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A CYLINDRICAL WAVE-MAKER PROBLEM
IN A LIQUID OF FINITE DEPTH
WITH AN INERTIAL SURFACE

IN THE PRESENCE OF SURFACE TENSION
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Abstract

The problem of generation of waves in a liquid of uniform finite depth with an in-
ertial surface composed of a thin but uniform distribution of disconnected floating
particles, due to forced axisymmetric motion prescribed on the surface of an im-
mersed vertical cylindrical wave-maker of circular cross section under the influence
of surface tension at the inertial surface, is discussed. The techniques of Laplace
transform in time and the modified Weber transform involving Bessel functions
in the radial coordinate have been employed to obtain the velocity potential. The
steady-state development to the potential function as well as the inertial surface de-
pression due to time-harmonic forced oscillations of the wave-maker are deduced.
It is found that the presence of surface tension at the inertial surface ensures the
propagation of time-harmonic progressive waves of any angular frequency.

1. Introduction

Problems of forced two-dimensional wave motion with outgoing surface
waves at infinity, generated by a harmonically oscillating vertical plane or
circular cylinder immersed in deep water, were solved by Havelock [3] long
ago within the framework of linear theory of water waves. The cylindri-
cal wave-maker problem is of some physical relevance, as offshore struc-
tures in high seas for the purpose of oil prospecting are usually constructed
in the form of vertical cylindrical columns. Recently Mandal [5] reinvesti-
gated Havelock's [3] cylindrical wave-maker problem in water of both infinite
and finite depths by applying the modified Weber transform in radial
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coordinate. Earlier Rhodes-Robinson [9] extended this problem, making al-
lowance for surface tension at the free surface, wherein the unique solution
of the boundary-value problem for a time-harmonic velocity potential de-
scribing the motion was obtained by assuming the free-surface slope at the
wave-maker to be a time-harmonic oscillation of prescribed amplitude. The
condition at the edge where the free surface meets the obstacles was first
assumed by Evans [1, 2] while considering transmission and reflection of
incoming progressive waves by a vertical barrier and forced waves due to
the heaving waves by a vertical barrier and forced waves due to the heaving
motion of a half immersed circular cylinder in deep water. However, this
type of edge condition may not be realistic and is a matter of considerable
research interest in recent times (cf. Hocking [4] and others).

Problems concerning generation of surface waves in a liquid covered by
an inertial surface composed of a thin uniform distribution of noninteracting
floating materials (e.g. broken ice, unstretched mat) were considered recently
in a number of papers [6-8, 9-11]. Rhodes-Robinson [10] also mentioned
how the plane vertical wave-maker problem can be solved for a liquid with
an inertial surface. Using a Laplace transform in time, the associated initial-
value problem was reduced to a boundary-value problem for the transformed
potential function. Then Green's integral theorem was applied to a suitably
defined Green's function and this transformed potential to solve the problem.
However, the cylindrical wave-maker problem in a liquid with an inertial
surface cannot be solved by this method. For a liquid of both infinite and
finite uniform depths, this problem was solved by Mandal and Kundu [7, 8]
by employing the modified Weber transform, after taking Laplace transform
in time.

In the present paper, we consider the cylindrical wave-maker problem in
a liquid of uniform finite depth with an inertial surface in the presence of
surface tension, wherein the edge condition is assumed to be similar to that
used by Rhodes-Robinson [10] for a vertical wave-maker. The edge condition
assumed in [10], although not physically realistic, is used here to demonstrate
mathematically how the known solution of the cylindrical wave-maker prob-
lem for a liquid of finite depth with a free surface in the presence of surface
tension considered in [9] can be extended to a liquid with an inertial surface.
A modified Weber transform used earlier in [5, 7] has been employed herein
to obtain the transformed potential function after taking Laplace transform
in time. Laplace inversion then produces the velocity potential. For the con-
sideration of time-harmonic case we assume that the wave-maker and the
prescribed inertial surface slope at the wave-maker have the same frequency.
The steady-state development to the potential function and the inertial sur-
face depression are obtained by following a procedure used in [10]. It is
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observed that the time-harmonic progressive waves generated by the wave-
maker will propagate for any frequency at a large distance from it. When the
surface density of the floating materials is made equal to zero, results for a
liquid with a free surface are recovered. Putting M = 0, results for a liquid
with an inertial surface can also be deduced.

2. Statement and formulation of the problem

We formulate the problem for irrotational motion under the action of both
gravity g and surface tension T, say, of a liquid of density p whose surface
is covered by an inertial surface composed of a thin uniform distribution of
disconnected floating matter of area density pe . The case e = 0 corresponds
to a liquid with a free surface. The normal fluid velocity on the surface of an
immersed vertical circular cylindrical wave-maker extended throughout the
depth of the liquid is supposed to be prescribed, and is both time and depth
dependent. We choose a cylindrical coordinate system (r, 6, y) in which
the y-axis is taken vertically downwards and is the axis of the cylindrical
wave-maker with radius ' a' and the plane y = 0, r > a is the undistributed
position of the inertial surface.

