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Abstract
Experimental studies have reported on the anti-inflammatory properties of polyphenols. However, results from epidemiological investigations
have been inconsistent and especially studies using biomarkers for assessment of polyphenol intake have been scant. We aimed to characterise
the association between plasma concentrations of thirty-five polyphenol compounds and low-grade systemic inflammation state asmeasured by
high-sensitivity C-reactive protein (hsCRP). A cross-sectional data analysis was performed based on 315 participants in the European Prospective
Investigation into Cancer and Nutrition cohort with available measurements of plasma polyphenols and hsCRP. In logistic regression analysis,
the OR and 95 % CI of elevated serum hsCRP (>3 mg/l) were calculated within quartiles and per standard deviation higher level of plasma
polyphenol concentrations. In a multivariable-adjusted model, the sum of plasma concentrations of all polyphenols measured (per standard
deviation) was associated with 29 (95 % CI 50, 1) % lower odds of elevated hsCRP. In the class of flavonoids, daidzein was inversely associated
with elevated hsCRP (OR 0·66, 95 % CI 0·46, 0·96). Among phenolic acids, statistically significant associations were observed for 3,5-dihydrox-
yphenylpropionic acid (OR 0·58, 95 %CI 0·39, 0·86), 3,4-dihydroxyphenylpropionic acid (OR 0·63, 95 %CI 0·46, 0·87), ferulic acid (OR 0·65, 95 %
CI 0·44, 0·96) and caffeic acid (OR 0·69, 95 % CI 0·51, 0·93). The odds of elevated hsCRP were significantly reduced for hydroxytyrosol (OR 0·67,
95 % CI 0·48, 0·93). The present study showed that polyphenol biomarkers are associated with lower odds of elevated hsCRP. Whether diet
rich in bioactive polyphenol compounds could be an effective strategy to prevent or modulate deleterious health effects of inflammation should
be addressed by further well-powered longitudinal studies.
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The aetiological role of chronic low-grade inflammation in the
development of a plethora of chronic diseases including CVD
and cancer has been long recognised(1,2). Targeting inflamma-
tion could therefore represent an effective approach for prevent-
ing onset of chronic diseases(3). Recent evidence has suggested
that inflammatory biomarkers such as high-sensitivity C-reactive
protein (hsCRP)(4) could be successfully modulated following
consumption of plant-originated foods such as whole grains,
fruits, vegetables, nuts and olive oil (Mediterranean-style
diet)(5,6). Plant-based foods contain high quantities of poly-
phenols, a large group of plant secondary metabolites with a
growing body of evidence indicating beneficial effects on overall
health(7). Studies exploring the link between polyphenols and
inflammation in vitro or in animal models have suggested
antioxidative and anti-inflammatory properties for specific
polyphenol compounds(8). However, to what extent these
results could be translated to free-living humans remains
unclear(9). Several epidemiological studies have evaluated the
association between intake of selected dietary polyphenols
and inflammatory biomarkers providing inconsistent evidence(10).
Interpretation of data from these studies is challenged by
measurement inaccuracies and inter-individual variability of

self-reported polyphenol intakes. Many ingested polyphenols
are absorbed in the gut and eventually transformed by the gut
microbiota and/or host tissues into metabolites that have been
used as biomarkers of intake(11). Measurements of polyphenols
and their metabolites in plasma could provide more reliable
estimates of exposure, yet studies employing biomarkers of
polyphenol intake have been scant and limited to evaluation of
specific polyphenol compounds(12–16).

The aim of the present analysis was to characterise the asso-
ciation between plasma concentrations of thirty-five polyphenol
compounds and state of low-grade inflammation asmeasured by
hsCRP taking into account various factors of potential influence
in a well-phenotyped cross-sectional sample from the European
Prospective Investigation into Cancer andNutrition (EPIC) cohort.

Methods

Study population and collection of blood samples
and data

EPIC is a multicentre prospective cohort of 521 330 participants,
aged≥35 years, whowere recruited in 1992–2000, predominantly

Abbreviations: EPIC, European Prospective Investigation into Cancer and Nutrition; hsCRP, high-sensitivity C-reactive protein.
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from the general population of ten European countries, including
France, Italy, Spain, the UK, The Netherlands, Greece, Germany,
Sweden, Denmark and Norway(17).

