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We consider the Kakinuma model for the motion of interfacial gravity waves. The
Kakinuma model is a system of Euler–Lagrange equations for an approximate
Lagrangian, which is obtained by approximating the velocity potentials in the
Lagrangian of the full model. Structures of the Kakinuma model and the
well-posedness of its initial value problem were analysed in the companion paper
[14]. In this present paper, we show that the Kakinuma model is a higher order
shallow water approximation to the full model for interfacial gravity waves with an
error of order O(δ4N+2

1 + δ4N+2
2 ) in the sense of consistency, where δ1 and δ2 are

shallowness parameters, which are the ratios of the mean depths of the upper and
the lower layers to the typical horizontal wavelength, respectively, and N is, roughly
speaking, the size of the Kakinuma model and can be taken an arbitrarily large
number. Moreover, under a hypothesis of the existence of the solution to the full
model with a uniform bound, a rigorous justification of the Kakinuma model is
proved by giving an error estimate between the solution to the Kakinuma model and
that of the full model. An error estimate between the Hamiltonian of the Kakinuma
model and that of the full model is also provided.
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1. Introduction

We will consider the motion of the interfacial gravity waves at the interface between
two layers of immiscible fluids in (n+ 1)-dimensional Euclidean space. Let t be the
time, x = (x1, . . . , xn) the horizontal spatial coordinates and z the vertical spa-
tial coordinate. We assume that the layers are infinite in the horizontal directions,
bounded from above by a flat rigid-lid, and from below by a time-independent
variable topography. The interface, the rigid-lid and the bottom are represented
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2 V. Duchêne and T. Iguchi

as z = ζ(x, t), z = h1 and z = −h2 + b(x), respectively, where ζ = ζ(x, t) is the
elevation of the interface, h1 and h2 are mean depths of the upper and lower lay-
ers and b = b(x) represents the bottom topography. See figure 1. We assume that
the fluids in the upper and the lower layers are both incompressible and inviscid
fluids with constant densities ρ1 and ρ2, respectively, and that the flows are both
irrotational. Then, the motion of the fluids is described by the velocity potentials
Φ1(x, z, t) and Φ2(x, z, t) and the pressures P1(x, z, t) and P2(x, z, t) in the upper
and the lower layers. We recall the governing equations, referred as the full model
for interfacial gravity waves, in § 2 below. Generalizing the work of Luke [31], these
equations can be obtained as the Euler–Lagrange equations associated with the
Lagrangian density L (Φ1,Φ2, ζ) given by the vertical integral of the pressure in
both water regions. Building on this variational structure, Kakinuma [23–25] pro-
posed and studied numerically the model obtained as the Euler–Lagrange equations
for an approximated Lagrangian density, L (Φapp

1 ,Φapp
2 , ζ), where

Φapp
� (x, z, t) =

N�∑
i=0

Z�,i(z; h̃�(x))φ�,i(x, t) (1.1)

for � = 1, 2, and {Z1,i} and {Z2,i} are appropriate function systems in the ver-
tical coordinate z and may depend on h̃1(x) and h̃2(x), respectively, which are
the depths of the upper and the lower layers in the rest state, whereas φ� =
(φ�,0, φ�,1, . . . , φ�,N�

)T, � = 1, 2, are unknown variables. This yields a coupled sys-
tem of equations for φ1, φ2 and ζ, depending on the function systems {Z1,i} and
{Z2,i}, which we named Kakinuma model. Note that in our setting of the problem
we have h̃1(x) = h1 and h̃2(x) = h2 − b(x). In this work, we study the Kakinuma
model obtained when the approximate velocity potentials are defined by⎧⎨

⎩
Φapp

1 (x, z, t) :=
∑N

i=0(−z + h1)2iφ1,i(x, t),

Φapp
2 (x, z, t) :=

∑N∗

i=0(z + h2 − b(x))piφ2,i(x, t),
(1.2)

where N,N∗ and p0, p1, . . . , pN∗ are non-negative integers satisfying 0 = p0 < p1 <
· · · < pN∗ . Specifically, we show that the Kakinuma model obtained through the
approximated potentials (1.2) with

(H1) N∗ = N and pi = 2i (i = 0, 1, . . . , N) in the case of the flat bottom b(x) ≡ 0,

(H2) N∗ = 2N and pi = i (i = 0, 1, . . . , 2N) in the case with general bottom
topographies,

provides a higher order shallow water approximation to the full model for interfacial
gravity waves in the strongly non-linear regime. The choice of the function systems
as well as N,N∗ and p0, p1, . . . , pN∗ is discussed and motivated later on.

Comparison with surface gravity waves. The Kakinuma model is an extension to
interfacial gravity waves of the so-called Isobe–Kakinuma model for surface grav-
ity waves, that is, water waves, in which Luke’s Lagrangian density LLuke(Φ, ζ),
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A mathematical analysis of the Kakinuma model 3

Figure 1. Internal gravity waves.

where ζ is the surface elevation and Φ is the velocity potential of the water, is
approximated by a density L app(φ, ζ) = LLuke(Φapp, ζ), where

Φapp(x, z, t) =
N∑

i=0

Zi(z; b(x))φi(x, t). (1.3)

The Isobe–Kakinuma model was first proposed by Isobe [21, 22] and then applied
by Kakinuma to simulate numerically the water waves. Recently, this model was
analysed from a mathematical point of view when the function system {Zi} is
a set of polynomials in z : Zi(z; b(x)) = (z + h− b(x))pi with integers pi satisfy-
ing 0 = p0 < p1 < · · · < pN . The initial value problem was analysed by Murakami
and Iguchi [35] in a special case and by Nemoto and Iguchi [36] in the general
case. The hypersurface t = 0 in the space-time Rn × R is characteristic for the
Isobe–Kakinuma model in the sense that the operator acting on time derivatives of
the unknowns has a non-trivial kernel. As a consequence, one needs to impose some
compatibility conditions on the initial data for the existence of the solution. Under
these compatibility conditions, the non-cavitation condition, and a Rayleigh–Taylor
type condition −∂zP

app � c0 > 0 on the water surface, where P app is an approxi-
mate pressure in the Isobe–Kakinuma model calculated from Bernoulli’s equation,
they showed the well-posedness of the initial value problem in Sobolev spaces locally
in time. Moreover, Iguchi [18, 19] showed that under the choice of the function
system

Zi(z; b(x)) =

{
(z + h)2i in the case of the flat bottom,
(z + h− b(x))i in the case of a variable bottom,

(1.4)

the Isobe–Kakinuma model is a higher order shallow water approximation for the
water wave problem in the strongly non-linear regime. Furthermore, Duchêne and
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4 V. Duchêne and T. Iguchi

Iguchi [13] showed that the Isobe–Kakinuma model also enjoys a Hamiltonian struc-
ture analogous to the one exhibited by Zakharov [43] on the full water wave problem
and that the Hamiltonian of the Isobe–Kakinuma model is a higher order shallow
water approximation to the one of the full water wave problem.

Our aim in the present paper and the companion paper [14] is to extend these
results on surface gravity waves to the framework of interfacial gravity waves. With
respect to surface gravity waves, our interfacial gravity waves framework brings
two additional difficulties. The first one is that, due to the rigid-lid assumption,
the full system for interfacial gravity waves described in § 2 features only one evo-
lution equation for the two velocity potentials, and a constraint associated with
the fixed fluid domain. From a physical perspective, the unknown velocity poten-
tial at the interface may be interpreted as a Lagrange multiplier associated with
the constraint. A second important difference between water waves and interfacial
gravity waves is that the latter suffer from Kelvin–Helmholtz instabilities. As a con-
sequence, the initial value problem of the full model for interfacial gravity waves
is ill-posed in Sobolev spaces; see Iguchi et al. [20], Kamotski and Lebeau [26].
This raises the question of the validity of any model for interfacial gravity waves.
A partial answer is offered by the work of Lannes [28], which proves the existence
and uniqueness of solutions over large time intervals in the presence of interfacial
tension. While interfacial tension effects are not expected to be the relevant regu-
larization mechanism for the propagation of waves between, for instance, fresh and
salted water, the key observation is that physical systems allow the propagation of
waves with large amplitude and long wavelengths provided that some mechanism
tames Kelvin–Helmholtz instabilities acting on the high-frequency component of the
flow. This description is consistent with the fact that the initial value problem of
the bi-layer shallow water system for the propagation of interfacial gravity waves in
the hydrostatic framework is well-posed in Sobolev spaces under some hyperbolicity
condition describing the absence of low-frequency Kelvin–Helmholtz instabilities,
as proved by Bresch and Renardy [5]. Let us mention however that such a property
is not automatic for higher order shallow water models. Specifically, we note that
the Miyata–Choi–Camassa model derived by Miyata [34] and Choi and Camassa
[8] and which can be regarded as a two-layer generalization of the Green–Naghdi
equations for water waves turns out to overestimate Kelvin–Helmholtz estimates
with respect to the full model; see Lannes and Ming [30].

