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The field of C∗-algebras has been influential because of its close relationship to
mathematical physics and geometry and its deep classification programme. Graph
algebras (see [8, 9]) which are based on graph theory provide a large class of examples
of C∗-algebras which are classifiable. The advantages of graph algebras are that the
structure of a graph C∗-algebra, including the ideal structure and the K-theory, can be
read off directly from the underlying graph.

Many authors have studied various generalisations of graph algebras. On the
one hand, Kumjian and Pask in [7] constructed k-graph algebras which are the
higher-dimensional version of graph algebras. On the other hand, Deaconu in [1]
investigated topological graph algebras which are the continuous version of graph
algebras associated with single local homeomorphisms of second countable locally
compact Hausdorff spaces. Katsura gave a complete concept of topological graph
algebras in [3–6].

Twisted C∗-algebras, which incorporate suitable cohomological data into the
existing construction of C∗-algebras, provide new examples of C∗-algebras frequently
exhibiting strong connections with the twisting cohomology data. The survey
paper [13] provides many interesting examples and gives a detailed motivation for
studying twisted C∗-algebras. For graph algebras, it seems that there are two
interesting types of twisted C∗-algebras. On the one hand, Kumjian et al. in [10, 11]
studied twisted k-graph algebras. On the other hand, Deaconu et al. in [2] investigated
twisted groupoid C∗-algebras obtained from single local homeomorphisms.

In my PhD thesis, I incorporate a 1-cocycle from the sheaf cohomology group
into Katsura’s topological graph algebra and obtain a new C∗-algebra which is called
the twisted topological graph algebra. I provide examples to demonstrate that the
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twisted topological graph algebras can differ from the untwisted ones. I investigate the
twisted topological graph algebra by introducing a new type of representation called a
covariant twisted Toeplitz representation and showing that the Cuntz–Pimsner algebra
of the twisted graph correspondence is generated by a universal covariant twisted
Toeplitz representation of the graph. I expand on Katsura’s ideas to prove fundamental
results about the twisted topological graph algebra. In particular, I establish a version
of the Cuntz–Krieger uniqueness theorem and study the ideal structure for the twisted
topological graph algebra.

The construction of twisted topological graph algebras includes the twisted
groupoid C∗-algebras in [2] and gives a complete twisted theory for Katsura’s
topological graph algebras. Another remark is that when applying the constructions
of twisted k-graph algebras or twisted topological graph algebras to one-dimensional
discrete graphs, one will only gain ordinary graph algebras.

A succinct account of the construction of twisted topological graph algebras can be
found in the paper [12].
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