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OSCILLATION AND NONOSCILLATION PROPERTIES 
OF NEUTRAL DIFFERENTIAL EQUATIONS 

L. H. ERBE AND QINGKAI KONG 

ABSTRACT. We obtain a number of new conditions for oscillation of the first order 
neutral delay equation with nonconstant coefficients of the form 

d n 

- [x(t) - px(t -T)] + Y, mitait - <7i) = o. 
at i=l 

Comparison results are also given as well as conditions for the existence of nonoscilla-
tory solutions. 

1. Introduction. In this paper we mainly consider the neutral delay differential 
equations of the form 

(i.i) | WO - px(t - r)] + J2 qtiW - °d = o 
at /=1 

where/? G [0,1], qt {i = 1, . . . , /i) E C([to, oo), [0, oo)) andr, at (i = 1, . . . , h) G (0, oo). 
Our aim here is to establish some new sufficient conditions for oscillation and exis­

tence of nonoscillatory solutions of equation (1.1). As corollaries, some results are de­
rived which yield sufficient and necessary conditions for oscillation. We also obtain some 
comparison criteria and give some explicit conditions for oscillation. Similar results are 
obtained for delay equations with varible delays. 

Let r = max{r,a\,... ,crn}. By a solution of (1.1) we mean a function x 
G C(Vi — r, oo),/?) for some t\ > to, such that x(t) — px(t — r) is continuously dif­
ferentiate for t > t\ and such that (1.1) is satisfied for t>t\. 

As is customary, a solution of (1.1) is said to be oscillatory if it has arbitrarily large 
zeros. Equation (1.1) is said to be oscillatory if all of its solutions are oscillatory. For 
some recent results in oscillation theory, see [1-15] and the references cited therein. For 
completeness, we cite the following results: 

RESULT 1 [1, 14]. Let 0 < p < 1 and qt > 0 (/ = 1,... ,n) be constants. Then (1.1) 
is oscillatory if and only if 

(1.2) A ( l - ^ - A T ) + e ^ - A f f f = 0 
i=\ 
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has no real root. 

RESULT 2 [11]. Let 0 < p < 1 be a constant, at = ir, i = l , . . . , rc , and q((t), 

i = 1 , . . . , n be r-periodic functions. Then (1.1) is oscillatory if and only if 

(1.3) \{\-pe-XT) + J2l-(fo qi{s)ds)e-x°>= 0 

has no real root. 

RESULT 3 [4]. (This corrects the mistake in [9]). Consider the case AI = 1 in (1.1) 

where q\(t) := q(t), o\ := a, and/? is replaced by p(t) E C([>o, oo), [0, oo)). 

i) Assume p(t) is bounded, p(f + nr) < 1 for a t* > to and n = 0 , 1 , 2 , . . . , and 

q(t) >q>Q,t>t0.If 

inf 
V>0,t>T 

p(t-a)-^-e^^-q(t)e^ 
q(t-r) ii 

> 1 , 

then ( 1.1 ) is oscillatory, 

ii) Assume there exists a /x* > 0 such that 

sup 
t>T qit-r) /i* 

< 1. 

Then (1.1) has a positive solution. 

In Section 2 we will obtain sufficient conditions for oscillation of (1.1) and for the 

existence of a nonoscillatory solution for the neutral equation (1.1). These conditions 

cover Result 1 for the constant coefficient case and improve Result 2 for the periodic 

coefficient case. They also yield some sufficient and necessary conditions for oscillation 

even for a class of equations with aperiodic coefficients. In Section 3, the above criteria 

for oscillation are developed for delay equations with variable delays, which substantially 

improve the conjecture of Hunt and Yorke [12]. Based on these results, in Section 4, we 

derive some comparison criteria for oscillation and existence of nonoscillatory solutions, 

and in Section 5, we obtain some explicit conditions for oscillation. 

Before stating the main results we introduce the following lemmas which will be used 

in the proofs. 