In [14], we analysed the initial value problem of the Kakinuma model when the
approximated velocity potentials are defined by (1.2). We found that the Kakinuma
model has a stability regime which can be expressed as

− ∂z(P
app
2 − P app

1 ) − ρ1ρ2

ρ1H2α2 + ρ2H1α1
|∇Φapp

2 −∇Φapp
1 |2 � c0 > 0 (1.5)

on the interface, where H1 := h1 − ζ and H2 := h2 + ζ − b are the depths of the
upper and the lower layers, P app

1 and P app
2 are approximate pressures of the fluids in

the upper and the lower layers, α1 and α2 are positive constants depending only on
N and on p0, p1, . . . , pN∗ , respectively. This is a generalization of the aforementioned
Rayleigh–Taylor type condition for the Isobe–Kakinuma model. It is worth noticing
that, consistently with the expectation that the Kakinuma model is a higher order
model for the full system for interfacial gravity waves and that the latter suffers
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A mathematical analysis of the Kakinuma model 5

from Kelvin–Helmholtz instabilities, the constants α1 and α2 converge to 0 asN and
N∗ go to infinity so that the stability condition becomes more and more stringent
as N and N∗ grow. When N = N∗ = 0, the Kakinuma model coincides with the
aforementioned bi-layer shallow water system, and the stability regime coincides
with the hyperbolic domain exhibited in [5]. Moreover, when the motion of the
fluids together with the motion of the interface is in the rest state, the above
stability condition is reduced to the well-known stable stratification condition

(ρ2 − ρ1)g > 0. (1.6)

In [14], we showed that under the stability condition (1.5), the non-cavitation
assumptions

H1 � c0 > 0, H2 � c0 > 0, (1.7)

and intrinsic compatibility conditions on the initial data, the initial value problem
for the Kakinuma model is well-posed in Sobolev spaces locally in time. We also
showed in [14] that the Kakinuma model enjoys a Hamiltonian structure analogous
to the one exhibited by Benjamin and Bridges [3] on the full model for interfacial
gravity waves.

Comparison with other higher order models. The Isobe–Kakinuma and the Kak-
inuma models belong to higher order models for the water waves and for the full
interfacial gravity waves, respectively. By this we mean a family of systems of
equations parametrized by nonnegative integers describing the order of the system
within the family, that is N for the Isobe–Kakinuma model, and whose solutions
are expected to approach solutions to the full system as the order increases. Sev-
eral such models have been introduced in the literature, mostly in the water waves
framework, and we will restrict the discussion to water waves in this paragraph.

Based on a Taylor expansion of the Dirichlet-to-Neumann operator at stake in
the water waves system with respect to the shape of the domain, Dommermuth and
Yue [10], West et al. [41] and Craig and Sulem [9] have proposed the so-called high
order spectral (HOS) models. While these models have been successfully employed
in efficient numerical schemes (see recent accounts by Wilkening and Vasan [42],
Nicholls [37] and Guyenne [16]), the equations feature Fourier multipliers which
prevent their direct use in situations involving non-trivial geometries such as hori-
zontal boundaries. Moreover, the rigorous justification of HOS models is challenged
by well-posedness issues; see the discussion in Ambrose et al. [1], and Duchêne and
Melinand [15].

A second class of higher order models originate from formal shallow water expan-
sions put forward by Boussinesq [4] and Rayleigh [39]. A systematic derivation
procedure has been described by Friedrichs in the appendix to [40]. Recently, these
higher order shallow water models have been described and discussed by Matsuno in
[32, 33] and Choi in [6, 7]. The derivation procedure displays formula for approx-
imate velocity potentials under form (1.3)–(1.4) (in particular, only even powers
appear in the flat bottom case), with the important difference that the functions
φi (i = 0, . . . , N) are prescribed through explicit recursion relations. An important
consequence of this derivation is that the resulting systems of equations involve
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6 V. Duchêne and T. Iguchi

only standard differential operators. However, the order of the differential opera-
tors at stake augments with the order of the system, which renders such models
impractical for numerical simulations.

By contrast, the Isobe–Kakinuma model features only differential operators of
order at most two acting on the variables φi (i = 0, . . . , N) which are unknowns of
the system. Notice that the size of the system augments with its order, N . However,
the degrees of freedom do not augment with the order since, as mentioned above,
some compatibility conditions must be satisfied. In fact all quantities are uniquely
determined by two scalar functions which represent the canonical variables in the
Hamiltonian formulation of the water waves system. Let us mention that function
systems different from (1.4) have been considered by Athanassoulis and Belibassakis
[2], Klopman et al. [27] and Papoutsellis and Athanassoulis [38] (see also references
therein). While the systems obtained in these works have a similar nature, they are
all different. We let the reader refer to Duchêne [11, chapter D] for an extended
discussion and comparison of these models.

The choice of the function systems in (1.4) is motivated by the aforementioned
Friedrichs expansion and is essential in the analysis of Iguchi [18, 19] proving that
the Isobe–Kakinuma model is a higher order shallow water approximation for the
water wave problem in the strongly non-linear regime. We note that one may modify
(1.4) by putting all odd and even terms (z + h)i for i = 0, 1, . . . in the case of the flat
bottom. However, in that case, one needs to use the terms up to order 2N to keep the
same precision of the approximation. Therefore, such a choice increases the number
of unkonwns and equations by N so that it is undesirable for practical application.
In other words, one can save memories in numerical simulations by using only
even terms in the case of the flat bottom. On the contrary, if we put only odd
terms (z + h− b(x))2i for i = 0, 1, 2, . . . in the case of a non-flat bottom, then the
corresponding Isobe–Kakinuma model does not give any good approximation even
if we take N a sufficiently large number, because the corresponding approximate
velocity potential Φapp cannot approximate the boundary condition on the bottom
so well due to the lack of odd order terms (z + h− b(x))2i+1 for i = 0, 1, 2, . . ..

Following this discussion, the choice of the function systems (1.2) with (H1) or
(H2) in our interfacial waves framework is very natural. In particular, the rigid-
lid is assumed to be flat so that we do not need to use odd order terms (−z +
h1)2i+1 for i = 0, 1, 2, . . ., in the approximate velocity potential Φapp

1 to obtain a
good approximation, because Φapp

1 can approximate the boundary condition on the
rigid-lid without such terms.

Description of the results. In the present paper, we show that the Kakinuma model
obtained through the approximated potentials (1.2) with

(H1) N∗ = N and pi = 2i (i = 0, 1, . . . , N) in the case of the flat bottom b(x) ≡ 0,

(H2) N∗ = 2N and pi = i (i = 0, 1, . . . , 2N) in the case with general bottom
topographies,

provides a higher order shallow water approximation to the full model for interfacial
gravity waves in the strongly non-linear regime. Our results apply to the dimension-
less Kakinuma model obtained after suitable rescaling. The system of equations then
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depend on the positive dimensionless parameters δ1 and δ2 which are shallowness
parameters related to the upper and the lower layers, respectively, that is, δ� = h�

λ
(� = 1, 2) with the typical horizontal wavelength λ. The shallow water regime is
described through the smallness of the parameters δ1 and δ2. What is more, our
results are uniform with respect to parameters satisfying either ρ2 � ρ1 < ρ2, or
ρ1 � ρ2 and h2 � h1. We notice that the rigid-lid framework is expected to be
invalid in the regime ρ1 � ρ2 and h1 � h2 which is excluded in this paper; see
Duchêne [12].