The flow chart of study population selection for the present
analysis is described in online Supplementary Fig. S1. Among all
EPIC participants, 387 889 provided blood samples. Among
these, 5235 participantswhowere alive and free ofmajor chronic
diseases, that is, cancer, served as healthy controls in previous
analyses where concentrations of hsCRP(18) and polyphenols(19)

have been measured. Among these, 4061 participants were
excluded due to missing hsCRP measurements, leaving
a sample of 1174 participants. Of them, further 859 participants
were excluded due to lack of available polyphenol measure-
ments, providing a final analytical study sample of 315
participants.

As previously reported, blood samples were collected
according to standardised procedures and stored at the
International Agency for Research on Cancer (−196°C, liquid N2)
for all countries except Denmark (−150°C, nitrogen-vapour)
and Sweden (−80°C, freezers)(17). Participants completed stand-
ardised questionnaires on socio-demographic and lifestyle
characteristics and personal history at recruitment, andmost par-
ticipants also had anthropometric measurements and blood
samples taken at recruitment before disease onset or diagnosis.
Dietary intakes over the previous 12 months were assessed at
recruitment using validated country or centre-specific dietary
questionnaires(20). All participants provided a written informed
consent. Ethical approval for the EPIC study was obtained from
the review boards of the International Agency for Research on
Cancer (Lyon, France) and local participating centres.

Laboratory methods and reporting

Plasma hsCRP concentrations were measured using a high-
sensitivity assay (Beckman-Coulter) on a Synchron LX-20 Pro
autoanalyser (Beckman-Coulter)(18). The interassay CV were
6·0 and 6·5 % at hsCRP concentrations of 1·16 mg/l and
1·89 mg/l, respectively. Plasma polyphenol measurements for
thirty-five compounds were performed using a highly sensitive
method based on differential isotope labelling with (13)C- and
(12)C-dansyl chloride by tandem MS(21). Limits of quantification
for the polyphenols varied between 0·11 nmol/l for apigenin and
44·4 nmol/l for quercetin. Intra-batch CV varied between 2·3
and 9·0 %. Inter-batch CV were <20 % for all except for querce-
tin, gallic acid, hydroxytyrosol and enterodiol.

Statistical analysis

Differences in medians of hsCRP and polyphenol concentrations
according to participant characteristics were assessed using
Wilcoxon–Mann–Whitney test for dichotomous variables and
Kruskal–Wallis test for variables with more than two categories.
Participants with missing values in any of the polyphenol
subclasses or hsCRP were excluded, while missing values in cat-
egorical adjustment variableswere placed in a separate category.

Right-skewed data distributions were standardised using
box-cox transformations. Values of plasmatic polyphenol
concentrations were z-transformed for analysis according to
standard deviations and back-transformed to natural units for

presentation in text and tables. Several compounds, including
gallocatechin, epigallocatechin, phloretin and gallic acid ethyl
ester, were excluded from statistical analysis because of a too
limited number of values above the limit of detection (<5 %).
A variable ‘combined polyphenols’ was created based on the
sum of plasma concentrations of all polyphenols measured in
the study sample.

Geometric means and 95 % CI of hsCRP by plasma
polyphenol concentrations were estimated using ANCOVA.
Statistical tests for trend for a given polyphenol were calculated
using the ordinal quartile entered into the models as a continu-
ous variable. Covariates for the multivariable-adjusted analyses
were chosen a priori based on reported associations with circu-
lating hsCRP in the literature. The variable list included age, sex,
country, education, smoking status, alcohol intake, red and proc-
essed meat consumption, fibre consumption, fish and shellfish
intake, physical activity, BMI, waist circumference, prevalent
diabetes and cardiovascular problems(22–28). In logistic regres-
sion analysis, ‘elevated hsCRP’was defined as response variable
dichotomised based on established cut point of hsCRP ≥ 3mg/l
v. hsCRP <3mg/l denoting individual chronic inflammatory
status(4). The OR and 95 % CI of elevated hsCRP were calculated
within quartiles of polyphenols distribution and per SD increase
of polyphenol concentrations. To test for non-linearity, we fitted
restricted cubic splines, at the 10th, 50th and 90th percentiles of
polyphenol concentrations, to the fully adjusted logistic regres-
sion models and used the Wald χ2 test.