LEMMA 1.1. Let a > 0, b > 0, andf(t) > 0 be a locally integrable function on 

[0, oo). Assume both the limits 

1 rt+a 1 rt+b 
I\ = lim - / f(s)ds and h = lim - / f{s)ds 

r-^oo a Jt t—KXi b Jt 

exist and are finite. Then I\ — h-

PROOF. We prove it by contradiction. Without loss of generality we only consider 

the case that h > h- Choose a positive integer n such that anl\ — b(m +1)^2 > 1, where 
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m — [an/b] is the integer part ofan/b. This is possible since I\ > I2 and b[an/b] < an. 

Choose T > 0 so large that for t > T 

and 
1 rt+b 

b 

1 rt+a 1 
- / f(s)ds>I{-
a Jt n+m+1 

rt+b 1 

/ f(s)ds<I2 + 
Jt n + m + 1 

This implies that 

rT+an ÏI + YYl 1 
/ f(s) ds > anl\ — bml2 > bh + . 

JT+bm n + m+ 1 n + m+ 1 

But this is impossible since 

(7 + £m) — (T + bm) — an — [an/b]b < b, 

and hence 

/ f(s)ds< f(s)ds<bl2 + . 
JT+bm JT+bm n + m + 1 

This gives a contradition. • 

With a similar proof we get the following generalization of Lemma 1.1. 

LEMMA 1.2. Lef 0 < a\ < a(t) < a2 < oo, 0 < b\ < b(t) < b2 < oo, arcd to 

/ ( 0 >0 be a locally integrable function on [0, oo). Assume both the limits 

1 /*+<*( 0 1 /*+&(') 
I\ = l i m / f{s)ds and I2 = lim / f(s)ds 

t^oo a(t) Jt r—KX> /? (0 J/ 

exist. Then I\ — I2. 

2. Criteria for neutral equations. In this section we are concerned with the equa­

tion 

(2. 1) ~ [x(t) - px(t - r)] + è qi(t)x(t - ad = 0 
at i=l 

where 

(2.2) qt(t) G C([fo,co),[0,oo)), / = l , . . . ,w , 

p G [ 0 , l ] , r , a / G (0,oo), i = l , . . . , n . 

Denote r = max{r, a i , . . . , an}. 

The following lemma is needed in the proof. 
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LEMMA 2.1. In addition to (2.2) assume 

(2.3) q\(t)>q>0 

and 

(2.4) qi{t-r) <qt{t), t>t0 + r, * = l , . . . , w . 

Let x{t) be an eventually positive solution of (2.1), and let 

(2.5) z(t) = x(t) - px(t - r). 

Then eventually z(t) > 0, zf(t) < 0, and 

(2.6) z\t) - /?zV - r) + £ 4 , ( 0 * - */) < 0. 
;= i 

PROOF. From (2.1) it is easy to see that z(t) > 0, z'(0 < 0 eventually. From (2.4) 
and (2.5) 

n 

z(t) - pz!(t -r) = - Y\qi(t)x(t - a) - pqt{t - r)x(t - T - ad] 

n 

< - E iM\rtt - a) - prt - T - ^)i 
i=\ 

= -Eql(t)z(t-ai). 
i=\ 

Thus (2.6) is true eventually. • 

THEOREM 2.1. Assume (2.2)-(2.4) hold, and for all fi > 0, and t = r, o\,..., an 

(2.7) liminf 
t—^oo 

1 

77z£/? (2.7) w oscillatory. 

1 " r'+^ 
> 1. 

