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ON THE LATTICE OF RIGHT IDEALS OF THE
ENDOMORPHISM RING OF AN ABELIAN GROUP

THEODORE G. FATICONI

Let A be an abelian group, let A = End (A), and assume that A is a flat left A-module.
Then <r = { right ideals / C A | IA = A] generates a linear topology on A. We prove
that Hom(A, •) is an equivalence from the category of those groups B C An satisfying
B = Hom(A, B)A, onto the category of <r-closed submodules of finitely generated free
right A-modules. Applications classify the right ideal structure of A, and classify torsion-
free groups A of finite rank which are (nearly) isomorphic to each A-generated subgroup
of finite index in A.

0. INTRODUCTION

Modern investigations of direct sum decompositions of a torsion-free abelian group
A translate a direct sum decomposition of A into a direct sum decomposition of pro-
jective right End (A)-modules via the celebrated Theorem of Arnold and Lady [5,
Theorem 1.1]. Indeed, before the publication of the Arnold-Lady Theorem, progress
in this normally baffling area of abelian groups had been difficult at best. Subsequent
investigations have prompted the discussion of interesting properties of A which can
be stated in terms of End (A), but not necessarily in terms of direct sum decomposi-
tions of A . Attempts to apply the Arnold-Lady Theorem to investigations of these new
properties do not seem to possess the natural flavour inherent in earlier applications.
Specifically, there is a need for a subtler measure of the group structure of A in terms
of the right ideal structure of End (A).

The main result extends the Arnold-Lady Theorem as follows.

THEOREM. Let A be an E-flat abelian group, (that is, A is a Rat left End(A)-
module), and let S(A) denote the category of A-generated subgroups of finitely A-free
groups (that is, B £ S(A) imphes B — r\om(A,B)A and B embeds as a subgroup of
a finite direct sum of copies of A). Let J-(End(A)) denote the category of submodules
of finitely generated free right End (A) -modules which are closed in the linear topology
generated by a = { right ideals I of End (A) | IA = A} . Then Eom(A, •): S(A) -*

is a category equivalence with inverse • ®

This partial extension of the Arnold-Lady Theorem is enough to ensure intuitive
solutions to otherwise difficult problems. For example, call B £ S(A) finitely A-
generated if B = HA for some finite subset H C Hom(A, B) .
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274 " T.G. Faticoni [2]

COROLLARY 3.2A. If A is an E-flat group and if a = {End (A)} then End (A) is a
Noetherian ring if and only if each A -generated subgroup of B is a finitely A -generated

group.

THEOREM 4.1. End (A) is right semi-hereditary and A is an E-flat group if and

only if a = {End(.4)} and eacii finitely A-generated subgroup of A is a finitely A-

projective group.

COROLLARY 5.6. Let A be a torsion-free group of finite rank. Then End(A)
is a classical maximal order if and only if each nonzero A-generated subgroup of A
generates A .

Other results classify those torsion-free groups A of finite rank which are (nearly)
isomorphic to each .A-generated subgroup of finite index in A. (See Sections 5 and 6.)
Finally, Theorem 1.2 is valid for right modules A over more general associative rings.
Because our interests and applications focus on (torsiou-free) abelian groups, we forgo
the more general setting.

1. PRELIMINARIES AND THE MAIN THEOREM

Throughout this note-, the term group means abelian group. At all times, n denotes
a positive integer, A and B denote groups, and A = End(j4). Consider A as a A-Z-
bimodule, let UA(-) = Hom(A, •), let TA(-) = • <g>A A, and for sets H C HA(An) let
HA = J2 ^ - For torsion-free groups A we let Q̂ 4 = A®Q. The right A-submodule

H of HA(An) is called a homset if there is a subgroup B of An such that H = 7iA(B),
or equivalently, if H — 7iA(HA). The group B is (finitely) A-generated if there is a
(finite) set of functions H £ HA(B) such that B = HA. Note B is A -generated if
and only if B = 7iA(B)A. Finitely A-free groups are finite direct sums of copies of A,

and finitely A-projective groups are direct summands of finitely .A-free groups.

Let C(An) denote the lattice of A-generated subgroups of An, and let S(A) denote
the category of A-generated groups which embed in finitely A-free groups.

The reader is referred to [19, Chapters VI and IX] for a self-contained introduction
to linear topologies and torsion theories. However, our use of torsion theory does not
extend beyond Section 1.

Let a = cr(A) be the set of right ideals J of A such that IA = A. When A is
an E-flat group, (that is, when A is a flat left A-module), a is a Gabriel topology on
A, [19, Proposition VI.9.3 and p. 156], and thus a defines a hereditary torsion theory
and linear topology on right A-modules M as follows. If TA(M) = 0 then M is a
a -torsion module, and the largest cr-torsion module contained in M is the a-torsion

submodule of M. The A-submodule N C M is a-dense in M if M/N is a cr-torsion
module. Call M a cr-closed module if for each I £ cr the inclusion / C A induces an
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isomorphism

M S Hom A (A,M) S H o m A ( / , M ) .

There is a a -closed module Ma and map 9M'- M —> M a such that OM{M) is <7-dense

in Ma and ker#M is the cr-torsion subniodule of M, [19, Proposition IX.1.8]. We

will call Ma the a -closure of M. If M is a a -closed module and if N C M , then

iVa C A/ and N^/N is the cr-torsion submodule of M/N, [19, Proposition IX.4.2].

Let L(M) denote the lattice of a-closed submodules of M, and let .F(A) denote

the category of a-closed modules which embed in finitely generated free right A-viodules.

Observe that our use of the symbol ^{A) is radically different from that in [19].

LEMMA 1.1. Assume A is an E-flat group, and let H C be right A-submodules

ofHA{An). Then:

(a) H is a-dense in K if and only if HA = KA;

(b) 7iA(HA) is the a -closure of H ;

(c) H is <7 -closed if and only if H is homset.