To identify major dietary predictors of circulating polyphenol
concentrations in our study sample, we applied a variable
selection using adaptive least absolute shrinkage and selection
operator regression model with ‘combined polyphenols’ as
dependent variable and reported individual food intakes
(n 212) as independent variables. Least absolute shrinkage
and selection operator is a penalised regression method proven
to outperform traditional regression methods (i.e. stepwise and
forward selection) when there are correlated predictors or when
the number of predictors is large as in our study. SBCwas used as
a tuning method to build a model using adaptive least absolute
shrinkage and selection operator regression. As a next step,
β-coefficients and 95 % CI between the variable ‘combined
polyphenols’ and the identified best set of dietary predictors
were calculated in linear regression analysis.

In sensitivity analyses, main associations were evaluated
excluding participants with polyphenol concentrations in the
highest and lowest percentile, women using hormone replace-
ment therapy (n 22) and individuals whose waist circumference
was imputed (n 11). Analyses were also repeated excluding
participants with hsCRP≥ 10 mg/l (n 18) potentially indicating
acute inflammatory response. Statistical tests were considered
to be significant when P< 0·05. All statistical analyses were
performed in SAS (Version 9.4, Enterprise Guide 6.1, SAS
Institute Inc.).

Results

In the present study, sample hsCRP ranged from 0·20 to
23·16 mg/l. In total, 113 participants (36 % of the sample) had
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hsCRP≥ 3 mg/l. Median hsCRP concentrations were higher in
women as well as in participants with reported CVD and type
2 diabetes and higher BMI and waist circumference at study
baseline compared with their counterparts (Table 1). hsCRP
concentrations were lower in participants with medium to high
fibre intake and high fish and shellfish intake (see Table 1). The
relative proportion of polyphenol subclasses and individual
compounds to the combined polyphenol variable is presented
in online Supplementary Fig. S2A and S2B, respectively.
Phenolic acids (75 %) and flavonoids (25 %) represented the
largest share of polyphenol subclasses, whereas caffeic acid
(16 %), 4-hydroxiphenylacetic acid (13 %) and quercetin
(13 %) had greatest share among individual polyphenols.

Median values of combined polyphenols were higher in
women and in participants free of CVD at study baseline (online
Supplementary Table S1). No substantial differences were
observed according to levels of physical activity, BMI and waist
circumference categories, fish and shellfish intake and country of
origin of EPIC participants (see online Supplementary Tables S1
and S2).

In multivariable-adjusted model, higher plasma concentra-
tions of combined polyphenols (modelled continuously per SD

higher concentrations) were associated with 29 (95 % CI 50,
1) % lower odds of elevated hsCRP (Table 2). Per SD higher
concentration, the OR of elevated hsCRP were 0·71 (95 % CI
0·44, 1·15) for flavonoids, 0·74 (95 % CI 0·54, 1·02) for phenolic
acids, 0·71 (95 % CI 0·52, 0·98) for lignans, 1·07 (0·78, 1·45) for
stilbenes (resveratrol only) and 0·88 (95 % CI 0·66, 1·17) for tyro-
sols (Fig. 1). For the majority of polyphenol concentrations
summed according to subclasses, the associations proved to
be linear, with the exception of resveratrol (P for non-linearity
> 0·05) (see Fig. 2). A more detailed inspection of analyses by
quartiles of resveratrol showed that the OR for elevated hsCRP
were 0·38 (95 % CI 0·15, 0·94), 0·86 (95 % CI 0·41, 1·82) and
0·79 (95 % CI 0·34, 1·83) in the second, third and fourth quartiles
compared with the first quartile, respectively (Table 2). Several
specific polyphenol compounds were statistically significantly
associated with lower odds for elevated CRP (Fig. 2). Such
associations were revealed for daidzein (flavonoid); ferulic
acid, caffeic acid, 3,4-dihydroxyphenylpropionic acid and
3,5 dihydroxybenzoic acid (phenolic acids); enterolactone and
enterodiol (lignans) and hydroxytyrosol (phenolic alcohol)
(online Supplementary Table S3). In spline regression analysis,
no pronounced deviation from linearity could be seen
for associations with majority of individual polyphenol
compounds (online Supplementary Fig. S3). Exceptions were
the associations with enterolactone (P non-linearity= 0·028),
3,4-dihydroxyphenylpropionic acid (P non-linearity< 0·001)
and m-coumaric acid (P non-linearity= 0·03).