PROOF. Assume (2.1) has an eventually positive solution x(t). Define z(t) as given 
by (2.5). Then by Lemma 2.1 there exists a T > t0 such that z(t) > 0, z(t) < 0, and (2.6) 
holds for t > T. Let w(t) = -^$,t>T. Then w(0 > 0, t > T, and (2.6) becomes 

w(t) > pw(t — T) exp ( / w(s) ds J + E <7/(0 e xP ( / w(s) ds ) 

fort> T+ r, where r = max{r,<j],..., crn}. 
We now define a sequence of functions {w^t)} for & = 1,2,..., and t > T, and a 

sequence of numbers {JLX̂ } for /c = 1,2,..., as follows: 

wi(r) = 0, t>T 
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and for £ = 1,2,... ,t> T + kr 

(2.8) wM (t) = pwk(t - r) exp ( ^ wk(s) ds) + £ 4/(0 e x p ( / _ a
 w ^ ) * ) ' 

and /ii = 0, and for k = 1,2,... 

f 1 JL rt+l ) 

(2.9) /xfc+1 = inf min W * T + - £ ^ / <?;(*)ds . 

We claim that the following inequalities hold: 

i) 0 = /zi </z2 < •••; 
ii) w*(0< w(t)fort>T + (k- l)randfc = 1,2,...; 

iii) \ ft
+l wk(s)ds > fik fort> T+(k+ l)r, k = 1,2,..., and £ = r,au . . . ,an. 

In fact, since \ii > Mi = 0, and wi(Y) < w(0 for f > T, by induction we see i) and ii) 
are true. We now show that iii) also holds. Clearly iii) is true for k = 1. Assume iii) is 
true for some k. Then (2.8) and (2.9) imply that for t > T + kr, I =T,a\,...,an 

1 ft+i p rt+i f rs \ 

7 Jt w*+i (•*) ds= 1 jt
 W^S ~ T) e x P ( j ^ w*( f l) ^ J * 

+ 7 è /+ £ *«•(*) e x p(£ a (
 w ^ ) ^ ) * 

> inf min P M t e« T + - £ e""" / ?,•(*) * 

— Mfc+1-

Hence iii) holds. 
Let /i* = lim^^oo /i*. From (2.7) and (2.9) there exists an a > 1 such that /i£+1 > a\ik, 

k— 1,2,..., and this means that /i* = oo. 
By ii) and iii) we have that lim^oo Jj+CT] w(s) ds = oo, and so 

/
t-\—L 

w(s) ds — oo. 

Integrating both sides of the equation w(t) — — ̂  from tto t + ^ for £ sufficiently large 
we get 

——- = exp / wis) ds 
2 

Thus 

z(t) 
— = ex 

z(t) 
(2.10) limsup rr— — oo. 

t—^-oo 

Since 
n 

z'(f) = - J2 1i(t)x(t - *i) < -?*(* - o-i) < -qz(t - a i ) , 
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integrating both sides from t+ a\/2to t +a\ and using the decreasing nature of z(t) we 
find for t sufficiently large 

Thus 

0 < * + a i ) < z ( / + y ) - ^ z ( 0 . 

z(t) < 2 

contradicting (2.10). This completes the proof. • 

THEOREM 2.2. Assume (2.2) holds and there exist a ji* > 0 and aT > to such that 
for I =T9a\,...,(Tn 

r 1 n rt+t 1 
(2.11) sup / ^ T + - E ^ f f i qte)ds\ < 1, 

t>Tl ^M i=\ Jt J 

77z£ft (2.1) has a positive solution on [T + r, oo). 

PROOF. First we claim that the integral equation 

(2.12) v(0 = pv(t - r) exp( f v(s) ds) + jh qt(t) exp( f v(s) ds) 

possesses a positive solution on [T + r, oo). To this end set 

vi(0 = 0, t>T9 

and for k = 1,2,... 
(2.13) 

v*+i (0 

= I />v*(f - r) exp(j/_T vk(s) ds) + E?=1 qt(t) exp(j?_(T|. v*(s) &), f > 7 + r 
[0k+dt), T<t<T + r 

where {/?*} are given function sequence satisfying 
i) ^ G C 2 ( [ r , r + r ) , [ 0 , o o ) ) w i t h ^ > 0 a n d ^ ( 0 > 0 , r G [ r , r + r ) , ^ = 1,2,..., 

ii) pk(t) = 0, t G [7\ T + r - r], /3*(r + r) = v*(r + r), and f3k(t) are increasing in k 

fort e [T+ r-r,T + r) and/: = 1,2,..., 
iii) for every I = r, CTI,..., an, for t G |T + r — £, 7 + r), & = 1,2,..., 