Our first result extends the result of [14] on the well-posedness of the initial
value problem by showing that solutions to the dimensionless Kakinuma model are
defined on a time interval which does not vanish for arbitrarily small values of δ1
and δ2.

Theorem 1.1 Long-time well-posedness. Under the (dimensionless) stability con-
dition (1.5), the (dimensionless) non-cavitation assumptions (1.7) and intrinsic
compatibility conditions on the initial data, the initial value problem for the Kak-
inuma model is well-posed in Sobolev spaces on a time interval which is independent
of δ1 ∈ (0, 1] and δ2 ∈ (0, 1].

While the non-cavitation assumption and the stability condition are automati-
cally satisfied for small initial data and small bottom topography b, an arrangement
of non-trivial initial data satisfying the compatibility conditions with suitable
bounds is a non-trivial issue, and demands a specific analysis.

Proposition 1.2. Initial data satisfying the compatibility conditions and neces-
sary bounds in theorem 1.1 are uniquely determined (up to an additive constant)
by sufficiently regular initial data for the canonical variables of the Hamiltonian
structure.

Then, we show that under the special choice of the indices p0, p1, . . . , pN∗ as in
(H1) or (H2), the dimensionless Kakinuma model is consistent with the full model
for interfacial gravity waves with an error of order O(δ4N+2

1 + δ4N+2
2 ).

Theorem 1.3 Consistency. Assume (H1) or (H2). The solutions to the dimen-
sionless Kakinuma model constructed in theorem 1.1 produce functions that satisfy
approximately the dimensionless full interfacial gravity waves system up to error
terms of size O(δ4N+2

1 + δ4N+2
2 ).

Conversely, solutions to the dimensionless full interfacial gravity waves system
satisfying suitable uniform bounds produce through proposition 1.2 functions that
satisfy approximately the dimensionless Kakinuma model up to error terms of size
O(δ4N+2

1 + δ4N+2
2 ).

In the last result, we assume the existence of a solution to the full model with a
uniform bound since for general initial data in Sobolev spaces, one cannot expect
to construct a solution to the initial value problem, due to the ill-posedness of the
problem discussed previously. The same issue arises for the full justification of the
Kakinuma model.
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8 V. Duchêne and T. Iguchi

Theorem 1.4 Full justification. Assuming the existence of a solution to the dimen-
sionless full interfacial gravity waves system with a uniform bound and satisfying
initially the (dimensionless) stability condition (1.5) and (dimensionless) non-
cavitation assumptions (1.7), then the Kakinuma model with (H1) or (H2) and
appropriate initial data produces an approximate solution with the error estimate

|ζK(x, t) − ζIW(x, t)| � δ4N+2
1 + δ4N+2

2

on some time interval independent of δ1 ∈ (0, 1] and δ2 ∈ (0, 1], where ζK and
ζIW are solutions to the dimensionless Kakinuma model and to the full model,
respectively.

In our last main result, we show that the Hamiltonian structure of the Kakinuma
model is a shallow water approximation of the Hamiltonian structure of the full
interfacial gravity waves model.

Theorem 1.5 Hamiltonians. Assume (H1) or (H2). Under appropriate assump-
tions on the canonical variables (ζ, φ), we have

|H K(ζ, φ) − H IW(ζ, φ)| � δ4N+2
1 + δ4N+2

2 ,

where H K and H IW are the Hamiltonians of the dimensionless Kakinuma model
and of the dimensionless full interfacial gravity waves model, respectively.

Remark 1.6. The precise statements of our main results are displayed in § 3.
Specifically, theorem 1.1 corresponds to theorem 3.1, proposition 1.2 corresponds
to proposition 3.4, theorem 1.3 corresponds to theorems 3.5 and 3.6 (see also remark
3.8), theorem 1.4 corresponds to theorem 3.9, and theorem 1.5 corresponds to
theorem 3.10.

Structures of the Kakinuma model. In order to obtain our main results, we exploit
several structures of the Kakinuma model. The Kakinuma model can be written
compactly as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

l1(H1)∂tζ + L1(H1)φ1 = 0,

l2(H2)∂tζ − L2(H2, b)φ2 = 0,

ρ1

{
l1(H1) · ∂tφ1 + 1

2

(|u1|2 + w2
1

)}
−ρ2

{
l2(H2) · ∂tφ2 + 1

2

(|u2|2 + w2
2

)}
+ (ρ1 − ρ2)gζ = 0,

(1.8)

where we denote φ1 := (φ1,0, φ1,1, . . . , φ1,N )T, φ2 := (φ2,0, φ2,1, . . . , φ2,N∗)T, put
l1(H1) := (1,H2

1 ,H
4
1 , . . . ,H

2N
1 )T, l2(H2) := (1,Hp1

2 ,Hp2
2 , . . . , HpN∗

2 )T, and the lin-
ear operators L�, and functions u� and w� for � = 1, 2 are defined (after non-
dimensionalization) in § 3. Here we recognize the fact that the hypersurface t = 0
in the space-time Rn × R is characteristic for the Kakinuma model, since the
system of evolution equations is overdetermined for the variable ζ, and underdeter-
mined for the variables φ1 and φ2. As a consequence, solutions to the Kakinuma
model must satisfy some compatibility conditions. Introducing linear operators L1,i
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A mathematical analysis of the Kakinuma model 9

(i = 0, . . . , N) acting on ϕ1 = (ϕ1,0, . . . , ϕ1,N )T and L2,i (i = 0, . . . , N∗) acting on
ϕ2 = (ϕ2,0, . . . , ϕ2,N∗)T by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1,0(H1)ϕ1 :=
∑N

j=0 L1,0j(H1)ϕ1,j ,

L1,i(H1)ϕ1 :=
∑N

j=0(L1,ij(H1)ϕ1,j −H2i
1 L1,0j(H1)ϕ1,j) for i = 1, 2, . . . , N,

L2,0(H2, b)ϕ2 :=
∑N∗

j=0 L2,0j(H2, b)ϕ2,j ,

L2,i(H2, b)ϕ2 :=
∑N∗

j=0(L2,ij(H2, b)ϕ2,j

−Hpi

2 L2,0j(H2, b)ϕ2,j) for i = 1, 2, . . . , N∗,

the necessary conditions can be written simply as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i(H1)φ1 = 0 for i = 1, 2, . . . , N,

L2,i(H2, b)φ2 = 0 for i = 1, 2, . . . , N∗,

L1,0(H1)φ1 + L2,0(H2, b)φ2 = 0.

(1.9)

The first two vectorial identities are analogous to the compatibility conditions
of the Isobe–Kakinuma model for water waves, while the last identity is specific
to the bi-layer framework and is related to the continuity of the normal component
of the velocity at the interface.

A first key ingredient of the analysis is the fact that for sufficiently regular func-
tions ζ, b and φ1 (respectively φ2), there exists a unique solution φ1 (respectively
φ2) to the problems⎧⎨

⎩
l1(H1) · φ1 = φ1, L1,i(H1)φ1 = 0 for i = 1, 2, . . . , N,

l2(H2) · φ2 = φ2, L2,i(H2, b)φ2 = 0 for i = 1, 2, . . . , N∗
(1.10)

satisfying suitable elliptic estimates. What is more, the well-defined linear operators

Λ(N)
1 (ζ) : φ1 �→ L1,0(H1)φ1,

Λ(N∗)
2 (ζ, b) : φ2 �→ L2,0(H2, b)φ2,

are found to approximate the corresponding Dirichlet-to-Neumann maps Λ1(ζ) and
Λ2(ζ, b) defined by

Λ1(ζ)φ1 := (−∂zΦ1 + ∇Φ1 · ∇ζ)
∣∣
z=ζ(x,t)

,

Λ2(ζ, b)φ2 := (∂zΦ2 −∇Φ2 · ∇ζ)
∣∣
z=ζ(x,t)

,

where Φ1 and Φ2 are the unique solutions to Laplace’s equations⎧⎪⎪⎨
⎪⎪⎩

ΔΦ1 + ∂2
zΦ1 = 0 in Ω1(t),

Φ1 = φ1 on Γ(t),

∂zΦ1 = 0 on Σ1,

and

⎧⎪⎪⎨
⎪⎪⎩

ΔΦ2 + ∂2
zΦ2 = 0 in Ω2(t),

Φ2 = φ2 on Γ(t),

∇Φ2 · ∇b− ∂zΦ2 = 0 on Σ2,
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10 V. Duchêne and T. Iguchi

where we denote the upper layer, the lower layer, the interface, the rigid-lid and
the bottom at time t by Ω1(t), Ω2(t), Γ(t), Σ1 and Σ2, respectively. Specifically,
it is proved that, under the special choice of the indices p0, p1, . . . , pN∗ in (H1) or
(H2) and after suitable rescaling, the difference between the dimensionless oper-
ators is of size O(δ4N+2

1 + δ4N+2
2 ). This analysis, which follows directly from the

corresponding analysis for surface waves developed in [19] and scaling arguments,
provides the key argument in the proof of the consistency result described in
theorem 1.3.