PROOF: (a) Because A is an E-flat group, TA(-) is left exact. Thus an inclusion

M C HA(An) of right A-submodules induces the embedding

TA(M) -> TA(HA(AN)) s HA(An)A = An

where / <g> a G TA(M) is mapped to /(a) £ .4". Hence TA(M) = MA. Therefore

applying TA(-) to the short exact sequence 0 —» ff —» A' —> A'/if —» 0 shows that

i/A = A'A if and only if TA(X) is an isomorphism if and only if TA{K/H) = 0 if and

only if H is a -dense in A', [19, p. 156].

(b) Let / £ a. By part (a) TA(I) S TA(A). Then there are natural (adjoint)

isomorphisms

rlomA(I,HA(An)) S Hom(T^(/),An) £ Hom(T^(A), A") S HomA(A,7^(A"))

for each positive integer n. Thus 7iA(An) is a <T-closed module, and so H C #» C

WyifA"). By part (a) HA = HaA, so that Ha C HA{HA). Inasmuch as HA{HA)A =

HA, part (a) shows that H is cr-dense in 7iA(HA). Because Ha/H is the cr-torsion

submodule of HA{An)/H , HA{HA) = Ha .

(c) By part (b) H = HA(HA) if and only if H is a -closed. |

From Lemma 1.1c it is clear that A is a cr-closed module, and hence each finitely

generated projective right A-module is a -closed. However, for some values of cr and

A, a-closed modules need not be projective as the following shows. Let A be a reduced

torsion-free finite rank ring which is not right hereditary. Since A is not right hereditary,

there is a nonprojective right ideal / of A. By [8, Corollary 3.9] there is an E-flat group

A for which A = End (A) and a = {A} . In this case each right ideal of A is cr-closed,

so / is cr-closed.
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THEOREM 1.2. Let A be an E-flat group. Then:

(a) HA(-):S(A) -> .F(A) and Ta(-): T(h) -+ S(A) are inverse category

equivalences;

(b) For each positive integer ri, W(-): £(>ln) —» £(An) is a lattice isomor-

phism.

PROOF: (a) Let B G S(A) and let if £ ^ ( A ) . By Lemma 1.1c, HA(B) G
so that 7^(- ) : S{A) -+ .F(A) is well-defined. Given an embedding 0: H -» An =
WA(yln) , ^(/T) C W4(i4n) is a <r-closed module. Then by Lemma 1.1c 9(H) = HA(C)

for some C G £(̂ 4.™). Because TA(-) ls left exact

TA(6): TA(H) - T(ftA(An)) s An

is an embedding with image UA(C)A = C . Thus TA(H) £* C G £(^4"), and so
T>1(-): ^"(A) -» 5(i4) is well-defined.

Now, it is well-known that the map TA(7iA(B)) —> 5 sending /,® o G T^(?{^(5))
to / ( a ) G B is a natural homomorpliism. Since 5 is ^4-generated and since TA(-) is
left exact, TA(HA(B)) = W^(5)A = 5 a s in the proof of Lemma 1.1a. Thus TA{HA(-))

is naturally equivalent to the identity functor on S(A).

As above, an embedding H —* 7iA(An) has image 7iA{C) for some C G C(An),
and TJ4(W>i(C)) = C naturally. Because ff = HA(C) there are natural isomorphisms
HA(TA{H)) £ ^ ( ^ ( ^ ^ ( C ' ) ) ) = « A ( C ) = F . Thus WA(TA(- ) )

 i s naturally equiv-
elent to the indentity functor on ^ ( A ) . This proves that HA(-): S(A) —> ^"(A) is a
category equivelence with inverse T A ( - ) : -^(A) —* < (̂>i) •

(b) We identify An S H A ( A n ) . Define ft: £(An) -» C(HA{An)) by
HA(B), and /i': ^ ^ ( y l " ) ) -» £(vln) by h'{H) = / fA. Then given # G
Lemma 1.1c implies hh'(H) = 7iA{HA) = H , while each B G C(An) satisfies h'h{B) =

HA(B)A = B. Thus h is a bijection, and since h preserves inclusion, his a lattice
isomorphism. |

R e m a r k . By the comments preceeding it, Theorem 1.2 is a proper extension (for E-flat
groups) of the Arnold-Lady Theorem [5, Theorem 1.1].

The hypothesis that A must be an E-flat group is not as restrictive as it may
first appear to be. For example, by [8, Proposition 2.2] each strongly indecomposable
torsion-free group of rank two is an E-flat group, and by [8, Corollary 3.9] each reduced
torsion-free finite rank ring A is the endomorpliism ring of an E-flat group. For torsion
groups A there is the following example due to Ricliman and Walker [18]. Our proof
is somewhat simpler.

EXAMPLE 1.3. Let A be a torsion group.

(a) Let Ap be the p-torsion part of A. Then A is an E-flat group if and
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only if Ap is an E-flat group for each prime p 6 Z.
(b) Let A be a p -group. Then A is not an E-flat group if and only if

A = B © D where D ^ 0 is a divisible group and B is a bounded group.

(c) If A is an E-flat group then each subgroup of A is A -generated.

PROOF: (a) Since A = ®pAp as left A-modules, and since tensor products com-
mute with direct sums, the result is clear.

(b) Both implications are proved using the Proposition of [7]: A is an E-flat group
if and only if A generates the kernel of each map An —> A, n > 0 .

Assume A — B © D where D ^ 0 is a divisible group and B is a bounded group.
If Bpk = 0 then D[pk+i] (the kernel of the map sending x £ D to xpk+1) is not
generated by B since D[pk+1] has elements of order pk+1 . By [7] A is not an E-fiat
group.

