anode followsor is followed

by. For example, both Twitter and Instagram provide both sums as part of the user profile data. A

researcher therefore only needs to download the user profile information of each account in a

follower or following list in order to calculate the NCC of the accounts being studied. For example,

the 21 accounts analyzed here have 1,908,134 followers, and those followers have a maximum

of 506,821,726 followers. Calculating NCC for the 21 accounts does not require downloading

506,821,726 edges, however, as Twitter provides the number of followers as part of the profile

information of each of the 1,908,134 first-degree followers. Recovering those nodes’ centrality

ranking that would be obtained with complete network data is therefore feasible with only a

one-degree breadth first crawl.

Moreover, the lack of perfect correlation between NCC rank and rank based on complete

centrality measures is due to change in rank for nodes with few connections; rank is more stable

for well-connected nodes than peripheral ones (Kim 2007; Cha et al. 2010). Because degree

is power-law distribution, gaining 10 connections when one only has 10 will affect one’s rank

much more than gaining 10 when one has 1,000,000. For political scientists, this means that

inferences based on well-connected groups of people—“members of Congress or the media”, for

example—will be more precise than for other groups. Precisely what “well-connected” means,
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however, is anopenquestion. In thisway, theuseofNCC rank cannot circumvent aperennial issue:

people on the margins of society are difficult to study, sometimes intentionally so.

When offline social network data are gathered, a researcher can ask an individual to estimate

the number of friends his or her friends have. So long as those estimates are answered without

bias, the resultingNCC rankof each respondentwill approximate the rank thatwouldbemeasured

if the researcher counted the friends’ friends him- or herself. Collecting these data would require

only one additional survey question or one more behavior to track if the researcher gathers data

via participant observation. Relying on in-person data collection also makes it easier to study

those whomaintain few social connections.

If a researcher has complete network data (all nodes, all connections of those nodes, all those

connections’ connections, and so on), then it is preferable to use a global network centrality

measure (eigenvector, PageRank, closeness, etc.) that takes advantage of the data. This situation

rarely holds, however. Only in settings with few nodes or that can be closely monitored, such as

a club, workplace, or school, will the entire network graph be observable. Even studies which use

online social networks rarely observe second-degree effects of a treatment (see Bond et al. (2012)

for an exception) or crawl the entire social graph (Larson et al. (2016), the most extensive recent

crawl of Twitter, stops at friends of friends).

4 Political Entrepreneurs and Protest Mobilization
From Egypt and Bahrain, 42 activists representing five social movements were identified, 19 of

whomwere active on Twitter prior to each country’s first protests. In Egypt, activists from the April

6th youthmovement, theNoMilitary Trials campaign, and theAnti-SexualHarassmentmovement

were chosen; in Bahrain, the human rights community and February 14th youth coalition were

chosen, though only the human rights community was active on Twitter before the start of

protests. The final 19 activists represent the three socialmovements in Egypt andBahrain’s human

rights community. These movements were chosen because they were active before, during, and

after each country’s main protest period, and individual accounts were identified in collaboration

with a colleague at a British university; for more detail on the movements and accounts, see

Fowler andSteinert-Threlkeld (2016) formoredetail. TwoBahraini government accountswere also

identified and collected, raising the final number of accounts under analysis to 21.

Their position in the larger Twitter social network and their behaviors are observed from

January 11, 2011 to April 5, 2011. Measuring NCC requires working with Twitter’s REST API. I also

purchased these accounts’ tweets from early 2011 to confirm the accuracy of NCC measure; each

tweet provides data on how many followers an account has at the time it is created, providing

a ground truth to which to compare the followers’ estimate (Shulman 2011). See Section 5 of

the Supplementary Material for a discussion of these accounts, why they were chosen, the Arab

Spring, andmore information on acquiring their data.

4.1 Reconstructing daily network change
This section demonstrates that the procedure in Section 2.2 accuratelymeasures the true number

of followers and reveals changing network structure. The results are presented using the lower

bound of the estimate of the connection date (column 3 from Table 1), and Section 3 of the

Supplementary Materials show that results do not change if using the lower bound of the upper

bound of the estimate of the connection date (column 4 from Table 1).