In order to study the Kakinuma model, we also need to analyse the full elliptic
system
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i(H1)φ1 = f1,i for i = 1, 2, . . . , N,

L2,i(H2, b)φ2 = f2,i for i = 1, 2, . . . , N∗,

L1,0(H1)φ1 + L2,0(H2, b)φ2 = ∇ · f3, −l1(H1) · φ1 + l2(H2) · φ2 = f4,

(1.11)
for sufficiently regular functions ζ, b and f1 = (f1,1, . . . f1,N )T,f2 = (f2,1, . . . ,
f2,N∗)T,f3, f4. The ellipticity of the problem relies on the coercivity of the cor-
responding operators L1(H1) and L2(H2). The solvability of (1.11) is essential in
several directions. Firstly, it provides an alternative consistency result, where solu-
tions to the full interfacial gravity waves system produce approximate solutions to
the Kakinuma model but satisfying exactly and not approximately the necessary
conditions (1.9). In turn, this provides a crucial ingredient to the full justification
of the Kakinuma model described in theorem 1.4. Furthermore, the arrangement
of initial data satisfying the compatibility conditions as stated in proposition 1.2
amounts to solving (1.11) with f1 = 0, f2 = 0, f3 = 0 and f4 = φ. Similarly, our
result on the Hamiltonians H K and H IW described in theorem 1.5 relies on a com-
parison of solutions to (1.11) with f1 = 0, f2 = 0, f3 = 0 and f4 = φ and solutions
to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΦ1 + ∂2
zΦ1 = 0 in Ω1(t),

ΔΦ2 + ∂2
zΦ2 = 0 in Ω2(t),

∂zΦ1 = 0 on Σ1,

∇Φ2 · ∇b− ∂zΦ2 = 0 on Σ2,

(∇Φ1 · ∇ζ − ∂zΦ1) − (∇Φ2 · ∇ζ − ∂zΦ2) = 0 on Γ(t),

ρ2Φ2 − ρ1Φ1 = φ on Γ(t),

thus extending to the interfacial gravity waves framework the analysis in
[13]. Finally, the solvability of (1.11) allows to determine and control time
derivatives ∂tφ1 and ∂tφ2 of sufficiently regular solutions to the Kakinuma
model (1.8) by using the equations obtained when differentiating with respect
to time the compatibility conditions (1.9) combined with the last equation
of (1.8). This is a crucial ingredient for the analysis of the initial value
problem.
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A mathematical analysis of the Kakinuma model 11

Another crucial ingredient for the analysis of the initial value problem concerns
uniform energy estimates on the linearized Kakinuma system. To this end, we write
the linearized system under the form

A1(∂t + u · ∇)U̇ + A mod
0 U̇ = Ḟ , (1.12)

where U̇ := (ζ̇, φ̇1, φ̇2)T is the deviation from the reference state U := (ζ,φ1,φ2)T,
u is a suitable velocity which is a convex combination of u1 and u2 whose weights
depend on ρ�, H� as well as α� (� = 1, 2) the positive constants mentioned previ-
ously, Ḟ represents lower order terms and A1 := A1(U) is a skew-symmetric matrix
and A mod

0 := A mod
0 (U) is a linear operator symmetric in L2. The energy function

associated to (1.12) is given by (A mod
0 U̇ , U̇)L2 , and we prove that

(A mod
0 U̇ , U̇)L2 � E (U̇) := ‖ζ̇‖2

L2 +
∑

�=1,2

ρ�(‖∇φ̇�‖2
L2 + ‖φ̇′

�‖2
L2)

under the non-cavitation assumption (1.7) and the stability condition (1.5). Because
the structure of (1.12) is not standard, the control of the energy function is obtained
by testing (1.12) with the time derivatives, ∂tU̇ . This, together with suitable prod-
uct and commutator estimates in Sobolev spaces, provides the a priori control
of the energy function for solutions to the Kakinuma model and their derivatives,
and we show that this control is uniform in the shallow water regime after suitable
rescaling. Since the construction and uniqueness of a solution was obtained in the
companion paper [14], the uniform estimates provide the proof of the long-time
well-posedness of the initial value problem for the Kakinuma model result stated in
theorem 1.1. Furthermore, using the aforementioned consistency result, we prove
that the difference between solutions to the full interfacial gravity waves system
and corresponding solutions to the Kakinuma model satisfy an identity analogous
to (1.12), and hence infer a control of the energy function of the difference and
its derivatives, which yields the full justification of the Kakinuma model stated in
theorem 1.4.

Outline. The contents of this paper are as follows. In § 2 we first recall the basic
equations governing the interfacial gravity waves and write down the Kakinuma
model that we are going to analyse in this paper, and then rewrite them in a non-
dimensional form by introducing several non-dimensional parameters. Hamiltonians
of the full model and of the Kakinuma model in the non-dimensional variables are
also provided. In § 3 we first introduce some differential operators, which enable
us to write the Kakinuma model simply in form (1.8), and then we present the
precise statements of our main results in this paper. In § 4 we first recall results in
the framework of surface waves related to the consistency of the Isobe–Kakinuma
model, and then prove theorems 3.5 and 3.6 concerning the consistency of the
Kakinuma model by a simple scaling argument. In § 5 we first derive an elliptic
estimate related to the compatibility conditions for the Kakinuma model, which
explains how to prepare the initial data, as stated in proposition 3.4. Then we give
uniform a priori bounds on regular solutions to the Kakinuma model, especially,
a priori bounds of time derivatives. In § 6 we provide uniform energy estimates
for the solution to the Kakinuma model and prove theorem 3.1, which ensures the
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12 V. Duchêne and T. Iguchi

Figure 2. Articulation of the proofs.

existence of the solution to the initial value problem for the Kakinuma model on a
time interval independent of parameters, especially, δ1 and δ2, under the stability
condition, the non-cavitation assumptions and intrinsic compatibility conditions on
the initial data, together with a uniform bound of the solution. In § 7 we first give
a supplementary estimate on an approximation of the Dirichlet-to-Neumann map,
and then revisit the consistency of the Kakinuma model. We prove proposition 7.6,
which is another version of the consistency given in theorem 3.6, where we adopt
a different construction of an approximate solution to the Kakinuma model from
the solution to the full model. Then, by making use of the well-posedness of the
initial value problem for the Kakinuma model, we prove theorem 3.9 which provides
a conditional rigorous justification of the Kakinuma model, that is, assuming the
existence of a solution to the full model with a uniform bound, we derive an error
estimate between a corresponding solution to the Kakinuma model and that of the
full model. Finally, in § 8 we prove theorem 3.10 which gives an error estimate
between the Hamiltonian of the Kakinuma model and that of the full model. For
the convenience of the reader, the structure of the paper and proofs dependencies
are sketched in figure 2.