Conversely, we prove the contrapositive. Assume A = B © D where D is the
divisible part of A and either A is bounded or B is unbounded. Let C = Cj © C2 © • • •
be a basic subgroup of A where C*. is a direct sum of copies of Z/Zpk of Cj. = 0 .
Then

A = d © . . . © Ck © (Ck+1 + Apk+1)

for each k. It A is bounded then, for some k , A = C\ © . . . © Ck • If B is unbounded
then Ck ^ 0 for infinitely many k. In either case, for x £ An (of finite order) there is
an integer k and a surjection Cj. —> xZ which lifts to a surjection A —» xZ. That is A

generates each subgroup of An, and therefore A is an E-flat group.

(c) See the proof of part (b). |

COROLLARY 1.4. Let A be a torsion, E-flat group. Then C(A) is lattice isomor-

phic to the lattice of subgroups of A.

PROOF: Use Theorem 1.2b and Example 1.3. |

There is a torsion-free group A possessing a pure subgroup B such that A/B

embeds in A but B/liom(A, B)A is finite and nonzero, [8, Example 4.5].

2. FINITELY FAITHFUL GROUPS

We call A finitely faithful if a = {A} . Our use of this term is different from that
in [2] and [3]. However, Lemma 3.1a will show that a torsion-free group A of finite
rank is finitely faithful in our sense if and only if it is finitely faithful in the sense of [3]
if and only if it is faithful in the sense of [2]. Finitely faithful groups were introduced
in [5] to classify the splitting of short exact sequences 0—> B —> G —* A —>0in which
B + HA{G)A = G. See also [1, 8, 9]. Our applications of Theorem 1.2 and Corollary
2.2b cast the finitely faithful property in a new light.

An extension of [3, Proposition 4.2] classifies finitely faithful E-flat groups.
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PROPOSITION 2.1. Assume A is an E-flat group. Then the following are equiva-
lent:

(a) A is a finitely faithful group;
(b) Each maximal right ideal of A is a homset;
(c) Each right ideal of A is a homset;
(d) Given a positive integer n, each right A-submodule of 7iA(An) is a

homset.

PROOF: (a) <£> (b) is [3, Proposition 4.2]. Assuming (a), note that each right
A-module is cr-closed. Thus, Theorem 1.2b shows that given a right A-submodule
H C HA{An) there is a B <E C(An) such that H = HA{B). Hence (a) =$• (d). The
implications (d) ^ (c) => (b) are clear. |

A functor that has been useful in studying quasi-direct summands of torsion-free
abelian groups A of finite rank is QT~CA{') = Q <8> Hom(A, •), taking the category of
quasi-summands of finitely A-projective groups to the category of finitely geuerated
projective right QA -modules. (See [2, Chapter 5] or [16]. [10] contains a noncommu-
tative version of this result.) Let P£(An) be the sublattice of L(A) whose elements
are pure subgroups of An , and let PC(An) be the sublattice of £(An) whose elements
are pure subgroups of A". Call the elements of PC{An) pure right submodules of An.

COROLLARY 2.2. Let A be a torsion-free E-flat group.

(a) For each integer n, "H^(-): PC(An) —> PC(An) is a lattice isomorphism;
(b) A is a finitely faithful group if and only if for each n , "HA(-) is a lattice

isomorphism from C(An) onto the lattice of right A-submodules of A";
(c) If A is a finitely faithful group, then QHA(-) is a lattice isomorpliism

from PC(An) onto the lattice of right Q A -submodules of QA" .

PROOF: (a) It is well-known that if B is a pure subgroup of the torsion-free group
A" , then HA(B) is a pure subgroup of HA(An). Thus HA{-): PC{An) -> PC(An) is
well-defined. If H = HA(B) is a pure submodule of 7iA(An) = An then an application
of the left exact functor TA{-) to the short exact sequence 0 -> A"/H -* QAn/QF
yields the embedding An/B = An/HA -> QAn/QHA, (Theorem 1.2b). Thus, An/B
is torsion-free, and hence B is pure in A". That is, UA{-) takes PC{An) onto PC(A").
Now apply Theorem 1.2b.

(b) Follows from Proposition 2.1, while (c) follows from part (a) and the fact that
H —* Q ® H is an isomorphism from the lattice of pure right submodules of An onto
the lattice of right Q A -submodules of QAn . |

The following extension of Proposition 2.1 will prove useful.
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LEMMA 2.3. Let A be a group. Then the following are equivalent:

(a) IA ^ A for each finitely generated proper right ideal I of A;

(b) Given a positive integer n, HA ^ An for each finitely generated proper

right X-submodule H of UA(An).

PROOF: (b) =>• (a) is clear. To prove (a) => (b) we use induction on n. If n — 1,
then HA ^ A by part (a). Assume part (b) is true for each integer k < n and
let H be a finitely generated proper A-submodule of 7iA{An). Fix a decomposition
An = A\ © . . . © An where Ai = A for 1 < i < n. We consider two cases.

Case 1. H + nA{Ai) = HA(An). Then H = K\ © Fi where Kx - HA{Ai) n ff
and Hi S iy/ /^ ^ H^(An)/WA(^i) = A""1. Thus HA{An) = H + HA^) =

Hi®7iA(Ai) as right A-modules. Observe that K\ is finitely generated. Now because
H ± HA(An), Kt ^ TiAiAi), so by part (a) KtA ^ Ax. Thus

An = HXA ®A^ HiA © IUA = HA.

Case 2. H + nA(Ax) ^ TiA{An). Then identify H~ = (H + HA{A1)'HA{A1)) with
a nnitely generated proper A-submodule of HA(An~1) = H^A^/H^Ai) in the
natural way. The induction hypothesis states that HA / A""1 , and hence HA ^ An.

This completes the proof. fl

The following extends [2, Theorem 5.6].