The best subset of dietary predictors of combined plasma
polyphenol concentrations estimated based on adapted least
absolute shrinkage and selection operator regression model is
shown in Table 3. The model explained overall 23·4 % of the
variation in combined plasma polyphenol concentrations. In a
linear regression model, based on the best subset in which each
predictor was mutually adjusted for each other, significant pos-
itive associations were observed between plasma polyphenol
concentrations and the following dietary intake variables:

‘Pasta-like cereal-based products (not 100 % cereal)’; ‘Sauces
(not specified)’; ‘Tomato sauces’; ‘Kiwi’; ‘Tea’ and ‘Coffee’
(Table 3).

In sensitivity analysis, excluding participantswith polyphenol
concentrations in the highest and lowest percentile, women
using hormone replacement therapy (n 22) and individuals
whose waist circumference was imputed (n 11) did not substan-
tially affect main results (data not shown).

Discussion

In this cross-sectional analysis embedded within the EPIC
cohort, we characterised plasma concentrations of thirty-
five polyphenols in relation to hsCRP taking into account
various factors of potential influence. These analyses showed
that high plasma polyphenol concentrations were associated
with lower odds of elevated hsCRP. Among specific
polyphenol compounds, the associations have been most pro-
nounced for daidzein (flavonoid); ferulic acid, caffeic acid,
3,4-dihydroxyphenylpropionic acid and 3,5 dihydroxybenzoic
acid (phenolic acids); enterolactone and enterodiol (lignans)
and hydroxytyrosol (phenolic alcohol).

To the best of our knowledge, this is the first epidemiological
study to characterise potential anti-inflammatory properties of
multiple polyphenol compounds measured in human plasma
in a population-based sample of diverse European populations
characterised by high variation in food intakes. Previously, only
two small cross-sectional studies explored correlations between
CRP concentrations and individual polyphenols in blood mostly
focusing on compounds associated with coffee and tea intakes.
The first study conducted among Japanese healthy females
(n 57) showed that plasma chlorogenic acid was inversely
correlated with circulating CRP, whereas plasma total coffee
polyphenol and plasma caffeic acid were weakly inversely asso-
ciated with CRP(14). The second study also conducted in gener-
ally healthy Japanese females (n 57) suggested that plasma total
and individual catechins associated with green tea intake were
weakly to moderately associated with C-reactive protein(15).
Comparison of our findings with data from these studies is ham-
pered by the lower number of target compounds and differing
analytical techniques.

So far, several randomised control trials explored effects of
dietary interventions based on polyphenol-rich foods on CRP
levels, thereby conducting measurements of plasma polyphenol
concentrations at pre- and post-intervention period. Results from
two randomised control trials conducted in German(16) and
Finnish(13) study participants showed no evidence of correlation
between relative changes in plasma flavanols (i.e. quercetin and
kaempferol) and changes in CRP. In contrast, a randomised con-
trol trial that evaluated intervention with soya supplements
showed a strong inverse correlation between changes in specific
flavonoids (i.e. daidzein) and changes in CRP(12). However,
when polyphenol compounds such as hydroxytyrosol(29) and
daidzein(30) were administered as dietary supplements in rand-
omised control trial studies, no effect on CRP could be observed.
The discrepancy between observational and experimental
epidemiological studies may be explained by the fact that
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Table 1. Serum high-sensitivity C-reactive protein (hsCRP) concentrations by participant characteristics (n 315)
(Numbers and percentages; medians and 25th and 75th percentiles)

Serum hsCRP (mg/l)

Variable n % Median 25th percentile 75th percentile P *

Sex
All 315 100·0 2·15 1·06 4·05 0·001
Male 116 36·8 1·65 0·76 3·19
Female 199 63·2 2·56 1·17 4·43