There are two ways to measure a user’s change in followers over time: either observe that

user in real time (with the streaming API) while frequently downloading their followers’ list (via

the REST API), or estimate, later and indirectly, that change. The former is most precise but

requires that the researcher knows which accounts he or she is interested in before an account

is observed for a study. Estimating the change indirectly, through the REST API, is therefore how
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Figure 4. Verification against ground truth data.

most longitudinal analyses will proceed. This section demonstrates that estimating indirectly the

change accurately recovers the true number of followers and can show daily change in network

structure, substantiating the methodology explained in Section 2.2.

Figure 4a shows that the post hoc estimated number of followers linearly predicts the true

number of followers. The estimated number of followers under-predicts the true number because

users can stop following an account or delete their account, the followers list was downloaded

after theperiodof study, andTwitter removesusers fromthe followers list once they stop following

an account.

In Figure 4a, accounts are shaded from light to dark gray based on how close to April 5, 2011

they are.9 The estimated number of followers explains 98.09% of the variance in the number of

true followers, with half of the remaining variance explained by group fixed effects; both these

9 Section 4 of the Supplementary Materials presents a colored version of Figure 4b.
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estimates are based on a linear model not shown here.10 The residual increases as a function of

the estimated number of followers, but this heteroskedasticity is constant as a percentage of an

account’s followers.

Figure 4b shows that the estimated number of followers is usually 67.53% of the true number

of followers. This relationship holdswhether or not the results are pooled by country; aggregating

observations by group does not change the trends. The dashed lines correspond to the start and

end of protests in Egypt, the solid in Bahrain. The post hoc measure performs less consistently,

though does not appear biased, during these protest periods, suggesting that the measure may

perform less well when the number of followers fluctuates rapidly. Overall, the post hocmeasure

of followers consistently approximates the truemeasure, suggesting it can be used when the true

number of friends is not observable.

4.2 Daily changes in NCC
To measure neighbor cumulative indegree centrality, the user ID of each of the 21 seed account’s

followers was downloaded from Twitter’s GET users/ids endpoint, returning 4,229,373 results

containing 1,908,134 unique followers. Each user ID was then submitted to Twitter’s GET

users/lookup endpoint, providing data such as when the user joined Twitter, their self-reported

location, their default language, and how many tweets they have authored. These first-degree

followers themselves have 506,821,726 followers. Since downloading the second-degree

connections would require six months, and weeks more to download metadata for each ID, data

on second-degree connections were not acquired.

Figure 5 presents the change in neighbor cumulative indegree centrality over three months in

Bahrain and Egypt. The first vertical line represents the start of protests, the second the end. Each

country’s legend is ordered from highest to lowest values of NCC at the end of the period. Color

figures are in Section 4 of the Supplementary Materials.

A few results emerge from Figure 5. In both countries, relative influence is stable: the rank

ordering of NCC on January 11, 2011 looks very similar to that on April 5, 2011. Even though

every account except for @Ribeska gains NCC, very few gain influence at a quicker rate than

their peers. In Bahrain, a notable change is @angryarabiya, who moves from second least

influential to fifthmost; that account belongs to the daughter of Nabeel Rajab (@NABEELRAJAB),

a human rights advocate who led—he is now imprisoned—the Bahrain Center for Human Rights

(@BahrainRights). The Ministry of the Interior’s account, @moi_bahrain, is the fourth most

influential at the end of the study, an increase of two spots. @byshr, the account of the Bahrain

Youth Society for Human Rights, experiences the steepest decline, moving from third to last.

Egypt’s relative ordering is more stable. @Shabab6april experiences the greatest change in NCC,

moving from fifth to third.@monasosh experiences a large increase in absolute influence, but she

only moves from the third to secondmost influential account.

Both countries’ accounts alsoexperience thegreatest changes inNCCand rankorderingaround

their protest periods. Each country’s users start to gain influence days before the start of protests.

Most continue to gain influence during the protest period, and some stabilize after while others

continue to gain influence.