PROPOSITION 2.4. Let A be a group. Then the following are equivalent:

(a) IA ^ A for each finitely generated proper right ideal I of A;

(b) if S: 0 —y B —> G -^ A —> 0 is a short exact sequence, if HA(G)A is

a finitely A-generated group, and if G = B +HA{G)A then E is split

exact.

PROOF: Assume part (a). Given a sequence S as in part (b), there is a finitely
generated right A-submodule H C 'HA(G) such that HA(G)A = HA. Then wH is
a finitely generated right ideal of A such that nHA = n(B + HA) — A. By part (a)
TVH = A, so there exists a map A 6 H such that 7rA = 1,4 . That is, £ is split exact.

n

Assume part (a) is false, and let / = J ] TTJA be a finitely proper generated right

n

ideal of A such that IA — A. Define a map TT: An —> A by ir(a\,... ,an) = Yl ^i{ai)-

Then TT is onto, since J^i iriA = IA = A. Now given a map A: A —» An, write
A = ( A j , . . . , Au) where A; is the projection of A into the t th copy of A in An. Then
TTA = X^i7ri^t 7̂  1,4 since / ^ A. Thus TT does not split, and the negation of (b)
follows. I
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3. SPECIAL LATTICES OF RIGHT IDEALS

In this Section, we classify certain properties of A in terms of the group structure
of A.

The ring A is local if A contains a unique maximal right ideal, and A is sub-

commutative if for each x , y £ A there exists a z £ A such that yx = xz. Call A
a right valuation ring if for each x , y £ A either xA C yA or yA C ,TA. A right

valuation domain is a right, valuation ring without nonzero zero divisors. Note that. A
is subcommutative if and only if each right ideal of A is a left ideal, and A is a right
valuation ring if and only if the right ideals of A form a chain. Subcommutative rings
are discussed in [15] and the figure in the classification of strongly homogeneous groups
offered in [3, Section 3].

LEMMA 3.1. Let A be a reduced torsion-free group of Unite rank and let I he a.

maximal right, ideal of A . Then:

(a) A/I is finite;

(b) Assume there exists up to isomorphism exactly one simple right A/Ap-
module for each prime p £ Z . Then A is a finitely faithful group;

(c) If A is a subcommutative ring, then A is a finitely faithful group.

PROOF: (a) Let TV be the nil radical of A. Since A/TV is a quasi-summand of
A, [2, Theorem 14.2], and since A is reduced, A/N is reduced. Since I is maximal,
N C / , so that A/I = (A/N)/(I/N). Thus there is no loss of generality in assuming
that A is a reduced semi-prime ring.

Now, because A/1 is a simple right A-module, EndA (A//) is a division ring, and
so A/1 is a finite dimensional vector space over Q or Z/Zp for some prime p £ Z .
But. pure right ideals of the semi-prime ring A are quasi-summands and A is a reduced
ring. Thus A/I is finite.

(b) Recall [8, Lemma 1.7d]: if IA = A then {A £ QA: | XI C A} = A. By
part (a) A/ / is a finite simple right A-module. Let p £ Z be the prime such that
pA C / , and let S be a simple A/Ap-submodule of the finite A/Ap-module Ap~*/A.
By hypothesis there exists up to isomorphism exactly one simple right A/Ap-moclule,
so 5 = A/I. But 7 + 1 corresponds to an element 0 ^ A + A £ Ap"1/A such that
\I C A. By [8, Lemma 1.7d], IA ^ A, so that A is a finitely faithful group.

(c) By part (a), Ap C I for some prime p £ Z. Since A/Ap is a finite (Artinian)
ring, the Jacobson radical J/Ap of A/Ap is nilpotent. Now J C I, and because A/ J
is a semi-simple Artinian ring, I/J = e(A/J) for some idempotent 1 ^ e £ A/J.
Because J/Ap is nilpotent, e = (J/Ap) + e for some idempotent 1 ^ e £ A/Ap,
and because A/Ap is subcommutative e(A/Ap) is an ideal of A/Ap. Observe that
I/Ap = e(A/Ap) + J/Ap £ A/Ap.
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We have

IA/Ap = [I/Ap]{A/Ap) = [e(A/Ap) + J/AP](A/Ap) = e{A/Ap) + [J/Ap]{A/Ap)

by our choice of e. Because A/Ap is finite and because I/Ap and e(A/Ap) are ideals
of A/Ap, we may apply Nakayama's Lemma to show that IA/Ap = e( A/Ap) . But then
1 — e ^ 0 annihilates IA/Ap C A/Ap. Since A/Ap is a faithful left A/Ap -module,
IA/Ap ^ A/Ap. Therefore IA ^ A and A is a finitely faithful group. |

Remark. Lemma 3.1 extends [5, Corollary 2.3] which states that if A is a torsion-free
group of finite rank and if A is either a commutative or right hereditary ring then A
is a finitely faithful group.

With these technical results out of our way, we can classify some common types of

endomorphism ring.

COROLLARY 3.2. Let A be an E-flat group.

(a) Assume A is finitely faithful. Then A is a right Noetherian ring if and
only if each B £ C(A) is a finitely A-generated group.

(b) Assume A is torsion-free of finite rank. Then A is a local ring if and

only if A is.a finitely faithful group and there exists a unique maximal

B € C{A) such that B ^ A.

PROOF: (a) The classic argument shows that C(A) is a Noetherian lattice if and
only if each B G £{A) is a finitely A -generated group. Thus (a) follows from Corollary
2.2b. (b) follows from Corollary 2.2b and Lemma 3.1b. • |

COROLLARY 3.3. Let A be an E-flat group.

(a) Assume A is a finitely faithful group. Then A is a sub commutative ring

if and only if each B 6 £-{A) is fully invariant in A .

(b) Assume A is torsion-free of finite rank. Then A is a subcommutative
ring if and only if A is a finitely faithful group such that each B 6 £(A)
is fully invariant in A .