The motion of the liquid is axisymmetric, as the normal fluid velocity on
the surface of the wave-maker is uniform in 8 . Since the motion starts from
rest, it is irrotational and can be described by a velocity potential q>{r, y; t)
satisfying the Laplace's equation

(prr + \<Pr + <Pyy = Q, a<r< o o , 0<y<h. (2.1)

If the inertial surface has depression £(r, t) from the equilibrium position,
assuming linear theory, the joint boundary conditions relating to <p and £
are the kinematic condition

9y = Zt ony = 0 (2.2)

and the inertial surface condition

-^2(<P-e<Py)-g<Py--<Pyyy = 0> O n ? = °- (2'3)

The condition at the wave-maker is

V^U&.Wt) onr = a (2.4)

where H(t) is the Heaviside unit step function and the bottom condition is

<py = 0, on y = h. (2.5)
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The initial conditions (cf. [10]) are

—I -

and lastly the edge condition describing the inertial surface slope at the wave-
maker (cf. [10]) is

Vry(a+' 0 , 0 = 1lX\t) (2.7)

which is obtained from (2.2) after assuming £r(a, t) = nX(t) where X(t) is
prescribed.

Let lp{r, y; p) be the Laplace transforms of <p(r, y; t) defined by

7p = / tpe~p dt (p>0), (2.8)
Jo

Then lp satisfies the following boundary value problem:

Vrr + l 9 r + Vyy = ^ > a < r < o o , 0 < y < h , '

9r=Ul(y,p) onr = a,
lpy = 0 on y = h,

(2.9)

where Ul and A, are the Laplace transform of U{(y, t) and X(t) respec-
tively.

3. Solution by Weber transform

To solve the boundary value problem (2.9) we note that a suitable trans-
form formula in (a, oo) is to be used for removing the operator fi + j§t
in the first equation of (2.9) when lpr is prescribed. This can be achieved if
we use the Weber transform of a function g(r) given in (a, oo), defined by

g(i)= rrA(r,£)g{r)dr (3.1)
Ja

while the inverse transform formula is

where
A(r, £) = 7,(aOy0(tf) - JoWY^aZ), (3.3)

Jn, Yn (« = 0, 1) being the Bessel functions of the first and second kinds
respectively.
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The proof of (3.1) and (3.2) under suitable conditions imposed on g(r),
follows in the same manner as that given in [12] (where the Bessel functions
of the same order v > - \ are used). This form of Weber transform has
been used in [5,7] in connection with a cylindrical wave-maker problem in a
deep liquid.

Let *F(^, y) be the Weber transform of lp(r, y) as denned by (3.1), then
, y) satisfies

0 - ^ . ^ . p ) . o<y<k.

where To = T/p and ^ = 0 on y = h. The solution of the BVP (3.4) is
obtained as

(3.5)

where C{p) = nT0X(p)/p and G{y, s) is the associated Green's function
given by

= > 0 < y < s

(3.6)
For 0 < s < y, we interchange y and s in the expression (3.6). Using
the inverse Weber transform of (3.5) as defined by (3.2) we obtain after
simplification

H 5 j " f

Z)(^)sinh<^/i(p + /i ) J

f r* cosh£(h - s ] U , ( s , p ) d s „ , , . , _ _ , ) _, J J c

0<y <s
(3.7)

where
D(£) = cosh <̂ /i + e<* sinh ^A, M=T0/g,

5 I / ^ o \
2 gc(l + Mq )sinh<J/i / i.-'-5)
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Replacing the Bessel functions involved in (3.7) in terms of the Hankel func-
tions and taking Laplace inversion we obtain

<p(r,y, t)

- s)U{(s, t) ^

1 ds

- y) { jf gin ̂ (r -

where

(3.10)

Equation (3.9) is the general result for the potential function due to a verti-
cal cylindrical wave-maker with outward normal fluid velocity Ul {y, t) pre-
scribed on its boundary together with a suitable prescribed downward inertial
surface slope nX(t) at the wave-maker. The inertial surface depression at any
time is obtained as

C(r,t)= {(p - e<p ) ( r , 0 ; t) (3-11)

where <p is given by (3.9).

4. Time-harmonic case and steady-state development

For the time-harmonic case, we put Ux{y, t) = U{y) sin at and
sin at (cf. [10]) in (3.9), then (3.9) becomes
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9{r,y;t)

/zcosh £(/; - y) fi sin <7f - ff sin fit

, ?rrocosh<g(/;-y) f, , a2 cos fit -fi2cosat

where

«({)= / cosh{(A-s)t/(j)rfj
JoJo

and

C2(0s(7-0jr /ff)( l-cos(r0 (4.3)

To obtain the steady-state development in (4.1), we must isolate and elim-
inate the transient terms. We note that fi2 - a2 or equivalently P(<J[) =
^(1 - eK + M£2)sinh£h - Kcoshgh (where K = o2/g) in the denominator
of the integral involving sin fit or cos jit vanishes in the range of integration
f > 0 for all eK > 0 and M > 0. For M > 0 and eK > 0, P(£) has
always two real zeros (cf. [9]), one positive and another negative, kQ and
-k0 say, and an infinite number of imaginary zeros ±ikn say, where kn 's
(« = 1, 2, . . . ) are real and positive and satisfy the equation

kn{\ -eK- Mk2
n) sin knh + K cos knh = 0.