/ pk(s)ds< vk(s)ds. 
Jt Jt+e 

Obviously, v\(t) < V2(t) < • • •. By induction we will show that for k — 1,2,... and 

I =T,(Tu...9(Tn 

(2.14) - r\k(s)ds<ii\ t>T. 
I Jt 
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In fact, (2.14) is true for k = 1. Assume (2.14) is true for some k. Then from (2.11) 
and (2.13) we have for t > T + r, I = r, o\,... ,an 

(2.15) 
n rt+? / /*.? \ 1 " rt+l 
r ,. / „ _ \ _ _ / / .. / / ) \ J/) \ J„ . V ^ / f /'+ V*(S ~ T) e X P ( £ r V*(0) ̂ ) ^ + J T> f qi{S) eXP{lL Vk(0) M) dS 

< Pit*e"'T + \ £ êCa> r qi(s) ds < 

For every t =T,O\,..., a„, for / G [T + r — I, T + r), from (2.15) and condition iii) for 

I rt+t 1 r rT+r rt+l -i 

T ^ v*+1 (0 = T [ /f /?*+1 (s) ds + y ^ v̂ + ! (s) ds^ 

1 rr+r+f 
<-JT+r vk(s)ds<n\ 

From the monotonie property of (5k+\ (t) with respect to t we see that (2.14) also holds for 
te [T,T+r- OJ = T,au...,(Tn. 

Let v(t) = lim^oo v*(0- Then v(t) = 0, r G [7, 7 + r — r], v(t) is increasing on 
[7 + r — r, 7 + r) and for / > 7 and £ = r, a i , . . . , an, 

1 /*+£ 

- jt v{S)dS<fi\ 

Taking limits as k —> oo on both sides of (2.13), from Lebesgue monotone convergence 
theorem we see that v(t) satisfies (2.12) for t > T + r. It is also easy to see that v(t) is 
well-defined on [7, oo). In fact, by condition ii) of {(3k}, 

n / rT+r \ 

v(T+r) = J2 ̂ T + r) exp / v(s) ds 
~ j \JT+r—(Ji J 

<J2^(T+r)e^Œl : = M < o o , 
i=i 

and hence v(t) < M for t G [T,T + r]. If v(f) = oo for some t* > T + r, then choose 
an integer m such that f — mr G [7 + r — r, 7 + r). By (2.12) we have v(f* — mr) = oo. 
This is impossible. Furthermore, from condition i) of {/3k} we get that v(t) is continuous 
on [7, T + r], and in view of (2.12) we see that v(t) is continuous on the whole interval 
[7, oo). Thus v(t) is a positive solution of (2.12) on [7 + r, oo). Set 

x(t) = expf — /" v(s)dA t>T+r. 

Then x(0 is a positive solution of (2.1 ). • 

REMARK 2.1. Theorems 2.1 and 2.2 partially improve the criteria given by Result 3 
since in (2.7) and (2.11) the "integral averages" of functions are used instead of the func­
tions themselves. Both the theorems are sharp since together they give the following 
result which extends Results 1 and 2. 
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THEOREM 2.3. Assume (2.2)-(2.4) hold, and E-L i e^1 ft
+[ qt(s) ds is a nondecreas-

ing function in tfor I — r, a\,..., an. Then (2.1) is oscillatory if and only if for all [i > 0, 
and for I — T,O\,. . . , or an 

lim 
t—->oo 

1 n rt+(> 

III ~1 Jt 
> 1. 