PROOF: AS each right ideal in a subcommutative ring is an ideal, the Corollary
follows from Corollary 2.2b and Lemma 3.1c. fl

Remark. Corollaries 3.2 and 3.3 seem to be new. They are typical of the intuitive
solutions produced by Theorem 1.2 when applied to the problem of classifying properties
of endomorphism rings. (See [11, Problem 84].)

In contrast, the next result makes little use of Theorem 1.2.
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PROPOSITION 3.4.

(a) Assume A is a finitely faithful E-flat group. Then A is a valuation ring
if and only if C{A) is a chain.

(b) Assume A is a torsion-free group of finite rank. Then A is a right val-
uation ring if and only if C(A) is a chain. In this case, A is a local
subcommutative principal right ideal domain, and A is a finitely faithful
E-flat group.

PROOF: (a) A is a right valuation ring if and only if the right ideals of A form a
chain. Thus part (a) follows from Corollary 2.2b.

(b) ( =4-) If A is a right valuation ring then C(A) = {IA | right ideals / C A} is
a chain.

(-4= ) Assume that A is a torsion-free group of finite rank in which £(A) is a
chain. Observe that A is strongly indecomposable since in a quasi-decomposition A =

B © C with B ^ 0, the chain condition in C(A) and the equation r!om(A, B)A n
liom(A,C)A C f l n C = 0 imply C = 0. Thus QA is a local ring, [2, Corollary 7.8].
We claim that. QA is a division ring. Let N be the nilradical of A. Then Q,A ^
(QN)QA = QNA by Nakayama's Lemma. Because C(A) is a chain, <QNA D A C Ap

for all primes p £ Z. But QNA f~l A is a pure subgroup of A , so QNA f~l A is divisible.
Since A is reduced QNA D A = 0, and since A is a torsion-free group, N = 0. Thus
QA is a division ring as claimed. Let A, 7 € A. Since £(A) is a chain we may
assume, without loss of generality that XA C jA. Now because QA is a division ring
7" 1 6 QA, and thus -y~1QA C QA. Hence -y~x X(A) C A which implies that 7 U A C A
and AA C 7A. Therefore A"1 is a right valuation domain.

Certainly A is a local ring without nonzero zero-divisors. By [2, Proposition 9.4]
t

A is a Noetherian ring. Let / be a nonzero right ideal of A and write I = Yl ^»^ •
;=i

Then / = A;A = A for some 1 < i < t since A is a right valuation domain. Thus A
is a principal right ideal domain. Since QA is a division algebra Q/ = QA and hence
A/I is finite. Let k be the composition length of A/I and let J be the Jacobson
radical of A. Since A/J is the only simple A-module, Jk C I • Further, for positive
integers k, Jk = A, so Jk/ Jk+1 S A/J. Thus A C J C . • . C Jk is a complete list
of the right ideals of A containing Jk . But then / = Jk is an ideal of A, and so A
is a subcommutative ring. Finally, by Lemma 3.1b and [2, Exercise 5.5, p. 57] A is a
finitely faithful E-flat group. |

Reduced torsion-free finite rank valuation domains need not be commutative.

EXAMPLE 3.5. There is a noncommutative subcommutative right valuation do-

main A .
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PROOF: Let A be the ring of Hamiltonian Quaternions over Q and let A be the
unique classical maximal Z2 -order in A. Because 2 ramifies in A, A is a local ring
whose Jacobson radical J satisfies J2 — 2A. Further, each right ideal of A is a power
of J. (See [17, Section 18] for details.) Thus A is a noncommutative subcommutative
right valuation domain. I

EXAMPLE 3.6. There is a finitely faithful E-flat torsion-free group A of finite rank

such that C(A) is a chain, but End (4) is not a commutative ring.

PROOF: Use Corner's Theorem and Proposition 3.4 on the ring in Example 3.5. |

We do not know of any universal conditions which force a subcommutative ring to

be commutative.

4. HEREDITARY RINGS

In [5, Corollary 3.2] Arnold and Lady classify those torsion-free groups A of finite
rank for which A is a right hereditary ring or a principal right ideal domain. Heredi-
tary Noetherian endoniorpliism rings of torsion-free abelian groups have been studied
extensively by Albrecht in a long series of papers culminating in [1]. Other studies
include [12]. Theorem 1.2 provides us with intuitive classifications of those A with
(semi-)hereditary endomorphism rings.

The following extends [1, Proposition 2.2] and [12, Theorem 2.2]:

THEOREM 4.1. Let A be a group. Then the following are equivalent:

(a) A is an E-fi&t group and A is a right semi-hereditary ring;

(b) (i) IA ^ A for finitely generated proper right ideals I C A; and
(ii) finitely A -generated subgroups of A are finitely A -projective groups;

(c) (i) IA =fi A for finitely generated proper right ideals I C A; and
(ii) finitely A-generated subgroups of finitely A-projective groups are
finitely A-projective groups.

PROOF: (C) =>• (b) is clear.

(b) => (a) Proceeding as in [1, Proposition 2.2], we first prove that A is right
semi-hereditary. Let / be a finitely generated right ideal of A. By part (b) IA is a
summand of An for some positive integer n so we can write An = IA © B for some
finitely ^4-generated group B. Identifying / with a subset of TiA(IA) C HA(An) we
have (I@nA(B))A = An. Because HA(B) is a summand of 7iA(An), I®KA[B)

is a finitely generated right A-submodule of HA{An). By Lemma 2.3 and part (b.i),
I® 7iA(B) = 7iA(An). Thus / is a projective right A-module and A is right semi-
hereditary.
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To prove that A is E-flat, recall that the map a: TA(HA(An)) -+ An defined by
a( A <g) a) = \a is an isomorphism. Since / © 7iA[B) = HA(An) and since cr(TA(I)) =
I A, we have TA(I) ^ / A . That is, A is E-flat.