We now introduce a Cauchy principal value at S, = k0 and follow a procedure
as used in [10]. Then the integral involving sin fit in (4.1) is

ni Jo
- y) sin/xt

= 4a r°° T B(r,{')a(Z
ni Jo [ {(1 + 3Af<J;2)sinh 2£'h + 2£'

B(r, {')a(Z')(l+MZ'2)coshZ'(h-y)

\+MZ'2)

dp.

| 2 r B{r,k0)a(kQ)(\+Mk^)coshkti{h-y) . . mf.. rf

ni [(l + 3A/^)sinh2*,,/! + 2 ^ ( 1 + Mk^) + 4A/e*0
3sinh2fc0AJ to

(4.4)
where the last integral is in the sense of Cauchy principal value. Now as
J - » o o , the first term of (4.4) vanishes by the application of the Riemann-
Lebesgue lemma and the second term tends to recot at as t —* oo. Thus as
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t —> oo, (4.4) becomes

f B{r, kQ)a(k0)(l — eK + MkhcoshkJh - y) 1
—2i cos (Tt\ ~ s- (4.5)

[(1 - eK + 3Mko)sinh2koh + 2k0h{l - eK + Mk*)\

By a similar technique, the integral involving cos^f in (4.1) becomes for
large t

-HMnsinot \ W, ko)D(ko)Kko){l+eK + Mkfros^jh-y) 1
L (1 + Mkl){(1 eK + 3W*£)sinh 2kh + 2&/i( 1 eK + Mk£)} J
\
L (1 + Mkl){(1 - eK + 3jW*£)sinh 2koh + 2&0/i( 1 - eK +

We thus finally obtain <p for large t as

sinot /<^

[

• \ a(kn) cos at + Mn sin at
[ 1 + Mko J

(4.7)
where

Ao = (1 - eK + 3Mk*)sinh2kQh + 2k0h{\ - eK + Mk]) (4.8)

For the evaluation of the integrals in (4.7), we rotate the contour involving
the second kind Hankel functions clockwise by n and noting that
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(4.7) can then be written as

\ f 2 - Ksinh^y) \1_ _ _

V
- cothgft) ]

. l ( r , feo)(l eg + Mfc0)coshfc0(/» - y)

\a(k0) cos err + Mn sin gf D^)fl{kf 1 . (4.9)

Making h -> oo, the result given in [7] for a < (g/e)l/2 can be deduced from
(4.9). The contour integrals in (4.9) can now be extended to the contour F,
the whole real axis with indentations above the pole at £ = -k0 and below
the pole at £ = k0 . Then this may be evaluated by the method of residues
at the poles ^ = ±k0 and at £ = ikn (n = 1, 2, ...) after enclosing it by a
semicircle of large radius in the upper half of the complex emplane.

Thus we obtain q> after simplifications as

x {An{\ - eK - Mkn)smat - Mnacosknh • cos erf}

~ y\a(k0)(l -eK + Mkl)(Dsinat + Ecosat)

- Mnocosh koh(D cos ot - E sin at)]
(4.10)

where
An = (1 - eK - 3Mk2

n) sin2knh + 2knh(l - eK - Mk\), (4.11)

An= [hcoskn(h-y)U(s)ds, (4.12)
Jo

F = jf{ako) + Yf(ako), (4.13)

D = JO(VWV) + W W V K (4-14)
E = /oCVWV) ~ J{{ha)YoW (4-15)
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and Kn 's (n = 0, 1) are the modified Bessel functions of second kind. Using
(4.10) in (3.11), we obtain the depression of the inertial surface for large time
as

4a^K0(rkn)(l-Mk2
n)cosknh

A.

{ Mna cos kji . 1
An cos at H S-TT sin CT/ >

" 1-eK-Mk2 I .. , , ,
- J (4-16)

A<jcoshk0h{l + Mko) \ „ .fn_ 4 Q_v o^ a(k0)(D cos af - £ sin at)
S \r L

coshO .
si r-(+ Mna

As r —> oo this becomes

C(r, t) ~

+ {Y0(k0a) cos ( V - at - n/4)
/4)} (4.17)

2 5 / 2

which represent outgoing progressive waves. In the absence of the surface
tension, (4.17) coincides with the corresponding result given in [8] (of course
for a<(g/e)l/2).

5. Conclusion

The velocity potential as well as the depression of the inertial surface in the
problem of vertical cylindrical wave-maker in a liquid of uniform finite depth
are derived when the effect of surface tension is included. In the absence of
the inertial surface, (4.10) can be identified with the result given in (6.3) of
[9] if we put n = ia there and take the imaginary part of (6.3) in [9] after
multiplying by e~"" . In the absence of surface tension and inertial surface,
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results given in [5] can also be recovered from (4.10).
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