Age (years)
<40 5 1·6 2·33 1·73 2·81 0·21
40–49 41 13·0 1·65 0·56 2·61
50–59 143 45·4 2·25 0·97 4·33
60–69 120 45·4 2·15 1·14 4·27
≥70 6 1·9 2·72 2·15 7·02

Highest school level
Not specified 7 2·2 4·11 1·37 5·39 0·012
None 19 6·0 1·64 1·08 4·43
Primary school completed 123 39·0 2·62 1·44 5·16
Technical/professional school 69 21·9 1·77 0·76 3·17
Secondary school 47 14·9 2·42 1·09 3·84
Longer education 50 15·9 1·58 0·74 2·91

Diabetes mellitus
Not specified 25 7·9 1·83 1·06 3·63 0·67
No 276 87·6 2·21 1·07 4·05
Yes 14 4·4 2·47 0·88 6·49

CVD
Not specified 39 12·4 2·69 1·09 5·16 0·028
No 178 56·5 1·91 0·85 3·69
Yes 98 31·1 2·57 1·25 4·40

Smoking status
Not specified 1 0·3 3·76 3·76 3·76 0·87
Never 150 47·6 2·15 0·97 3·85
Former 96 30·5 1·98 1·10 4·08
Current 68 21·6 2·24 1·14 4·07

Alcohol consumption (g/d)
Non-drinkers 16 5·1 4·14 0·93 7·02 0·35
≤10 164 52·1 2·33 1·11 4·02
10–40 112 35·6 1·87 0·91 3·81
>40 23 7·3 2·19 1·31 3·90

Physical activity
Not specified 13 4·1 2·85 1·09 3·85 0·78
Inactive 31 9·8 1·62 0·97 3·90
Moderately inactive 91 28·9 2·48 0·90 4·65
Moderately active 148 47·1 2·17 1·12 3·79
Active 32 10·2 1·89 0·81 4·41

BMI (kg/m2)
<20 6 1·9 1·26 0·47 3·99 <0·001
20–24·9 112 35·6 1·77 0·66 2·90
25–29·9 151 47·9 2·31 1·11 4·24
≥30 46 14·6 3·14 1·83 5·65

Waist circumference (cm)
Men
<94 50 43·1 1·26 0·55 2·60 0·025
≥94 66 56·9 1·83 1·09 3·90

Women
<80 87 43·7 1·79 0·85 3·54 <0·0001
≥80 112 56·3 3·17 1·81 4·72

Total energy intake (kJ/d)
Men
≤10 460 72 62·1 1·83 0·83 3·69 0·43
>10 460 44 37·9 1·52 0·76 2·63

Women
≤8368 123 61·8 2·78 1·42 4·70 0·11
>8368 76 38·2 2·13 1·04 4·21

Total dietary fibre (g/d)
≤20 119 37·8 2·66 1·62 5·00 <0·001
20–30 151 47·9 1·91 0·89 3·87
>30 45 14·3 1·50 0·73 2·56
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polyphenol extracts used in supplementation and fortification
may lack the synergistic effects and health benefits of a diet
naturally rich in polyphenols. Our data specifically pointed to
polyphenol compounds that could be particularly bioactive
exerting anti-inflammatory properties. Among these, daidzein
has been known as one of the most common compounds
within the subclass of isoflavones(31). The chemical structure
of isoflavones resembles the structure of oestrogens, and main

food sources include soya and its processed products(32). In
our data, a strong anti-inflammatory link was further suggested
for the cinnamic acid derivatives of phenolic acids, including 3,4-
dihydroxyphenylpropionic acid, 3,5-dihydroxyphenylpropionic
acid, caffeic acid and ferulic acid. Caffeic acid has been described
as the most abundant phenolic acid which main source is coffee.
Coffee contains an ester known as chlorogenic acid that is largely
hydrolysed into caffeic acid in the gut(33). However, caffeic acid

Table 1. (Continued )

Serum hsCRP (mg/l)

Variable n % Median 25th percentile 75th percentile P *

Processed and red meat intake (g/d)
≤50 80 25·4 1·90 1·21 3·13 0·17
50–150 210 66·7 2·39 1·01 4·72
>150 25 7·9 1·54 0·82 2·62

Fish and shellfish intake (g/d)
Non-consumers 13 4·1 2·15 1·50 3·77 0·78
≤50 236 74·9 2·22 1·07 4·02
>50 66 21·0 1·96 1·02 4·05

* P values by Wilcoxon–Mann–Whitney test or Kruskal–Wallis test among subgroups for each variable.