Finally, comparing the NCC across Bahrain and Egypt reveals differing network properties. The

Bahrain accounts start and end with lower average NCC than the Egyptian ones. Egypt, on the

other hand, has higher variance in NCC. The three least influential Egyptian accounts, the relative

ranking of which do not change, are accounts for individuals associated with the Anti-Sexual

Harassment movement. That movement has been more peripheral to Egyptian politics than

those sampled in Bahrain. Excluding those three, the Egyptian accounts have greater influence

10 “Group fixed effects” refers to the fact that an account is known to belong to one of four social movements, each with a

different average number of followers at the start of the study.
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Figure 5. Reconstructed temporal change in influence.

and lower variance than the Bahraini ones. Why countries’ networks have different structural

properties is outsideof thispaper’s scope,buthas started to receive someattention (Zeitzoff,Kelly,

and Lotan 2015).

4.3 Individual behavior and changes in NCC
The temporal change of neighbor cumulative degree centrality can be combined with accounts’

tweeting behavior to analyze if certain patterns of behavior change an account’s influence in a

network.
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Table 2. Individual correlates of structural position.

Degree centrality NCC

Ranki ,t Ranki ,t

(1) (2)

Tweetsi ,t−1 −0.003 0.004

(0.006) (0.007)

Hashtagsi ,t−1 0.019 0.009

(0.006) (0.007)

Mentionsi ,t−1 −0.004 −0.009
(0.007) (0.008)

Coordinationi ,t−1 −0.034 −0.030
(0.011) (0.013)

Account FE Yes Yes

N 1,080 1,080

AIC 2261.125 1831.805

All models are ordered logit with a ranked dependent variable.

A negative sign means a node becomes more influential.

Model 1 with a lagged dependent variable fails to converge.

Model 2 with a lagged dependent variable has the same results.

Table 2 reveals that the effect of individual behaviors varies depending on which measure of

centrality is used. Table 2 shows the results from regressingmeasures of the 21 accounts’ position

in their Twitter network on measures of their behavior and account fixed effects. The dependent

variable is the rank of an account on aday, depending onwhether themeasure is degree centrality

(column1) orneighbor cumulativedegree centrality (column2). The independent variables are the

number of tweets from an account, the number of tweets with hashtags, the number of tweets

that mention another user, the number of tweets that coordinate protest activity, and account

fixed effects.11 Because the dependent variable is a ranking, a negative coefficient means that an

increase of that variable corresponds to increased influence.

Table 2 shows that more tweets with hashtags are not associated with greater influence. The

results in Table 2 show that amodel of influencewhich relies on degree centrality will suggest that

an account which tweets more using hashtags will have a lower ranking than if it did not. While

some work has argued that the best way to increase one’s influence on Twitter is to use hashtags

to make one’s tweets part of a larger conversation (Kwak et al. 2010; Bruns and Burgess 2011;

Gonzalez-Bailon, Borge-Holthoefer, andMoreno 2013), this finding corroborates other researchers

who find that specializing in a particular topic on Twitter is how accounts gain influence (Cha et al.

2010). While hashtags may decrease one’s ranking based on the number of followers (Column

1), it does not appear to do so based on the followers those followers have (Column 2). In other

words, using hashtagsmay cause an account to gain followers but not at a greater rate than other

individuals in the network. Moreover, those followers do not have many followers, causing no

change in influence as measured by NCC.

Bothmodels find thatmore tweets coordinating protests lead to an account being rankedmore

highly. On the other hand, the only variable which leads to an increase of NCC rank (column 2) is

the number of tweets about protest coordination. This result is in line with other work that has

found that user’s influence rank,measured by retweets andmentions, increases as they specialize

11 Coordination is measured using a Bernoulli Naive Bayes topic model. For detail on the construction of that model, see the

Supplementary Materials of Steinert-Threlkeld (2017).
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in tweeting about one topic (Cha et al. 2010). Note aswell that amodel of NCCRank fits better than

amodel of Degree Centrality Rank.

5 Other Applications
This section details other domains in which longitudinal neighbor cumulative indegree centrality

is useful.

5.1 Hidden influentials
Network studies often are interested in identifying which nodes facilitate diffusion. While it is

common to analyze highly central nodes, recent work on protest diffusion suggests that accounts

with low outdegree but high indegree may also be influential; these accounts are called “hidden

influentials” and refer to accounts that global centrality measures may miss (Gonzalez-Bailon

2013). A slight modification of the NCC measure suggests an alternate method of finding hidden

influentials.