PROOF. Denote 

1 JL rt+t 
f(t, /i, £) = pe^T + — £ e^ r qt(s) ds. 

From the condition we see that lim/_00/(f,/i, £) exists for £ = r , a j , . . . ,aw. By 
Lemma 1.1 we have 

lim/(f,/i,T) = lim/(f,/i,(7i) = ••• = lim/(r,//,a„). 
/—>oo ?—>oo r—>oo 

In this case for £ =T,a\,...,(jn 

lim/(f, /i, £) = liminf/"(7, /i, £) = sup/(f, //, £). 
/—XX) ?—>00 , > T 

The conclusion is then immediate from Theorems 2.1 and 2.2. • 
As a special case, we have the following corollary. 

COROLLARY 2.4. Assume (2.2) and (2.3) hold, and there exists an I > 0 such that 
T — moi, ai = mii for some integers mu i — 0 , . . . , n. Furthermore, 

qiit) = gi(t) + ht(t\ i= l , . . . ,n 

where gi(t) are ^-periodic functions with j J/+£ gi(s)ds = g*, hi(t) are nondecreasing 
functions with lim^oo ht(t) — h*, i — 1, . . . , n. Then (2.1) is oscillatory if and only if for 
all fi > 0, 

pe**r + -J2e*Ti(<l* + h*)> L 

If qt(t) = 0 and ht(t) are constants, / = 1,. . . , n, then Corollary 2.4 becomes Result 1 ; 
if ht(t) = 0, / = 1,... ,rc, then Corollary 2.4 gives an extension to Result 2 since the 
requirement ox• — ir, i = 1, . . . , n is improved here. 

Theorems 2.1 and 2.2 will also yield necessary and sufficient conditions for some 
equations other than those satisfying the hypotheses of Theorem 2.3. To see this, we 
give the following example. 

EXAMPLE 2.1. Consider the equation 

1 
(2.16) ^[x(t)-px(t-r)] + 

dt 
1 - - ( 1 - s i n o W - < r ) = 0, t>2 
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where 0 < p < 1, r, a > 0. Let q(t) = 1 - y (1 - sin t). It is easy to see that for alH > 0 

1 rt+£ 1 rt+l\ 1 1 /*+« 1 r?+£r 1 1 
- / q(s)ds=- 1 (1 — sins) ufa —> 1, as£-^oo, 
l Jt I Jt L s J 

and 
1 rt+i 

sup - / #(s) ds = 1 
1 /*+£ 

According to Theorems 2.1 and 2.2, (2.16) is oscillatory if and only if for all // > 0 

/7^T + - e ^ > 1. 

3. Criteria for delay equations. Now we are going to extend the criteria in Sec­
tion 2 to the delay equation with variable delays 

(3.1) y 4 0 + £ gi(t)x(t - <7/(0) - 0 
at i=l 

under the assumptions 
(HI) qt(t)9 (ii(t) E C([r0, oo), [0, oo)), t - Oi(t) —* oo, as t —• oo, i = 1, . . . , n; 
(H2) 0 < $,•(*) < 4*, 0 < aft) < a\ i = 1 , . . . , n, where 4*, a* > 0. 

The following is a conjecture of Hunt and Yorke in [12] which was recently estab­
lished by Chen and Huang in [3]. 

RESULT 4. Under the assumptions (HI) and (H2), if for all \i > 0 

l iminfj-ê^W^0} > L 
r->cx) I /x -rj i 

then (3.1) is oscillatory. 
Employing the method in Section 2 we may obtain this as a consequence of the result 

below. Again, since the "integral average" technique is involved, they greatly improve 
Result 4. Under certain circumstances, they also yield necessary and sufficient condi­
tions. 

Denote 
1 n rt+P,(t) 

THEOREM 3.1. Let (HI) and (H2) hold, and for all \i > 0 

lim inf/(7, //, <7/(0) > 1, / = 1, . . . , n. 