Fig. 1. Risk for high-sensitivity C-reactive protein≥ 3mg/l per standard deviation increase of polyphenol concentrations. Models were adjusted for age, sex, country,
diabetes, cardiovascular problems, education, smoking status, alcohol intake, red and processed meat consumption, total fibre consumption, fish and shellfish intake,
total physical activity and BMI-adjusted waist circumference. Values are adjusted odds ratios, with 95 % confidence intervals represented by horizontal bars.
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Table 2. High-sensitivity C-reactive protein (hsCRP) concentrations and estimated risk for elevated hsCRP (>3mg/l) according to quartiles (Q) of polyphenol concentrations and per standard deviation increase
(Geometric mean values and 95% confidence intervals; odds ratios and 95 % confidence intervals)

Polyphenol subclasses

Quartiles of polyphenol concentrations

Q1 (n 78) Q2 (n 79) Q3 (n 79) Q4 (n 79)
Per SD increase of polyphenol

concentrations

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI Plinear trend OR 95% CI P

Combined polyphenols
hsCRP (mg/l)
Geometric mean 2·34 1·76 2·15 1·80 –
Model 1*† 2·32 1·81, 2·97 1·77 1·39, 2·27 1·99 1·58, 2·52 1·50 1·14, 1·97 0·12
Model 2*‡ 2·23 1·70, 2·91 1·68 1·28, 2·20 1·75 1·34, 2·28 1·34 1·00, 1·79 0·069
OR for hsCRP ≥3mg/l3 1·00 1·16 0·52, 2·60 0·57 0·25, 1·29 0·42 0·16, 1·11 0·038 0·71 0·50, 0·99 0·045

Flavonoids
hsCRP (mg/l)
Geometric mean 2·12 2·23 1·77 1·91 –
Model 1*† 2·02 1·40, 2·89 2·10 1·63, 2·71 1·85 1·43, 2·39 1·62 1·23, 2·15 0·51
Model 2*‡ 1·88 1·29, 2·73 1·99 1·52, 2·61 1·71 1·29, 2·25 1·41 1·04, 1·91 0·24
OR for hsCRP ≥3 mg/l3 1·00 0·86 0·26, 2·87 0·74 0·22, 2·53 0·43 0·12, 1·59 0·10 0·71 0·44, 1·15 0·17

Phenolic acids
hsCRP (mg/l)
Geometric mean 2·11 2·14 1·84 1·92 –
Model 1*† 2·18 1·69, 2·81 2·10 1·65, 2·68 1·72 1·36, 2·17 1·65 1·27, 2·15 0·30
Model 2*‡ 2·13 1·62, 2·79 1·91 1·47, 2·48 1·61 1·23, 2·09 1·40 1·06, 1·86 0·11
OR for hsCRP ≥3mg/l3 1·00 0·82 0·37, 1·85 0·63 0·28, 1·43 0·28 0·11, 0·72 0·008 0·74 0·54, 1·02 0·066

Lignans
hsCRP (mg/l)
Geometric mean 2·59 1·92 1·99 1·61 –
Model 1*† 2·70 2·12, 3·45 1·86 1·46, 2·36 1·82 1·45, 2·29 1·45 1·14, 1·84 0·003
Model 2*‡ 2·34 1·80, 3·04 1·75 1·33, 2·29 1·63 1·26, 2·09 1·41 1·07, 1·84 0·028
OR for hsCRP ≥3mg/l3 1·00 0·53 0·24, 1·14 0·42 0·18, 0·95 0·34 0·15, 0·79 0·012 0·71 0·52, 0·98 0·034