(a) =;• (c) Let B G £(A") be finitely A-generated. Then there are maps
t t

Ai , . . . ,A t G W ^ A " ) such that B = ]TA;A. Let ff = £ A ; A . Because A is a
i = l t = l

right semi-hereditary ring there is a split embedding <S': H —> T i ^ A 6 ) . But then
5 = iT>l = TA(.ff) -> T^W^A*) ) ^ A1 is a split embedding. This is (c.ii).

Next, assume / is a finitely generated right ideal of A such that IA = A. Then
/ G a and so A/7 is a -torsion. Because A is a right semi-hereditary ring / is a
projective right A-module. Hence I is a -closed (Lemma 1.1c) and A / / is <x -torsion-
free. It follows that A — I. This proves (c.i) and completes the proof. |

COROLLARY 4.2. Let A be a group. Then the following are equivalent:

(a) A is an E-flat group and A is a right hereditary, right Noetherian ring;

(b) A is a finitely faithful group and each B £ £-(A) is a finitely A -projective

group.

PROOF: Assume (a). Since each right ideal of A is finitely generated Theorem
4.1b shows that A is a finitely faithful group. Further, £(A) = {IA | / is a right ideal
of A} so that each B G £(A) is finitely A -generated. Then by Theorem 4.1b each
B £ C(A) is a finitely A-projective group. This proves (b).

Assume (b). By Theorem 4.1 A is a finitely faithful E-flat group and A is a right
semi-hereditary ring. Since a finitely A-projective group is a summand of a finitely
A-free group, each B G £(A) is finitely A-gererated. Then by Corollary 3.2a, A is a
right Noetherian ring, which proves part (a). |

Call A self-small if Hom(A,©E>l) = ©EHom(A,A) for each index set E, [6].
Torsion-free groups of finite rank are self-small. Self-small groups are used in [1] and
[12] to classify groups with hereditary eiidomorphism rings.

THEOREM 4.3. Consider the following statements:

(a) A is a right hereditary ring and A is an E-6at group;

(b) A is a finitely faithful group and each B £ £(A) is an A-projective

group.

Then (a) => (b). If A is self-small then (b) => (a).

PROOF: Assume (a) and let B G £(A). From Theorem 4.1, A is a finitely faithful
group, and by (a) there exists aright A-module K and a set E such that H.A{B)®K S
© E A . By Theorem 1.2 and since TA{-) commutes with direct sums, B = TA(HA(B))
is a summand of ®sTA{A.) = (BsA. This proves (b).
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Now assume A is a self-small group satisfying (b). By Theorem 4.1, A is an E-flat
group. Let / be a right ideal of A. By Corollary 2.2b, / = HA{IA) and by (b) IA
is an yl-projective group. Thus there is a group C and an index set £ such that
IA@C ^ ®SA. Since A is a self-small group, I®HA(C) = HA{IA)@HA(C) S ©EA.
Thus A is a right hereditary ring. This proves (b) and completes the proof. |

Remark . Using Proposition 2.4 it is seen that Theorems 4.1 and 4.3 classify the hered-
itary property in A in terms of direct sum decomposition properties of A. Corollary
4.2 extends [1, Theorem 3.2] in that it removes the hypotheses that A be a self-small,
reduced torsion-free group. Corollary 4.2 and Theorem 4.3 show that a classification of
groups with right hereditary endomorpliism ring need not concern arbitary direct sums
of copies of A. Also, these results demonstrate that [1, Theorem 3.2b.ii and iii] are not
necessary to classify right hereditary, right Noetherian rings.

This Section ends with a classification of torsion-free groups of finite rank having
heereditary endomorpliism ring.

COROLLARY 4.4. Let A be a reduced torsion-free group of finite rank. Then A is
a right hereditary ring if and only if A is a finitely faithful group and each B (E £{A)

is an A -projective group. In tin's case A is an E-flat group, and A is a hereditary

Noetherian semi-prime ring.

PROOF: By [2, Exercise 5.5, p. 57] A is an E-flat group if A is a right hereditary
ring. Since torsion-free groups of finite rank are self-small groups, the equivalence
follows from Theorem 4.3. The rest is [13, Theorem 2.3]. |

5. MAXIMAL ORDERS AND NEAR ISOMORPHISM CLASSES

Two torsion-free groups A, B are nearly isomorphic if for each integer n there
are maps / „ : A —> B and gn: B —» A and an integer m = m(n) relatively prime to
n such that fngn = mlg and gnfn = mlA. See [2] or [14] for properties of near
isomorphism. We will call A integrally closed if A = r\on\(B,A)B for each B 6 C-(A)

of finite index in A.

Our goal is to classify, in terms of A, those torsion-free groups A of finite rank
which are nearly isomorphic to each B 6 £(A) of finite index in A. The lemmas will
prove useful.

LEMMA 5.1. Assume A is a torsion-free group of Unite rank.

(a) If QA is a semi-simple ring, then each B 6 C(A) is a quasi-summand of
A.

(b) QA is a simple ring if and only if Hom(5, A)B has finite index in A for
each B £ C(A).
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PROOF: (a) Let B G C(A). Then Q,HA(B) = QHom(A,#) ^ 0. Because QA
is semi-simple, QTiyi(B) is a summand of QA, so that eQA = (^HA(B) f°r some
idempotent e of QA. Then ne £ HA(B) for some positive integer n and HA{B) n
n(l - e)A = 0, so nA C HA{B) $ n ( l - e)A C A. But then B f l n ( l - e)A = 0 and
nA C. B (B n(l — e)A C A, so that 5 is a quasi-summand of A.

