The multimodal strategy centered around the robot Ozires works! Hand hygiene compliance increased significantly after the interventions. People listen the robot much more attentively than to their human colleagues, and healthcare worker behavior changed! We need to go further improve the program, but it is sustainable. Finally, we succeeded in convincing people to improve their hand hygiene practices.

Funding: None
Disclosures: None
DOI:10.1017/ice.2020.817

Presentation Type:
Poster Presentation

Identification of Aminoglycoside Resistance Genes From Bacteria Isolated From Selected Municipal Drinking Water Distribution Systems in Southwestern Nigeria
Ayodele T. Adesoji, Department of Microbiology, Federal University Dutsin-Ma, Katsina State, Nigeria; Adeniyi A. Ogunjobi, Department of Microbiology, University of Ibadan, Oyo State, Nigeria

Background: Multidrug-resistant bacteria can lead to treatment failure, resulting in infectious diseases being transferred through nonpotable water. Aminoglycosides are an important class of antibiotics that are abused in Nigeria. Few studies have investigated aminoglycoside-modifying genes (AMGs) that are likely responsible for resistance in Nigeria bacteria isolates. Therefore, we aimed to characterize AMGs from isolates in drinking water distribution systems (DWDS) in southwestern Nigeria. Methods: Multidrug-resistant bacteria (n = 181) that had been previously characterized by 16S rDNA sequencing and that were positive for resistance to at least 1 aminoglycoside antibiotic were selected from 6 treated and untreated water distribution systems. Strains were PCR genotyped for 3 AMGs: aph(3")c, ant(3")b and aph(6)-1dd. Results: Of 181 MDR bacteria tested, 69 (38.12%) were positive for at least 1 of the AMGs. The most common was ant(3")c (27.6%), followed by aph(3")c (18.23%). Both aph(3")c and ant(3")b were found in 7.73% of tested isolates, ant(3")b was most commonly found in Alcaligenes spp (50%). Furthermore, aph(3")c was most commonly detected in Proteus spp (50%). Other genera positive for AMGs included Acinetobacter, Aeromonas, Bordetella, Brevundimonas, Chromobacterium, Klebsiella, Leucobacter, Morganella, Pantoea, Proteus, Providencia, Psychrobacter, and Serratia. Conclusions: High occurrence of ant(3")c and aph(3")c among these bacteria call for urgent attention among public health workers because these genes can be easily disseminated to consumers if present on mobile genetic elements like plasmids, integrons, and transposons.

Funding: None
Disclosures: None
DOI:10.1017/ice.2020.818

Presentation Type:
Poster Presentation

Identification of Colonized Patients During an Outbreak of Candida auris Using a Regional Health Information Exchange
Richard Brooks, Centers for Disease Control and Prevention; Elisabeth Vaeth, Maryland Department of Health; Heather Saunders, Maryland Department of Health; Tim Blood, Maryland Department of Health; Brittney Grace, Maryland Department of Health; David Blythe, Maryland Department of Health; Liore Klein, Maryland Department of Health; Jacqueline Reuben, District of Columbia Department of Health; Regan
Traptler, District of Columbia Department of Health; Preetha Iyengar, District of Columbia Department of Health; Emily Blake, District of Columbia Department of Health; Sarah Lineberger, Virginia Department of Health; Rehab Abdelfattah, Virginia Department of Health; Kathleen Tully, Chesapeake Regional Information System for our Patients; Kaitlin Forsberg, Centers for Disease Control and Prevention; Maroya Walters, Centers for Disease Control and Prevention; Snigdha Vallabhpaneni, Centers for Disease Control and Prevention

Background: In June 2019, the Maryland Department of Health (MDH) was notified of a hospitalized patient with *Candida auris* bloodstream infection. The MDH initiated a contact investigation to identify additional patients with *C. auris* colonization. Many of the contacts had been discharged home from the hospital and were therefore not available for screening. Healthcare facilities in Maryland, Virginia, and Washington, DC, submit patient data to a regional health information exchange (HIE) called the Chesapeake Regional Information System for our Patients (CRISP). CRISP includes a notification system that alerts providers when flagged patients have healthcare encounters. We aimed to use this system to identify discharged *C. auris* contacts on their next inpatient encounter to rapidly screen them and to detect new cases.

Methods: *C. auris* contacts were defined as patients located on an inpatient unit on the same day, receiving wound care from the same team, or having a procedure in the same operating room on the same day as the index patient or any patients subsequently identified as having *C. auris* infection or colonization detected either during the normal course of clinical care or through screening. Contacts who remained hospitalized were screened during inpatient point prevalence surveys (PPSs). Contacts discharged to postacute-care facilities were screened by facility staff. Contacts who had been discharged home were flagged in CRISP, and MDH staff received CRISP encounter alerts when these patients were readmitted. MDH staff then contacted the admitting facilities to recommend screening for *C. auris*. Axilla and groin swabs were collected and tested by rt-PCR at the Mid-Atlantic Regional Antibiotic Resistance Laboratory Network laboratory.