Stilbenes (resveratrol only)
hsCRP (mg/l)
Geometric mean 2·32 1·63 1·97 1·9 –
Model 1*† 2·22 1·81, 2·72 1·46 1·09, 1·96 1·81 1·42, 2·31 1·78 1·38, 2·29 0·13
Model 2*‡ 2·06 1·64, 2·60 1·35 0·99, 1·84 1·67 1·28, 2·19 1·61 1·20, 2·16 0·12
OR for hsCRP ≥3mg/l3 1·00 0·38 0·15, 0·94 0·86 0·41, 1·82 0·79 0·34, 1·83 0·95 1·07 0·78, 1·45 0·69

Tyrosols
hsCRP (mg/l)
Geometric mean 1·89 2·27 2·07 1·8 –
Model 1*† 1·92 1·50, 2·45 2·16 1·69, 2·76 1·84 1·44, 2·34 1·75 1·38, 2·22 0·63
Model 2*‡ 1·81 1·39, 2·35 1·85 1·40, 2·43 1·76 1·34, 2·32 1·64 1·27, 2·13 0·90
OR for hsCRP ≥3mg/l3 1·00 1·03 0·48, 2·25 0·80 0·36, 1·80 0·58 0·26, 1·31 0·15 0·88 0·66, 1·17 0·38

* Values are geometric means (n 315).
† Adjusted for age, sex, country and total energy intake
‡ Adjusted for age, sex, country, diabetes, cardiovascular problems, education, smoking status, alcohol intake, red and processed meat consumption, total fibre consumption, fish and shellfish intake, total physical activity and BMI-adjusted
waist circumference.
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also accounts for over 75 % of the total hydroxycinnamic acid
content of fruits(34). Major sources of caffeic acid include blueber-
ries, kiwis, plums, cherries and apples, as well as specific herbs
and spices(44). 3,4-Dihydroxyphenylpropionic acid also known
as dihydrocaffeic acid is a metabolite identified in human
plasma after ingestion of caffeic acid(36) but can also be formed
from other polyphenols such as catechin present in foods and
beverages such as tea, cocoa and wine. Ferulic acid is the most
abundant phenolic acid found in cereal grains mostly present in
their outer parts(34). Maize flour, whole-grain wheat, rice and oat
flours are known as main dietary sources of ferulic acid. Coffee
may represent another dietary source of ferulic acid concentra-
tion(33). 3,5-Dihydroxyphenylpropionoic acid is a metabolite of
alkylresorcinols, associated with whole-grain wheat intake(35).
Tyrosol (4-hydroxyphenylethanol) and hydroxytyrosol (3,4-
dihydroxyphenylethanol) are the main phenolic alcohols con-
tained mainly in extra virgin olive oil but are also present in
red and white wines and beer(36). In particular, hydroxytyrosol
is found in red wine and is additionally produced in vivo after
red wine ingestion(36). Finally, our analysis pointed to anti-
inflammatory properties of enterolactone and enterodiol repre-
senting the class of lignans. They are formed from dietary lignans
found in relatively low concentrations in various seeds, grains,
fruits and vegetables and in higher concentrations in sesame

and flax seeds(37). They have been widely studied for their
oestrogenic properties and were defined for this reason as
phyto-oestrogens. Interestingly, our analysis revealed a specific
J-shaped association between resveratrol and inflammatory sta-
tus such that moderate resveratrol levels were associated with
lower odds for elevated hsCRP. In contrast, very low levels
and very high levels of resveratrol have been found associated
with elevated inflammation levels. This finding could provide a
curious parallel with the known J-shaped association for wine
consumption and health outcomes(38). Indeed, moderate wine
consumption is a characteristic of the Mediterranean diet, and
studies around the world have shown a beneficial effect of mod-
erate wine on human health(39). Whether consuming moderate
amounts of resveratrol could provide a key for achieving optimal
inflammatory state and lower risk of chronic diseases should be
further evaluated. Overall, our data add to the increasing line of
evidence from basic research on anti-inflammatory properties of
polyphenols. Potential mechanisms explaining this link include
(a) acting as an antioxidant or increasing antioxidant gene or
protein expression, (b) attenuating endoplasmic reticulum stress
signalling, (c) blocking pro-inflammatory cytokines or endo-
toxin-mediated kinases and transcription factors involved in
metabolic disease, (d) suppressing inflammatory or inducing
metabolic-gene expression via increasing histone deacetylase