Notation. We denote by Wm,p the Lp Sobolev space of order m on Rn and
Hm = Wm,2. We put H̊m = {φ ; ∇φ ∈ Hm−1}. The norm of a Banach space
B is denoted by ‖ · ‖B . The L2-inner product is denoted by (·, ·)L2 . We put

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core


A mathematical analysis of the Kakinuma model 13

∂t = ∂
∂t , ∂j = ∂xj

= ∂
∂xj

and ∂z = ∂
∂z . [P,Q] = PQ−QP denotes the commutator

and [P ;u, v] = P (uv) − (Pu)v − u(Pv) denotes the symmetric commutator. For a
matrix A we denote by AT the transpose of A. O denotes a zero matrix. For a vec-
tor φ = (φ0, φ1, . . . , φN )T we denote the last N components by φ′ = (φ1, . . . , φN )T.
f � g means that there exists a non-essential positive constant C such that f � Cg
holds. f � g means that f � g and g � f hold.

2. The basic equations and the Kakinuma model

2.1. Equations with physical variables

We first recall the equations governing potential flows for two layers of immis-
cible, incompressible, homogeneous and inviscid fluids, and then write down the
Kakinuma model at stake in this work. In the following, we denote the upper layer,
the lower layer, the interface, the rigid-lid and the bottom at time t by Ω1(t), Ω2(t),
Γ(t), Σ1 and Σ2, respectively. The velocity potentials Φ1(x, z, t) and Φ2(x, z, t) in
the upper and lower layers, respectively, satisfy Laplace’s equations

ΔΦ1 + ∂2
zΦ1 = 0 in Ω1(t), (2.1)

ΔΦ2 + ∂2
zΦ2 = 0 in Ω2(t), (2.2)

where Δ = ∂2
1 + · · · + ∂2

n is the Laplacian with respect to the horizontal space
variables x = (x1, . . . , xn). Bernoulli’s laws of each layers have the form

ρ1

(
∂tΦ1 +

1
2
(|∇Φ1|2 + (∂zΦ1)2) + gz

)
+ P1 = 0 in Ω1(t), (2.3)

ρ2

(
∂tΦ2 +

1
2
(|∇Φ2|2 + (∂zΦ2)2) + gz

)
+ P2 = 0 in Ω2(t), (2.4)

where ∇ = (∂1, . . . , ∂n), the positive constant g is the acceleration due to grav-
ity, and P1(x, z, t) and P2(x, z, t) are pressures in the upper and lower layers,
respectively. The dynamical boundary condition on the interface is given by

P1 = P2 on Γ(t). (2.5)

The kinematic boundary conditions on the interface, the rigid-lid and the bottom
are given by

∂tζ + ∇Φ1 · ∇ζ − ∂zΦ1 = 0 on Γ(t), (2.6)

∂tζ + ∇Φ2 · ∇ζ − ∂zΦ2 = 0 on Γ(t), (2.7)
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14 V. Duchêne and T. Iguchi

∂zΦ1 = 0 on Σ1, (2.8)

∇Φ2 · ∇b− ∂zΦ2 = 0 on Σ2. (2.9)

These are the basic equations for interfacial gravity waves. It follows from
Bernoulli’s laws (2.3)–(2.4) and the dynamical boundary condition (2.5) that

ρ1

(
∂tΦ1 +

1
2
(|∇Φ1|2 + (∂zΦ1)2)

)

− ρ2

(
∂tΦ2 +

1
2
(|∇Φ2|2 + (∂zΦ2)2)

)
= (ρ2 − ρ1)gζ on Γ(t). (2.10)

We will always assume the stable stratification condition (ρ2 − ρ1)g > 0. As in the
case of surface water waves, the basic equations have a variational structure and
the corresponding Luke’s Lagrangian is given, up to terms which do not contribute
to the variation of the Lagrangian, by the vertical integral of the pressure in the
water regions. After using Bernoulli’s laws (2.3)–(2.4) we can find the Lagrangian
density

L (Φ1,Φ2, ζ) = −ρ1

∫ h1

ζ

(
∂tΦ1 +

1
2
(|∇Φ1|2 + (∂zΦ1)2)

)
dz

− ρ2

∫ ζ

−h2+b

(
∂tΦ2 +

1
2
(|∇Φ2|2 + (∂zΦ2)2)

)
dz − 1

2
(ρ2 − ρ1)gζ2.

(2.11)

In fact, one checks readily that (2.1)–(2.2) and (2.6)–(2.10) are Euler–Lagrange
equations associated with the action function

J (Φ1,Φ2, ζ) :=
∫ t1

t0

∫
Rn

L (Φ1,Φ2, ζ) dx dt.

We proceed to the Kakinuma model. Let N and N∗ be non-negative integers. In
view of the analysis for the Isobe–Kakinuma model for surface water waves, we
approximate the velocity potentials Φ1 and Φ2 in the Lagrangian by

{
Φapp

1 (x, z, t) =
∑N

i=0(−z + h1)2iφ1,i(x, t),
Φapp

2 (x, z, t) =
∑N∗

i=0(z + h2 − b(x))piφ2,i(x, t),
(2.12)

where p0, p1, . . . , pN∗ are non-negative integers satisfying 0 = p0 < p1 < · · · < pN∗ .
Plugging (2.12) into the Lagrangian density (2.11), we obtain an approximate
Lagrangian density

L app(φ1,φ2, ζ) := L (Φapp
1 ,Φapp

2 , ζ),
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A mathematical analysis of the Kakinuma model 15

where φ1 := (φ1,0, φ1,1, . . . , φ1,N )T and φ2 := (φ2,0, φ2,1, . . . , φ2,N∗)T. The corre-
sponding Euler–Lagrange equation is the Kakinuma model, which has the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H2i
1 ∂tζ −

∑N
j=0

{
∇ ·
(

1
2(i+j)+1H

2(i+j)+1
1 ∇φ1,j

)
− 4ij

2(i+j)−1H
2(i+j)−1
1 φ1,j

}
= 0

for i = 0, 1, . . . , N,

Hpi

2 ∂tζ +
∑N∗

j=0

{
∇ ·
(

1
pi+pj+1H

pi+pj+1
2 ∇φ2,j − pj

pi+pj
H

pi+pj

2 φ2,j∇b
)

+
pi

pi + pj
H

pi+pj

2 ∇b · ∇φ2,j

− pipj

pi+pj−1H
pi+pj−1
2 (1 + |∇b|2)φ2,j

}
= 0

for i = 0, 1, . . . , N∗,

ρ1

{∑N
j=0H

2j
1 ∂tφ1,j + gζ + 1

2

(∣∣∣∑N
j=0H

2j
1 ∇φ1,j

∣∣∣2 +
(∑N

j=0 2jH2j−1
1 φ1,j

)2
)}

−ρ2

{∑N∗

j=0H
pj

2 ∂tφ2,j + gζ

+ 1
2

(∣∣∣∑N∗

j=0(H
pj

2 ∇φ2,j − pjH
pj−1
2 φ2,j∇b)

∣∣∣2 +
(∑N∗

j=0 pjH
pj−1
2 φ2,j

)2
)}

= 0,

(2.13)
where H1 and H2 are depths of the upper and the lower layers, that is,

H1(t,x) := h1 − ζ(x, t), H2(x, t) := h2 + ζ(x, t) − b(x).

In (2.13), we used the notational convention 0/0 = 0. More precisely, this convention
was used so as to dictate p0/(p0 + p0) = 0 and p0p1/(p0 + p1 − 1) = 0 in the case
p1 = 1. We recall also that p0 = 0 is always assumed.

2.2. The dimensionless equations

In order to rigorously validate the Kakinuma model (2.13) as a higher order shal-
low water approximation of the full model for interfacial gravity waves (2.1)–(2.9),
we first introduce non-dimensional parameters and then non-dimensionalize the
equations, through a convenient rescaling of variables. Let λ be a typical horizontal
wavelength. Following Lannes [28], we introduce a non-dimensional parameter δ by

δ :=
h

λ
with h :=

h1h2

ρ
1
h2 + ρ

2
h1
,

where ρ
1

and ρ
2

are relative densities. We also need to use relative depths h1 and
h2 of the layers. These non-dimensional parameters are defined by

ρ
�
:=

ρ�

ρ1 + ρ2
, h� :=

h�

h
(� = 1, 2),

which satisfy the relations

ρ
1

+ ρ
2

= 1,
ρ
1

h1

+
ρ
2

h2

= 1. (2.14)
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16 V. Duchêne and T. Iguchi

Note also that min{h1, h2} � h � max{h1, h2}. It follows from the second relation
in (2.14) that

1 < min

{
h1

ρ
1

,
h2

ρ
2

}
� 2. (2.15)

Here, we note that the standard shallowness parameters δ1 := h1
λ and δ2 := h2

λ
relative to the upper and the lower layers, respectively, are related to the above
parameters by δ� = h�δ for � = 1, 2. In many results of this paper, we restrict our
consideration to the parameter regime

h−1
1 + h−1

2 � 1. (2.16)

To understand this restriction, it is convenient to use non-dimensional parameters
γ := ρ1

ρ2
and θ := h1

h2
. In terms of these parameters, h−1

� (� = 1, 2) can be represented
as

h−1
1 =

γ + 1
γ + θ

, h−1
2 =

γ−1 + 1
γ−1 + θ−1

.