TTzen (3.7) 15 oscillatory. 

THEOREM 3.2. Let (HI) and (H2) hold, and there exist fi > Oand T > t0 such that 

sup/(r, /x*, 07(0) < 1, / = 1, . . . , n. 
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Then (3.1) has a positive solution on [T\, oo) for some T\ > T. 

THEOREM 3.3. Let (HI) and (H2) hold with 0 < a* < G tit) < or*. Assume 
/U,/z, 07(f)) is a nondecreasing function in t for [i > 0 and i — 1,... ,n. Then (3.1) 
is oscillatory if and only //linv-^/^f, /i, 07(f)) > 1 for all [i > 0 and some i — 1,. . . , 
or, n. 

The proofs are basically the same as those of Theorems 2.1-2.3. Here we only give 
an outline of the proof of Theorem 3.1. Note also that Lemma 1.2 is needed in the proof 
of Theorem 3.3. 

PROOF OF THEOREM 3.1. Assume (3.1) has an eventually positive solutionx(t). From 
(3.1) there exists to > 0 such thatx(t) > 0,jt'(f) < 0, t > to. Denote a sequence {f*},_ n 

by 
tic — supjf : min {t — 07(f)} < —̂ 1} 

1 i=\,...,n ' 

Then tk > f*_i, k>\. Let w(t) = - ^ . From (3.1) 

(3.2) w(f) = Y qt(t) expf f w(s) ds), t> fj 
~[ \Jt-ai(t) J 

We now define a sequence of functions {w^iO} and a sequence of numbers {/^} as 
follows: 

wi(r) = 0, t>t0 

and for & = 1,2,... 

Wk+i = J21i(t) exp( f wk(s) ds), t> tk\ 
1—1 \Jt—Oj(t) / 

and /ii = 0, and for k = 1,2,... 

W + 1 = i n f min - ^ ^ y <*w <fo 
?>?0 t = a\,...,(Tn { 1(0 i=[Jt 

Similar to the proof of Theorem 2.1 we can show that for £(t) = a\ (f), ...,an(t) 

1 rt+m 
/ H>t(.s) ds > lit —> 00, as A: —> 00 

and w(f) > wk(t) for f > tk, k = 1,2, Hence for £(f) = cri(r),..., an(t) 

1 /*+W) 
(3.3) —— / w(s)ds-^ 00, a s f ^ o o . 

i(t) Jt 

From Theorem 1 in [11] we get that 

liminf max {g;(f)07(f)} > 0, 
r—»oo 1 </<n 
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and that if we let q(t) = qj(t), a(t) — o/(0 be such that for each t 

qj(t)(Jj(t) = max{qi(t)<Ti(t\ i= 1 , . . . , n}, 

then 0 < q* < q(t) < q* and 0 < a* < o{t) < a*. From (3.3), ^ ft
+a{t) w(s) ds -* oo as 

t —> oo, hence J/+a* w(» ds —-+ oo as £ —> oo. Therefore, 

lim sup / w(s) ds = oo. 

Noting that 

n 

x\t) = - J2 qt(t)x(t - (Ti(tj) < -q(t)x{t - a{t)) < -q*x(t - a*), 

the rest of the proof is similar to that of Theorem 2.1. • 

REMARK 3.1. It can be shown that Theorems 3.1-3.3 still hold if we replace (H2) 
by: 

(H3) there exists a nonempty subset / of the set { 1 , . . . , n} such that o(t) = min{<7/(0, 
/ G /} satisfying t — <j(t) —> oo as t —•> oo, 

lim inf cr(t) = ŒQ > 0 
t—•oo 

and 

lim inf / ]T qt(s) ds > 0. 
r-̂ oo Jt—a0 ieI 

The corresponding results are improvement of Theorem 2 in [3]. 