Instead of taking the sum of neighbors’ indegree centrality, the median of the neighbors’

indegree identifies accounts whose followers have many followers. NCC favors accounts with

many followers, with some weight assigned to how popular those followers are; there thus exists

a strong positive relationship between the number of followers and the sum of the followers’

followers. Taking the median of the followers’ followers emphasizes accounts with few followers

but whose followers’ followers have many connections; it is preferred to the average so that one

or two very popular followers does not bias results. The accounts with a high median number of

followers’ followers may be hidden influentials.

Figure 6a shows the simulated distribution of the median NCC against the distribution of

followers; these data are the same used in Figure 2. Figure 6b is the same but on the data from the

21 accounts. In both cases, there is a clear decaying relationship between the number of followers

and the median NCC. This decaying relationship makes sense, as most individuals in a network

have few connections while a few have very many (Feld 1991). In the simulated and actual data,

however, there are some accounts that have few followers but whose followers have very many

followers. These hidden influentials are the data points crawling up the y-axis near x equals 0.

Because these data are a for a directed network, these accounts are those who are followed by

accounts with many followers even though they themselves are not followed bymany.

Using median NCC to identify accounts may reveal nodes in a network which help products

diffuse or campaign messages resonate. Marketers understand that diffusion on a network is

likely to come from those with many followers, but which of those central individuals will cause

diffusion is very hard to predict. This apparent randomness means marketers have to target

all “influencers”, a costly proposition (Bakshy et al. 2011). Instead, a better approach may be to

identify and target those accounts that the influencers follow, as they will be less expensive.

Targeting these hidden influentials may be a more attractive option than focusing on the mass of

individuals whose weak links to each other otherwise spread information about products (Watts

and Dodds 2007; Bakshy et al. 2012).

5.2 American politics
Since President Obama’s 2008 election, scholars have realized the value large datasets have for

political scientists (Nickerson and Rogers 2014). Studies which use network concepts to measure

behaviors of interest to American politics have traditionally relied on cross-section surveys, and

I am aware of no work which uses longitudinal network analysis. The following sections briefly

discuss possible applications of NCC.

A large literature examines the conditions underwhich individualsmobilize to vote; for reviews

of it, see Blais (2006) and Jacobson (2015). Part of that literature focuses on how individuals’
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Figure 6.Median neighbor indegree centrality and hidden influentials.

social connections affect their decision making, with a heavy use of cross-section surveys and

field experiments to make causal claims (Huckfeldt and Sprague 1987; Lake and Huckfeldt 1998).

Work that incorporates a temporal component focuses on political institutions like Congress or

the Supreme Court because they contain few individuals andmake data collection relatively easy

(Fowler et al. 2007; Rogowski and Sinclair 2012). Scholars have not, however, been able to study

voters in their networks over time. Does an individual’s networkposition change in response to his

or her political beliefs? Is onemore likely to vote if someone central to their network does so? If an

individual’s friend expresses a differing political opinion, does the centrality of that friend affect

the individual’s likelihood to change opinion? Do elections affect the structure of one’s friendship

networks? If so, does the effect vary for local, state, and presidential elections? These questions

can start to be answered with the methods presented in this paper.

Political parties target voters in order to persuade them to support their candidate, and the

methods developed in this paper may help them identify influential individuals to target. Prior

to campaigns’ ability to use large datasets to target specific individuals (Hersh and Schaffner

2013; Nickerson and Rogers 2014), campaigns would canvass large groups of people, hoping

to create a “ripple effect of social interaction” in their favor (Sprague and Huckfeldt 1992,

pg. 77). Parties vary their contact based on supra-individual characteristics, such as district or

state competitiveness, and have done so since at least 1956 (Panagopoulos and Francia 2009).

The methods developed here, however, could allow a campaign to distinguish influential core

supporters from noninfluential ones or find influential individuals socially near a campaign’s core

supporters (Holbrook and McClurg 2005). The NCC measure can also identify which peripheral

individuals are influential, letting a campaign focus more efficiently on using its resources to

persuade them (Chen and Reeves 2011). The ability to observe communities evolve can alert

campaigns to groups of people who have followed their candidate as well as ideologically far

ones; assuming those individuals have not decided who to support, targeting them before the

competition does would be valuable (Huckfeldt, Mendez, and Osborn 2004).