Therefore, the only cases that (2.16) excludes are the case γ, θ � 1 and the
case γ, θ 
 1. Since we shall also assume the stable stratification condition (ρ2 −
ρ1)g > 0, we can describe the two regimes considered in this paper as

(i) γ � 1, i.e. ρ1 � ρ2,

(ii) γ � 1 and θ � 1, i.e. ρ1 � ρ2 and h2 � h1.

Introducing cSW :=
√

(ρ
2
− ρ

1
)gh the speed of infinitely long and small interfacial

gravity waves, we rescale the independent and the dependent variables by

x = λx̃, z = hz̃, t =
λ

c SW
t̃, ζ = hζ̃, b = hb̃, Φ� = λc SWΦ̃� (� = 1, 2).

Plugging these into the full model (2.1)–(2.2) and (2.6)–(2.10) and dropping the
tilde sign in the notation we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΦ1 + δ−2∂2
zΦ1 = 0 in Ω1(t),

ΔΦ2 + δ−2∂2
zΦ2 = 0 in Ω2(t),

∂tζ + ∇Φ1 · ∇ζ − δ−2∂zΦ1 = 0 on Γ(t),
∂tζ + ∇Φ2 · ∇ζ − δ−2∂zΦ2 = 0 on Γ(t),
∂zΦ1 = 0 on Σ1,

∇Φ2 · ∇b− δ−2∂zΦ2 = 0 on Σ2,

ρ
1

(
∂tΦ1 + 1

2 |∇Φ1|2 + 1
2δ

−2(∂zΦ1)2
)

−ρ
2

(
∂tΦ2 + 1

2 |∇Φ2|2 + 1
2δ

−2(∂zΦ2)2
)− ζ = 0 on Γ(t),
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A mathematical analysis of the Kakinuma model 17

where in this scaling the upper layer Ω1(t), the lower layer Ω2(t), the interface Γ(t),
the rigid-lid Σ1 and the bottom Σ2 are written as

Ω1(t) = {X = (x, z) ∈ Rn+1 ; ζ(x, t) < z < h1},
Ω2(t) = {X = (x, z) ∈ Rn+1 ;−h2 + b(x) < z < ζ(x, t)},
Γ(t) = {X = (x, z) ∈ Rn+1 ; z = ζ(x, t)},
Σ1 = {X = (x, z) ∈ Rn+1 ; z = h1},
Σ2 = {X = (x, z) ∈ Rn+1 ; z = −h2 + b(x)}.

Denoting

φ�(x, t) := Φ�(x, ζ(x, t), t) (� = 1, 2)

and using the chain rule, the above system can be written in a more compact and
closed form as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tζ + Λ1(ζ, δ, h1)φ1 = 0,

∂tζ − Λ2(ζ, b, δ, h2)φ2 = 0,

ρ
1

(
∂tφ1 + 1

2 |∇φ1|2 − 1
2δ

2 (Λ1(ζ,δ,h1)φ1−∇ζ·∇φ1)
2

1+δ2|∇ζ|2
)

−ρ
2

(
∂tφ2 + 1

2 |∇φ2|2 − 1
2δ

2 (Λ2(ζ,b,δ,h2)φ2+∇ζ·∇φ2)
2

1+δ2|∇ζ|2
)
− ζ = 0,

(2.17)

where Λ1(ζ, δ, h1) and Λ2(ζ, b, δ, h2) are the Dirichlet-to-Neumann maps for
Laplace’s equations. More precisely, these are defined by

Λ1(ζ, δ, h1)φ1 :=
(−δ−2∂zΦ1 + ∇Φ1 · ∇ζ

)∣∣
z=ζ(x,t)

,

Λ2(ζ, b, δ, h2)φ2 :=
(
δ−2∂zΦ2 −∇Φ2 · ∇ζ

)∣∣
z=ζ(x,t)

,

where Φ1 and Φ2 are unique solutions to the boundary value problems

⎧⎪⎨
⎪⎩

ΔΦ1 + δ−2∂2
zΦ1 = 0 in Ω1(t),

Φ1 = φ1 on Γ(t),
∂zΦ1 = 0 on Σ1,

and

⎧⎪⎨
⎪⎩

ΔΦ2 + δ−2∂2
zΦ2 = 0 in Ω2(t),

Φ2 = φ2 on Γ(t),
∇Φ2 · ∇b− δ−2∂zΦ2 = 0 on Σ2.

As for the Kakinuma model, we introduce additionally the rescaled variables

φ1,i :=
λc SW

h2i
1

φ̃1,i, φ2,i :=
λcSW

hpi

2

φ̃2,i,

where we recall that p0, p1, . . . , pN∗ are non-negative integers satisfying
0 = p0 < p1 < · · · < pN∗ appearing in the approximation (2.12). Plugging these and
the previous scaling into the Kakinuma model (2.13) and dropping the tilde sign in
the notation we obtain the Kakinuma model in the non-dimensional form, which is
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18 V. Duchêne and T. Iguchi

written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H2i
1 ∂tζ − h1

∑N
j=0

{
∇ ·
(

1
2(i+j)+1H

2(i+j)+1
1 ∇φ1,j

)
− 4ij

2(i+j)−1H
2(i+j)−1
1 (h1δ)

−2φ1,j

}
= 0

for i = 0, 1, . . . , N,

Hpi

2 ∂tζ + h2

∑N∗

j=0

{
∇ ·
(

1
pi+pj+1H

pi+pj+1
2 ∇φ2,j − pj

pi+pj
H

pi+pj

2 φ2,jh
−1
2 ∇b

)
+ pi

pi+pj
H

pi+pj

2 h−1
2 ∇b · ∇φ2,j

− pipj

pi+pj−1H
pi+pj−1
2 ((h2δ)

−2 + h−2
2 |∇b|2)φ2,j

}
= 0

for i = 0, 1, . . . , N∗,

ρ
1

{∑N
j=0H

2j
1 ∂tφ1,j + 1

2

(∣∣∣∑N
j=0H

2j
1 ∇φ1,j

∣∣∣2+(h1δ)
−2
(∑N

j=0 2jH2j−1
1 φ1,j

)2
)}

−ρ
2

{∑N∗

j=0H
2j
2 ∂tφ2,j + 1

2

(∣∣∣∑N∗

j=0(H
pj

2 ∇φ2,j − pjH
pj−1
2 φ2,jh

−1
2 ∇b)

∣∣∣2
+(h2δ)

−2
(∑N∗

j=0 pjH
pj−1
2 φ2,j

)2
)}

− ζ = 0,

(2.18)
where we used the notational convention 0/0 = 0, and

H1(x, t) := 1 − h−1
1 ζ(x, t), H2(x, t) := 1 + h−1

2 ζ(x, t) − h−1
2 b(x). (2.19)

We impose the initial conditions to the Kakinuma model of the form

(ζ,φ1,φ2) = (ζ(0),φ1(0),φ2(0)) at t = 0. (2.20)

2.3. Hamiltonian structures

Benjamin and Bridges [3] found that the full model for interfacial gravity waves
can be written in Hamilton’s canonical form