4. Comparison results. Using the above theorems we can derive some compari­
son results for oscillation and for the existence of nonoscillatory solutions for a pair of 
equations. Here we will only mention the results based on the theorems in Section 2. 
Parallel results based on the theorems in Section 3 are obtained in a similar fashion. This 
is left to the interested reader. 

Consider two equations 

(4. 1 ) ^ WO - px(t - r)] + £ qMx(t -cri) = 0 
at i=] 

and 

(4.2) ^ WO - px(t - f)] + È Ut)<t - ad = 0. 
at i=l 

Assume (2.2)-(2.4) hold for both the sets {g;(0}?=i a nd {<7/(0}JLi • Furthermore, assume 
the conditions for qt(t\ i = 1 , . . . , n, in Corollary 2.4 hold. 
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THEOREM 4.1 . i) Suppose (4.1) is oscillatory, andp > p , f > r, and for all p > 0, 
I — f , a i , . . . ,&n 

(4.3) liminf - f e^ F" qt(s) ds>£ e™(<?* + />*). 

Then (4.2) is oscillatory. 
ii) Suppose (4.2) is oscillatory, andp <p,f<T, and there exists a T > to such that 

for all p > 0, I = f, d\,..., an 

(4.4) sup - £ e^ Fl qt(s) ds<it e^(q* + /**). 
t>T Z i=l -" ,= 1 

Then (4.1) is oscillatory. 
Hi) Suppose (4.2) is nonoscillatory, and p > p , f > T, and for all p > 0, I — 

f, d\,..., dn, (4.3) holds. Then (4.1) has a nonoscillatory solution, 
iv) Suppose (4.1) has a nonoscillatory solution, and p < p , f < r, and there exists 

aT > to such that for all p > 0, I = f, â\,..., ân, (4.4) holds. Then (4.2) has a 
nonoscillatory solution. 

PROOF, i) Since (4.1) is oscillatory, by Corollary 2.4 we have for all p > 0, 

pe^ + -±e^(q* + h*)>\. 
M /=i 

Then (4.3) gives that for all p > 0, I = f, d\,..., dn 

lim inf \pëlT + — V em / qfa) ds\>\. 
' — K X > L £p ~[ Jt J 

By Theorem 2.1, (4.2) is oscillatory. 
ii) If not, (4.1) has a nonoscillatory solution. By Corollary 2.4 there exists a p* > 0 

such that 

pe»"T+-^J:e»'°'{q* + h*)<\. 
M i=\ 

Then (4.4) gives that for all p > 0, l = f,â\,...,an 

s u p [ ^ v > ^ X > ^ FlUs)ds\ < 1. 
t>T L tp* fr[ Jt J 

By Theorem 2.2, (4.2) has a nonoscillatory solution, contradicting the assumption, 
iii) and iv) are the converses of i) and ii). • 
Theorem 4.1 provides criteria for oscillation and for existence of nonoscillatory so­

lutions for a certain class of equations by means of a comparison with equations having 
constant, periodic or even aperiodic coefficients. The criteria are given by investigating 
the "integral averages" of the coefficients qt over an interval of length £, and can be eas­
ily verified. It is clear that Theorem 4.1 substantially improves Theorems 2 and 3 in [12] 
under the conditions (2.2)-(2.4) since the latter are only very special cases of parts ii) 
and iv) in Theorem 4 .1 . 
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5. Explicit conditions for oscillation. We can also obtain some explicit conditions 
for oscillation from Theorems 2.1 and 3.1. As an example, we mention the result derived 
from Theorem 2.1. 

THEOREM 5.1. Assume (2.2)-(2.4) hold, and for t = T,<T\, ... ,an 

(5.1) l i m i n f £ £ ( 7 / qt{s)ds)pk(kr + cri) > - . 

Then (2.1) is oscillatory. 

PROOF. We show that (2.7) is true for all /x > 0, and then (2.1) is oscillatory by 
Theorem 2.1. 