Results: As of October 8, 2019, 4,017 contacts were identified. Among these, 936 (23%) contacts at 56 healthcare facilities (33 acute-care hospitals and 23 postacute-care facilities) were screened for *C. auris*, and 10 patients with *C. auris* colonization were identified (1.1% of contacts who underwent *C. auris* screening). Of these, 6 (60%) were identified through CRISP notification and 4 (40%) were identified by PPSs conducted in acute-care hospitals.

Conclusions: In this ongoing *C. auris* outbreak, a large proportion of colonized patients was identified using an electronic encounter notification system within a regional HIE. This approach was effective for identifying opportunities to screen contacts at their next healthcare encounter and can augment other means of case detection, like PPSs. HIEs should incorporate mechanisms to facilitate contact tracing for public health investigations.

Funding: None

Disclosures: None

Doi: 10.1017/ice.2020.819

Presentation Type: Poster Presentation

Impact of a Critical National Shortage of Cefazolin on Antimicrobial Practice at a Tertiary-Care Center in Japan

Shutaro Murakami, Tokyo Metropolitan Tama Medical Center; Junko Hiroi, Tokyo Metropolitan Tama Medical Center; Yasuaki Tagashira, Tokyo Metropolitan Tama General Medical Center; Akane Takamatsu, Tokyo Metropolitan Tama Medical Center; Shinya Hasegawa, Tokyo Metropolitan Tama Medical Center; Hitoshi Honda, Tokyo Metropolitan Tama Medical Center

Background: Shortages of essential medicines, a long-standing issue in healthcare, apply equally to antimicrobial agents, a group of essential drugs necessary for sustainable healthcare. The WHO categorized essential medicines into the access, watch, and reserve groups. Older antimicrobials, in particular, were categorized into the access group, meaning that these drugs are in theory widely available at an affordable cost. The shortage of essential antimicrobial agents like cefazolin leads to increased consumption of alternative antimicrobial agents with broad-spectrum activity, which often has the undesirable consequence of defeating antimicrobial stewardship efforts in inpatient settings and potentially promoting antimicrobial resistance. In Japan, cefazolin has been in critically short supply since March 2019. Cefazolin is a first-line agent against common infectious diseases and in surgical antimicrobial prophylaxis, and its shortage has substantially impacted inpatient care. The aim of the present study was to investigate changes in antimicrobial practice at a tertiary-care center in Japan following the emergence of the national cefazolin shortage in March 2019.

Methods: Data on each antimicrobial use are logged as days of therapy (DOT) per 1,000 patient days (PD) for antimicrobial stewardship purposes at the study institution. We extracted weekly data from September 2018 to September 2019 to evaluate the impact of the national cefazolin shortage on antimicrobial use at our tertiary-care center. Changes in weekly antimicrobial use and the weekly incidence of *Clostridium difficile* infections were analyzed by interrupted time series analysis. We also investigated changes in antimicrobial practice at selected situations.

Results: As weekly cefazolin use significantly declined after the emergence of the national shortage, use of third-generation cephalosporin (+18.9 DOT per 1,000 PD for intercept [P < .001] and +0.65 DOT per 1,000 PD per week for trend [P = .037]) and clindamycin (18 DOT per 1,000 PD for intercept [P = .008] and 0.12 DOT per 1,000 PD per week for trend [P = .003]) significantly increased. Significant changes in antimicrobial practice were also observed in surgical antimicrobial prophylaxis: third-generation cephalosporin use increased from 1.0% (31 of 3,032) to 62.9% (2,237 of 3,554) (P < .001). However, no significant change in the incidence of *Clostridium difficile* infection was observed during the study period: +1.72 per 10,000 PD for intercept (P = .12) and −0.12 per 10,000 PD per week for the trend (P = .09).

Conclusions: The national cefazolin shortage had a significantly negative impact on patient care and led to increased use of alternative, broader-spectrum antimicrobials, which are not ideal choices either for prophylaxis or treatment.

Funding: None

Disclosures: None

Doi: 10.1017/ice.2020.820

Presentation Type: Poster Presentation

Impact of an Enhanced Prevention Bundle on Central-Line-Associated Bloodstream Infection Incidence in Adult Oncology Units

Mary Kukla, University of Iowa Healthcare; Shannon Hunger, University of Iowa Healthcare; Tacia Bullard, University of Iowa Healthcare; Kristen Van Scoyoc, University of Iowa Healthcare; Mary Beth Hovda-Davis, University of Iowa Healthcare;...