∂tζ =
δH IW

δφ
, ∂tφ = −δH

IW

δζ
,

where the canonical variable φ is defined by

φ = ρ
2
φ2 − ρ

1
φ1 (2.21)

and the Hamiltonian H IW is the total energy E written in terms of the canonical
variables (ζ, φ). Specifically, E is the sum of the kinetic energies of the fluids in the
upper and the lower layers and the potential energy due to the gravity defined as

E :=
∑

�=1,2

∫∫
Ω�(t)

1
2
ρ

�

(|∇Φ�(x, z, t)|2 + δ−2(∂zΦ�(x, z, t))2
)
dxdz

+
∫
Rn

1
2
ζ(x, t)2 dx

=
∑

�=1,2

1
2
ρ

�
(Λ�(ζ)φ�(t), φ�(t))L2 +

1
2
‖ζ(t)‖2

L2 .
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A mathematical analysis of the Kakinuma model 19

Here and in what follows, we denote simply Λ1(ζ) = Λ1(ζ, δ, h1) and Λ2(ζ) =
Λ2(ζ, b, δ, h2). It follows from the kinematic boundary conditions on the interface
that Λ1(ζ)φ1 + Λ2(ζ)φ2 = 0, so that φ1 and φ2 can be written in terms of the
canonical variables (ζ, φ) as

{
φ1 = −(ρ

1
Λ2(ζ) + ρ

2
Λ1(ζ))−1Λ2(ζ)φ,

φ2 = (ρ
1
Λ2(ζ) + ρ

2
Λ1(ζ))−1Λ1(ζ)φ.

Therefore, the Hamiltonian H IW(ζ, φ) of the full model for interfacial gravity waves
is given explicitly by

H IW(ζ, φ) =
1
2
((ρ

1
Λ2(ζ) + ρ

2
Λ1(ζ))−1Λ1(ζ)φ,Λ2(ζ)φ)L2 +

1
2
‖ζ‖2

L2 . (2.22)

As was shown in the companion paper [14], the Kakinuma model (2.18) also
enjoys a Hamiltonian structure analogous to that of the full model for interfacial
gravity waves. The canonical variables are the elevation of the interface ζ and φ
defined by

φ(x, t) := ρ
2
Φapp

2 (x, ζ(x, t), t) − ρ
1
Φapp

1 (x, ζ(x, t), t)

= ρ
2

N∗∑
i=0

H2(x, t)piφ2,i(x, t) − ρ
1

N∑
i=0

H1(x, t)2iφ1,i(x, t), (2.23)

where Φapp
� (� = 1, 2) are non-dimensional versions of the approximate velocity

potentials, which are defined by{
Φapp

1 (x, z, t) :=
∑N

i=0(1 − h−1
1 z)2iφ1,i(x, t),

Φapp
2 (x, z, t) :=

∑N∗

i=0(1 + h−1
2 (z − b(x)))piφ2,i(x, t),

(2.24)

and H� (� = 1, 2) are depths of the upper and lower layers defined by (2.19). We
note that if the canonical variables (ζ, φ) are given, then the Kakinuma model (2.18)
determines φ1 = (φ1,0, φ1,1, . . . , φ1,N )T and φ2 = (φ2,0, φ2,1, . . . , φ2,N∗)T, which are
unique up to an additive constant of the form (Cρ

1
, Cρ

2
) to (φ1,0, φ2,0). For details,

we refer to [14, § 8.1] and lemma 5.1 in § 5. Then, the Hamiltonian H K(ζ, φ) of
the Kakinuma model is given by

H K(ζ, φ) :=
∑

�=1,2

∫∫
Ω�

1
2
ρ

�

(|∇Φapp
� (x, z, t)|2 + δ−2(∂zΦ

app
� (x, z, t))2

)
dxdz

+
∫
Rn

1
2
ζ(x, t)2 dx. (2.25)

3. Statements of the main results

Before stating the main results in this paper, let us introduce some notations
which allow in particular to rewrite (2.18) in a compact form. We introduce
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20 V. Duchêne and T. Iguchi

second order differential operators L1,ij = L1,ij(H1, δ, h1) (i, j = 0, 1, . . . , N) and
L2,ij = L2,ij(H2, b, δ, h2) (i, j = 0, 1, . . . , N∗) by

L1,ijϕ1,j := −∇ ·
(

1
2(i+ j) + 1

H
2(i+j)+1
1 ∇ϕ1,j

)

+
4ij

2(i+ j) − 1
H

2(i+j)−1
1 (h1δ)

−2ϕ1,j , (3.1)

L2,ijϕ2,j := −∇ ·
(

1
pi + pj + 1

H
pi+pj+1
2 ∇ϕ2,j − pj

pi + pj
H

pi+pj

2 ϕ2,jh
−1
2 ∇b

)

− pi

pi + pj
H

pi+pj

2 h−1
2 ∇b · ∇ϕ2,j

+
pipj

pi + pj − 1
H

pi+pj−1
2 ((h2δ)

−2 + h−2
2 |∇b|2)ϕ2,j , (3.2)

where we use the notational convention 0/0 = 0. Notice that we have (L�,ij)∗ =
L�,ji for � = 1, 2, where (L�,ij)∗ is the adjoint operator of L�,ij in L2(Rn). We put
φ1 := (φ1,0, φ1,1, . . . , φ1,N )T, φ2 := (φ2,0, φ2,1, . . . , φ2,N∗)T and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l1(H1) := (1,H2
1 ,H

4
1 , . . . , H

2N
1 )T,

l′1(H1) := (0, 2H1, . . . , 2NH2N−1
1 )T,

l′′1(H1) := (0, 2, . . . , 2N(2N − 1)H2N−2
1 )T,

l2(H2) := (1,Hp1
2 ,Hp2

2 , . . . , HpN∗
2 )T,

l′2(H2) := (0, p1H
p1−1
2 , . . . , pN∗HpN∗

2 )T,
l′′2(H2) := (0, p1(p1 − 1)Hp1−2

2 , . . . , pN∗(pN∗ − 1)HpN∗
2 )T,

(3.3)

and define u� and w� for � = 1, 2, which represent approximately the horizontal and
the vertical components of the velocity field on the interface from the water region
Ω�(t), by

{
u1 := (l1(H1) ⊗∇)Tφ1, w1 := −l′1(H1) · φ1,

u2 := (l2(H2) ⊗∇)Tφ2 − (l′2(H2) · φ2)h
−1
2 ∇b, w2 := l′2(H2) · φ2.

(3.4)

Then, denoting L1 := (L1,ij)0�i,j�N and L2 := (L2,ij)0�i,j�N∗ we can write the
Kakinuma model (2.18) more compactly as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
l1(H1)∂tζ + h1L1(H1, δ, h1)φ1 = 0,
l2(H2)∂tζ − h2L2(H2, b, δ, h2)φ2 = 0,
ρ
1

{
l1(H1) · ∂tφ1 + 1

2

(|u1|2 + (h1δ)
−2w2

1

)}
−ρ

2

{
l2(H2) · ∂tφ2 + 1

2

(|u2|2 + (h2δ)
−2w2

2

)}− ζ = 0.

(3.5)

By eliminating ∂tζ from the first two vectorial identities in (3.5), we obtain
N +N∗ + 1 scalar relations which are necessary conditions for the existence of
solutions to the Kakinuma model, as stated below. Introducing linear operators
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L1,i := L1,i(H1, δ, h1) (i = 0, . . . , N) acting on ϕ1 = (ϕ1,0, . . . , ϕ1,N )T and L2,i :=
L2,i(H2, b, δ, h2) (i = 0, . . . , N∗) acting on ϕ2 = (ϕ2,0, . . . , ϕ2,N∗)T by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L1,0ϕ1 :=
∑N

j=0 L1,0jϕ1,j ,

L1,iϕ1 :=
∑N

j=0(L1,ijϕ1,j −H2i
1 L1,0jϕ1,j) for i = 1, 2, . . . , N,

L2,0ϕ2 :=
∑N∗

j=0 L2,0jϕ2,j ,

L2,iϕ2 :=
∑N∗

j=0(L2,ijϕ2,j −Hpi

2 L2,0jϕ2,j) for i = 1, 2, . . . , N∗,

(3.6)

the necessary conditions can be written simply as

⎧⎪⎨
⎪⎩
L1,i(H1, δ, h1)φ1 = 0 for i = 1, 2, . . . , N,
L2,i(H2, b, δ, h2)φ2 = 0 for i = 1, 2, . . . , N∗,
h1L1,0(H1, δ, h1)φ1 + h2L2,0(H2, b, δ, h2)φ2 = 0.