For any /i > 0, if pe^T > 1, then (2.7) is obviously true. So we only consider the 
values of \i such that/?^ir < 1. From a well-known inequality we see that for \i > 0, 

(5.2) e^T+at) > ^(fa-+ tf.). 

So we have 

-E(7 / q^)ds)e^{\ -pen~x = - £ £ ( 7 / *,<*)& b V ^ 
n oo / J r?+£ x 

> E E 7 / #(s)ds)A(fcr+ *«). 

Then (5.1) implies that for £ = r, cri,... , on 

l i m i n f - è f l j ' + < qi(s)ds)e^(\ -pe^y1 > 1 

or 

liminf 4~ T\em [^ qt{s)ds > 1 - pêLT. 

Hence (2.7) holds for all \i > 0, and £ = r, <JI , . . . , crn, and the theorem is proved. • 
Theorem 5.1 gives a sharp condition for oscillation in the sense that for the constant 

coefficient case it coincides with our recent result in [5] and it is better than the corre­
sponding results in [2, 6, 7, 8, 13]. 

REFERENCES 

1. O. Anno and I. Gyori, Necessary and sufficient condition for oscillation of a neutral differential system 
with several delays, J. Differential Equations 81(1989), 98-105. 

2. Q. Chuanxi and G. Ladas, Oscillations of first-order neutral equations with variable coefficients, Monatsh. 
Math. 109(1990), 103-111. 

3. S. Chen and Q. Huang, On a conjecture of Hunt and Yorke, J. Math. Anal. Appl. 159(1991), 469-484. 
4. Q. Chuanxi, G. Ladas, B. G. Zhang and T. Zhao, Sufficient conditions for oscillation and existence of 

positive solutions, Applicable Anal. 35(1990), 187-194. 
5. L. Erbe and Qingkai Kong, Some necessary and sufficient conditions for oscillation of neutral differential 

equations, preprint. 

https://doi.org/10.4153/CJM-1994-013-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-013-9


NEUTRAL DIFFERENTIAL EQUATIONS 297 

6. M. K. Grammatikopoulos, E. A. Grove and G. Ladas, Oscillation of first order neutral delay differential 
equations, J. Math. Anal. Appl. 120(1986), 510-520. 

7. M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation and asymptotic behavior of higher 
order neutral equations with variable coefficients, Chinese Ann. Math. 3(1988), 322-337. 

8. M. K. Grammatikopoulos, G. Ladas and Y. G. Sficas, Oscillation and asymptotic behavior of neutral equa­
tions with variable coefficients, Rad. Mat. 2(1986), 279-303. 

9. E. A. Grove, M. R. S. Kulenovic and G. Ladas, Sufficient conditions for oscillation and nonoscillation of 
neutral equations, J. Differential Equations 68(1987), 373-382. 

10. , A Myskis-type comparison result for neutral equations, Math. Nachr. 146(1990), 195-206. 
11. Q. Huang and S. Chen, Oscillation of neutral differential equations with periodic coefficients, Proc. Amer. 

Math. Soc. 110(1990), 997-1001. 
12. B. R. Hunt and J. A. Yorke, When all solutions ofx' = — £ qix(t— r,-(r)) oscillate, J. Differential Equations 

53(1984), 139-145. 
13. G. Ladas and Y. G. Sficas, Oscillations of neutral delay differential equations, Canad. Math. Bull. 29(1986), 

438-445. 
14 , Oscillation of higher-order neutral equations,]. Austral. Math. Soc. Ser. (B) 27(1986), 502-511. 
15. G. Ladas, Ch. G. Philos and Y. G. Sficas, Oscillation in neutral equations with periodic coefficients, Proc. 

Amer. Math. Soc. 113(1991), 123-134. 

Department of Mathematics 
University of Alberta 
Edmonton, Alberta 
T6G 2G1 

https://doi.org/10.4153/CJM-1994-013-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-013-9