Fig. 2. Odds ratios and 95%confidence interval function for high-sensitivity C-reactive protein (hsCRP) ≥ 3mg/l estimated by a restricted cubic spline function with three
knots at the 10th, 50th and 90th percentile of concentrations of total polyphenols and polyphenol classes. Models were adjusted for age, sex, country, diabetes, cardio-
vascular problems, education, smoking status, alcohol intake, red and processed meat consumption, total fibre consumption, fish and shellfish intake, total physical
activity and BMI-adjusted waist circumference. Nonlin., non-linear.
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activity and (e) activating transcription factors that antagonise
chronic inflammation(40). More specifically, polyphenols that
manifested an inverse association with hsCRP in our data, that
is, daidzein, caffeic acid and its derivatives, enterolactone and
enterodiol and hydroxityrosol, were shown to suppress the pro-
duction of pro-inflammatory mediators by inhibiting their activ-
ity or gene expression through down-regulation of
transcriptional factors such as NF-κB(41–46). Enterolactone and
enterodiol were also shown to pass the intestinal barrier and
directly modulate cytokine production(44), whereas hydroxytyr-
osol was further suggested to exacerbate improvement in the
antioxidant potential of plasma(46).

It should also be noted that the metabolites present in blood
circulation result from digestive and hepatic activity and sup-
posedly differ from the native compounds, and the complex
interaction with individual gut microbiota and metabolism
should be taken into account when interpreting human study
data(47). The bioavailability may differ greatly among the vari-
ous polyphenol compounds, and the most abundant ones in
human diet would not be necessarily those that have the best
bioavailability profile. Nevertheless, high plasma concentra-
tions of polyphenol metabolites could reflect regular and
frequent consumption of plant products. Based on dietary data
collected in the EPIC cohort, main foods that predicted
concentrations of combined polyphenols included specific
pasta-like cereal-based products and sauces (i.e. soya sauce
and tomato sauce), coffee and tea. Among fruits, only kiwi
was retained in the model. A polyphenol-rich dietary pattern
with dense bioactive nutrient composition could have strong
anti-inflammatory effect, and further methodological work
would be warranted to develop and evaluate preventive
potential of such a dietary approach.

A major strength of our study is the comparatively large num-
ber of polyphenols investigated spanning all major classes found
in the diet. We were able to simultaneously quantify concentra-
tions of thirty-five polyphenols by applying a newly developed
analytical method(21). The measurement of plasma concentra-
tions of polyphenols represents a snapshot of internal exposure
to these compounds that could originate from several dietary
sources directly or their precursors. Thus, any potential bias

using exposure measurements from questionnaire-based data
acquisition is circumvented. Another strength of our study is that,
comparedwith previous studies, we considered a large variety of
covariates in the association of plasma polyphenols and hsCRP.
Further, we were able to explore associations across study sub-
jects of different lifestyle and dietary habits in nine different
countries. As compared with characteristics of the full EPIC
cohort, no indication of selection bias could be seen(17). The
key limitation of our study is its cross-sectional design, which
precludes making inferences regarding causality. Furthermore,
because of the observational nature of the study, the possibility
of residual confounding cannot be avoided. Both polyphenols
and hsCRP were measured in single plasma samples from base-
line, meaning that intra-individual variations in circulating con-
centrations of these biomarkers were unaccounted for(34).
hsCRP concentrations, on the other hand, have been shown to
be relatively stable in previous studies of non-diseased people,
with an intra-class correlation coefficient of 0·67 over a 4-year
period(48). The variability in these measures could have biased
the results towards the null. Our results are restricted to the mea-
sured polyphenol compounds and do not provide full picture on
full polyphenol metabolome.

In summary, the present study revealed that high plasma
polyphenol concentrations were associated with lower odds
of elevated hsCRP. Among specific polyphenol compounds,
the associations have been most pronounced for daidzein,
ferulic acid, caffeic acid, 3,4-dihydroxyphenylpropionic acid
and 3,5 dihydroxybenzoic acid, enterolactone, enterodiol and
hydroxityrosol. Whether diet rich in polyphenol compounds
could be an effective strategy to prevent or modulate deleterious
health effects of inflammation should be addressed by further
well-powered longitudinal studies.
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