6 Conclusion
This paper joins a growing body of longitudinal network analysis in political science, but it is the

first, as far I am aware, to analyze individuals at the daily level. Longitudinal network analysis

has been used to understand the Great Recession (Oatley et al. 2013), the effect of international
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organization of conflict (Hafner-Burton and Montgomery 2006; Dorussen and Ward 2008), the

relationship between trade and conflict (Lupu andTraag 2013), and jurisprudence at the European

Court of Human Rights (Lupu and Voeten 2012). These studies analyze cases, institutions, or

states as their relationships change every year. The population of each is much smaller than the

population of people, and focusing on annual change lowers the cost of data collection. NCC

allows the researcher to analyze changes in populations heretofore too large to study, and the

lower cost of calculating it facilitates the measurement of daily changes.

While multiple online social networks exist that could provide data, this paper focuses on

Twitter. Twitter’s global reach, large user base, and data openness make it a common platform

for large-scale studies of human behavior. With over 300 million accounts creating 500 million

messages per day, it is one of the largest online social networks. Its data are also relatively

easy to access, compared to other platforms. While other social media platforms and websites,

such as reddit or Instagram, also have easily accessible data, none are as general purpose as

Twitter. Though Twitter is the preferred platform for analyses of networks through social media,

analyses of network structure with its data are difficult because of how the platform provides

data to researchers. Data provided as a streaming sample make structure difficult to see, while

Twitter limits howoften one can download data on connections between individuals. This paper’s

methods work within Twitter’s limits.

While neighbor cumulative indegree centrality captures rank ordering that would be obtained

with complete network data, it may still be preferable to have information on more than first-

degree connections; for example, one can start topographic analysis with data on connections’

connections (Larson et al. 2016). In practice, such information is very costly to obtain. Because the

number of connections in a network expands exponentially while Twitter’s rate limits are fixed,

computing time increases supralinearly. For the 21 users in this study, their 1,908,134 followers

have 506,821,726 followers; at 60 requests per hour returning a maximum of 5,000 followers

per request, one computer connection would need just over 70 days to download the list of

second-degree followers. Assuming 45% of those are unique (the percentage from the crawl of

followers for this paper), one computer would require almost 132 days to download data on each

unique user. While this number is probably an overestimate, since some of the second-degree

followersmay have been followers of one of the other 21 accounts, the rate atwhich the download

time increases as a function of degrees from a seed node is unknown. A complete crawl of Twitter

conducted in July 2012 used two machines that could make 20,000 requests per hour, two that

could make 100,000, and 550 machines using the normal rate limits; this crawl required four

months and four days (Gabielkov, Rao, and Legout 2014). The fourmachineswith higher rate limits

were whitelisted, a now defunct practice by which Twitter gave certain machines preferential

access to their data. A similar crawl without whitelisted machines would therefore take about

double the time, according to those authors’ estimates.

Themainbarrier presently facing researchers is thereforeprogramming rate limits. Futurework

should explore how to approximate neighbor cumulative indegree centrality without having to

sample all of anode’s followers. Becauseof thewayTwitter returnsdata, the approximationwould

need to work with the newest followers of an account.

This paper has also only treated one direction of an asymmetric network, treating accounts as

emitters of information. But individuals also consume information, and the consumption network

should change over time as well. The symmetric network—where each connection represents

mutual following—will also reveal patterns aboutmore intimate types of relationships. How these

networks change over time remains an open question.

Finally, these methods can be used to study offline networks. It is common for studies of

networks and political behavior to administer surveys and ask respondents to name their friends

(McAdam 1986; Opp and Gern 1993). Modifying this approach, a researcher could ask those the
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respondent names how many friends they have or even ask the respondent how many friends

she or he thinks each of the friends has. This informationwould be enough to generateNCC scores

for the original respondents. Generating the NCC from offline data allows researchers who do not

use online social network datasets or who are interested in samples of individuals not on these

networks to also approximate centrality when full network data are not available.
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