(b) Assume that Hom(B,A)B has finite index in A for each B G £(A), and let
/ be a nonzero ideal of A. An application of Hom(-,A) to the multiplication map
TA(I) —> IA —» 0 yields an embedding

Hom(IA, A) -» Hom(Tvt(7), A) =* HomA(7, A)

of left A-modules, where the isomorphism is adjointness. Let 3 be a left ideal of
A such that 31 = 0. Then Jf(I) = f(JI) = 0 for each / G HomA(/,A), and
hence JHom(/A, A) = 0. Now A/H.om(IA, A)IA is finite by hypothesis and A is a
faithful left A-module so 3A = 0 = 3. That is, each nonzero ideal of A has zero left
aimihilator. Since the Jacobson radical of QA is nilpotent, QA must be semi-simple.
Finally, the Wedderburn Theorem easily shows that QA is simple.

Conversely, if QA is a simple ring, then given B £ C-(A), Hom(B,A)5 = C is
a fully invariant subgroup of A. Hence, QW^C) is an ideal of QA. By hypothesis,
QA = QHA(C) SO that "W^C") contains a nonzero integer n. Thus nA C C C A,

which completes the proof. |

Let M, N be right A-modules which are torsion-free groups. Then M is in

the genus class of N if for each integer n ^ 0 there are A-module homomorphisms
fn: M —• N and gn: N —> M and an integer m = m(n) which is relatively prime
to n such that fngn = rnlpf and <?„/„ = ml/n. In [4] and [2, Chapter 12] Arnold
develops the connection between near isomorphism classes of A-projective groups and
the genus classes of projective right A-modules. Specifically, [2, Corollary 12.7] shows
that HA(-) induces a one-to-one correspondence between near isomorphism classes of
finitely A-projective groups and the genus classes of finitely generated projective right
A-modules. We extend [2, Corollary 12.7] to the larger classes S(A) and

LEMMA 5.2. Let A be a torsion-free E-flat group. Let B, C G S(A). Then B is

isomorphic to (respectively, nearly isomorphic to) C if and only if HA(B) is isomorphic

to (respectively, in the genus class of) HA(C) .

PROOF: By Theorem 1.2a, there are canonical isomorphisms

Hom(£,C) ^ llomA(nA{B),UA(C))

and
Hom(C,B) = EomA(HA(C),HA(B)).
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Thus B is isoniorpliic to (respectively, nearly isomorphic to) C if and only if %A(B)

is isoniorpliic to (respectively, in the genus class of) "HA(G). |

We will call A an integrally closed ring if (i) A is a torsion-free finite rank senii-
prime ring and if (ii) A = F whenever F is a subring of QA that contains A as a
subriiig of finite index. A classical maximal order is an integrally closed prime ring.
See [2, Chapters 9-12] for properties of integrally closed rings, and [17] for properties
of classical maximal orders. Each integrally closed ring is a finite product of classical
maximal orders, and each torsion-free semi-prime ring is of finite index in an integrally
closed ring [2, Corollary 10.14c]. Classical maximal orders and hence integrally closed
rings are hereditary Noetherian rings, [2, Theorem 11.3].

PROPOSITION 5.3. Let A be a reduced torsion-free finite rank ring. Then A is an

integrally closed ring if and only if each right ideal of finite index in A is in the genus

class of A.

P R O O F : Assume A is integrally closed and let / be a right ideal of finite index
in A. Then A = A] x . . . x At for some classical maximal orders A j , . . . , A t , and
I = Ii x ... x It where, for each i, Ii is a right ideal of finite index in A;. By
[2, Theorem 11.8] (A,)p is a principal right ideal ring for each prime p G Z. Hence
{Ii)p — A(Aj)p for some A G A{. Because A,// ; is finite and because A; has finite
rank, (A;)p = (Ii)p- Then [2, Theorem 12.2] shows that Ii is in the genus class of A,;
and hence that / is in the genus class of A.

Conversely, assume each right ideal of finite index in A is in the genus class of A,
and let / have finite index in A. Then nA C / for some nonzero integer n. Since A//
is finite, / is a finitely generated right A-module. It follows easily from the definition
of genus class that for each prime p G Z there are isomorphisms Ip = Ap . By the
Local-global Theorem, / is a projective right A -module. Then using the proof of [13,
Theorem 2.3] it is shown that A is a semi-prime ring. Hence, there is an integrally closed
subring A C F C QA such that F/A is finite, [2, Corollary 10.14c]. By hypothesis F
is in the genus class of A, so for each prime p G Z, there exists a 7 G Tp such that
Fp = jAp S Ap. Evidently 7 is a unit of QA, so F p = {A G QA | AFp C Fp} =
7Ap7~n = Ap. Since Ap is then integrally closed, [2, Theorem 11.7], Fp = Ap for each
prime p G Z. By the Local-global Theorem F = A, and A is integrally closed. |

THEOREM 5.4. Let A be a reduced torsion-free group of finite rank. Then the
following are equivalent:

(a) A is an integrally closed ring;

(b) A is a finitely faithful E-flat group and A is nearly isomorphic to each

B £ C(A) of finite index in A ;

(c) A is a semi-prime ring and A is an integrally closed group.
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PROOF: (a) =>• (b) Since A is a torsion-free group of finite rank, and since A is a
hereditary ring, Corollary 4.3 shows A is a finitely faithful E-flat group. By Proposition
5.3 each right ideal of finite index in A is in the genus class of A, and by Proposition
2.1 each right ideal / of A satisfies I = HA(IA). Since C(A) = {IA \ I 6 C(A)},
Lemma 5.2 shows that A is nearly isomorphic to each B £ £(A) of finite index in A.

(b) => (c) Given a right ideal / of finite index in A, Proposition 2.1 shows that /
is a homset. As A/1A is then finite, part (b) states that A is nearly isomorphic to IA.

By Lemma 5.2, / = HA(IA) is in the genus class of A = HA(A), so by Proposition 5.3
A is a semi-prime ring. Next let B £ C(A) have finite index in A. By hypothesis B is
nearly isomorphic to A, so there is an integer k > 0 such that Bk = Ak, [2, Theorem
13.9]. Thus A is integrally closed.

(c) =4- (a) Since A is a semi-prime ring there is an integrally closed subring F of QA
containing A such that F/A is finite, [2, Corollary 10.14c]. Consider A C TA C QA
and note that YA/A is finite. Then by part (c) HrA(A)TA = A £ C(TA). Now
A c r e End(rA) and TA/A is finite so Eiid(rA)/A is finite. Hence End(rA)/ r
is finite, and because F is integrally closed F = End (FA). As F is a hereditary ring,
FA is a finitely faithful E-flat group, (Corollary 4.4). Now F is a product of classical
maximal orders and 7i^A(A) has finite index in F, so it readily follows from [17,
Exercise 1, p. 90] that

Endr CHrA(A)) = {7 G QF | XnrA(A) C HTA{A)}

is an integrally closed ring. Finally, since 1~LTA{-) is an equivalence, there is an iso-
morphism of rings End (A) = Endr CH-rA(A)), (Theorem 1.2a). This proves (a) and
completes the proof. |

COROLLARY 5.5. Let A be a reduced torsion-free group of finite rank, and assume
A is a semi-prime ring. Then ihe following are equivalent:

(a) A is an integrally closed ring;
(b) A is nearly isomorplu'c to each B € £(A) of finite index in A;
(c) A is an integrally closed group-

PROOF: (a) <t> (c) =*» (b) is Theorem 5.4. To prove (b) => (c) use the proof of
5.4 (b) => (c). . I

There is an especially neat classification of maximal orders along these lines.

COROLLARY 5.6. Let A be a reduced torsion-free group of finite rank. Then the

following are equivalent:

(a) A is a classical maximal order;

(b) A is generated by each nonzero B £ £(A);
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(c) A is an integrally closed group and A/tlom(B, A)B is finite for each

nonzero B G £(A) .

PROOF: (a) <S> (c) is Theorem 5.4 and Lemma 5.1b while (b) •£> (c) is Lemma

5.1b. I

6. PRINCIPAL RIGHT IDEALS AND ISOMORPHISM CLASSES

We specialise Theorem 5.4 to principal right ideal rings.

PROPOSITION 6.1. Let A be a finitely faithful E-flat group. Let H C
llom{A,An) and let F be a subset of H. Then FA = H if and only if FA = HA.
Specifically, H is generated by n elements as a A-module if and only if HA is the
sum of n homomorphic images of A .

PROOF: By Corollary 2.2b, FA = H if and only if FA = (FA) A = HA. The rest

is then clear. |

THEOREM 6.2. Let A be a reduced torsion-free group of finite rank. Then the
following are equivalent:

(a) A is a. principal right ideal ring;

(b) A is a finitely faithful E-flat group and A is isomorphic to each B G £(A)

of finite index in A;

(c) A is a semi-prime ring and each B G £(A) is an endomorphic image of
A.

PROOF: (a) => (b) Let / be a right ideal of finite index in A. Then / = AA for
some A € A. Since A has finite rank, A: A —* / is an isomorphism of right A-modules.
By Proposition 5.3 A is an integrally closed ring, so by Theorem 5.4 A is a finitely
faithful E-flat group. Lemma 5.2 shows that A is isomorphic to each B G C(A) of
finite index in A .

(b) =?• (c) By Theorem 5.4 A is an (integrally closed) semi-prime ring. Given
B 6 C(A), Lemma 5.1a produces a C G C{A) such that B ®C has finite index in A.

By part (b) A = B®C,so B is an endomorphic image of A.

(c) =}• (a) As in Theorem 5.4 (c) => (a), there is an integrally closed ring A C
T C QA such that T/A is finite and End(r>l) = T. By hypothesis TA - \A for
some A € r\om(A,TA), and because A has finite rank, A: A —» TA is an isomorphism.
Hence A = YA and A S T . By Theorem 5.4, A is a finitely faithful E-flat group,
so by (c) and Proposition 6.1, each right ideal of A is principal. This completes the
proof. |

https://doi.org/10.1017/S0004972700027556 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700027556


290 T.G. Faticoni [18]

COROLLARY 6.3. Let A be a reduced torsion-tree group of Unite rank and assume
A is a semi-prime ring. Then the following are equivalent:

(a) A is a principal right ideal ring;
(b) A is isomorphic to each B £ £{A) of finite index in A;
(c) Each B £ £{A) is an endomorphic image of A.

PROOF: (a) & (c) =S- (b) is Theorem 6.2. To prove (b) =4> (c) argue as in Theorem
6.2 (b) => (c). |

Remark. The results of Theorems 5.4, 6.2 and related Corollaries are partial solutions
to the problem of deciding when quasi-isomorphic torsion-free groups are (nearly) iso-
morphic. Call A an S-group if £{A) contains each subgroup of finite index in A, and
call A a J-group if A is isomorphic to each subgroup of finite index in A. The following
is a composite of results from [3] and [9]:

COMPOSITE RESULTS 6.4. The following are equivalent for torsion-free groups of
finite rank:

(a) A is a finitely faithful S-group;
(b) p-rank(A) = p-rank(A) for all primes p £ Z , where p-rank(G) is the

Z /Zp -dimension of G/Gp;
(c) A is semi-prime and A is nearly isomorphic to each subgroup of finite

index in A.

COMPOSITE RESULTS 6.5. If p-rank(A) ^ 2 for each prime p, then the following
are equivalent:

(a) A is a finitely faithful S-group;
(f3) A is a semi-prime ring and A is a J-group.

It is clear from properties (b), (c) and ((3 ) that the finitely faithful S-group property
and the J-group property are consequences of an interplay of the group structure of A
and the ideal structure of A. This is in marked contrast to Theorems 5.4 and 6.2 which
show that weaker versions of the J-group and S-group property can be classified in
terms of the ideal structure of A alone.
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