(3.7)

Hereafter, these necessary conditions will be referred to as the compatibility
conditions. Notice that under these compatibility conditions we have for � = 1, 2

L�φ� = l�L�,0φ�, (3.8)

where l� = l�(H�) and similar simplifications of notations will be used in the fol-
lowing without any comments. In connection with the stability condition (1.5), we
introduce a function

a := 1 + ρ
1
h−1

1 {l′1(H1) · (∂t + u1 · ∇)φ1 − (h1δ)
−2w1l

′′
1(H1) · φ1}

+ ρ
2
h−1

2 {l′2(H2) · (∂t + u2 · ∇)φ2 +
(
(h2δ)

−2w2 − h−1
2 ∇b · u2

)
l′′2(H2) · φ2},

(3.9)

which corresponds to −(∂z(P
app
2 − P app

1 ))|Γ(t) in the stability condition.
Our first main result in this paper is the existence of the solution to the

initial value problem (2.18)–(2.20) for the Kakinuma model on a time interval
independent of parameters, especially, the shallowness parameters δ1 = h1δ and
δ2 = h2δ together with a uniform bound of the solution. For simplicity, we denote
H�(0) := H�|t=0, u�(0) := u�|t=0 for � = 1, 2 and a(0) := a|t=0, which can be written
in terms of the initial data according to the initial condition (2.20). Although the
function a includes the terms (∂tφ

′
�)|t=0 for � = 1, 2, where φ′

1 = (φ1,1, . . . , φ1,N )T

and φ′
2 = (φ2,1, . . . , φ2,N∗)T, and the hypersurface t = 0 is characteristic for the

Kakinuma model, we can uniquely determine them in terms of the initial data. For
details, we refer to remark 5.3.

Theorem 3.1. Let c0,M0, hmin be positive constants and m an integer such
that m > n

2 + 1. There exist a time T > 0 and a constant M > 0 such that
for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying the natural restrictions

(2.14), h1δ, h2δ � 1, as well as the condition hmin � h1, h2, if the initial data
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22 V. Duchêne and T. Iguchi

(ζ(0),φ1(0),φ2(0)) and the bottom topography b satisfy⎧⎨
⎩
‖ζ(0)‖2

Hm +
∑

�=1,2 ρ�
h�

(
‖∇φ�(0)‖2

Hm + (h�δ)
−2‖φ′

�(0)‖2
Hm

)
� M0,

h−1
2 (‖b‖W m+1,∞ + (h2δ)‖b‖W m+2,∞) � M0,

(3.10)

the non-cavitation assumption

H1(0)(x) � c0, H2(0)(x) � c0 for x ∈ Rn, (3.11)

the stability condition

a(0)(x) − ρ
1
ρ
2

ρ
1
h2H2(0)(x)α2 + ρ

2
h1H1(0)(x)α1

|u1(0)(x) − u2(0)(x)|2

� c0 for x ∈ Rn, (3.12)

with positive constants α1 and α2 defined by (3.16), and the compatibility conditions⎧⎪⎨
⎪⎩
L1,i(H1(0), δ, h1)φ1(0) = 0 for i = 1, 2, . . . , N,
L2,i(H2(0), b, δ, h2)φ2(0) = 0 for i = 1, 2, . . . , N∗,
h1L1,0(H1(0), δ, h1)φ1(0) + h2L2,0(H2(0), b, δ, h2)φ2(0) = 0,

(3.13)

then the initial value problem (2.18)–(2.20) has a unique solution (ζ,φ1,φ2) on the
time interval [0, T ] satisfying{

ζ,∇φ1,0,∇φ2,0 ∈ C([0, T ];Hm) ∩ C1([0, T ];Hm−1),

φ′
1,φ

′
2 ∈ C([0, T ];Hm+1) ∩ C1([0, T ];Hm),

where we recall the notation φ′
1 = (φ1,1, φ1,2, . . . , φ1,N )T and φ′

2 = (φ2,1, φ2,2, . . . ,
φ2,N∗)T. Moreover, the solution satisfies the uniform bound

‖ζ(t)‖2
Hm +

∑
�=1,2

ρ
�
h�

(‖∇φ�(t)‖2
Hm + (h�δ)

−2‖φ′
�(t)‖2

Hm

)
� M (3.14)

for t ∈ [0, T ] together with{
a(x, t) − ρ

1
ρ
2

ρ
1
h2H2(x,t)α2+ρ

2
h1H1(x,t)α1

|u1(x, t) − u2(x, t)|2 � c0/2,

H1(x, t) � c0/2, H2(x, t) � c0/2 for x ∈ Rn, t ∈ [0, T ].
(3.15)

Remark 3.2. The constants α1 and α2 are defined by

α� :=
detA�,0

det Ã�,0

, Ã�,0 :=
(
0 1T − 1 A�,0

)
, (3.16)

for � = 1, 2, where 1 := (1, . . . , 1)T and the matrices A1,0 and A2,0 are defined by⎧⎨
⎩
A1,0 :=

(
1

2(i+j)+1

)
0�i,j�N

,

A2,0 :=
(

1
pi+pj+1

)
0�i,j�N∗

.

Hence, α1 and α2 are positive constants depending only on N and the non-negative
integers 0 = p0 < p1 < . . . < pN∗ , respectively, and go to 0 as N,N∗ → ∞.
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Remark 3.3. It is easy to check that the non-cavitation assumption (3.11) and
the stability condition (3.12) are automatically satisfied for small initial data
(ζ(0),φ1(0),φ2(0)) and small bottom topography b, whereas an arrangement of non-
trivial initial data satisfying the compatibility conditions (3.13) together with the
uniform bound (3.10) is a non-trivial issue. To this end, we use the canonical variable
φ defined by (2.23), which can be written as

φ = ρ
2
l2(H2) · φ2 − ρ

1
l1(H1) · φ1. (3.17)

Given the initial data (ζ(0), φ(0)) for the canonical variables (ζ, φ), and the bottom
topography b, the necessary conditions (3.7) and the above relation (3.17) determine
the initial data (φ1(0),φ2(0)) for the Kakinuma model (2.18)–(2.20) satisfying the
compatibility conditions (3.13) and the uniform bound (3.10), which is unique up
to an additive constant of the form (Cρ

2
, Cρ

1
) to (φ1,0(0), φ2,0(0)). In fact, we have

the following proposition, which is a simple corollary of lemma 5.1 given in § 5.

Proposition 3.4. Let c0,M0 be positive constants and m an integer such that
m > n

2 + 1. There exists a positive constant C such that for any positive parameters
ρ
1
, ρ

2
, h1, h2, δ satisfying the natural restrictions (2.14) and h1δ, h2δ � 1, if the ini-

tial data (ζ(0), φ(0)) ∈ Hm × H̊m of the canonical variables, the bottom topography
b ∈Wm,∞, and initial depths H1(0) := 1 − h−1

1 ζ(0) and H2(0) := 1 + h−1
2 ζ(0) − h−1

2 b
satisfy

{
h−1

1 ‖ζ(0)‖Hm + h−1
2 ‖ζ(0)‖Hm + h−1

2 ‖b‖W m,∞ � M0,

H1(0)(x) � c0, H2(0)(x) � c0 for x ∈ Rn,

then there exist initial data (φ1(0),φ2(0)) satisfying the compatibility conditions
(3.13) as well as φ(0) = ρ

2
l2(H2(0)) · φ2(0) − ρ

1
l1(H1(0)) · φ1(0). Moreover, we have

∑
�=1,2

ρ
�
h�

(
‖∇φ�(0)‖2

Hm−1 + (h�δ)
−2‖φ′

�(0)‖2
Hm−1

)
� C‖∇φ(0)‖2

Hm−1 .

The next theorem shows that the Kakinuma model (2.18) is consistent with the
full model for interfacial gravity waves (2.17) at order O((h1δ)

4N+2 + (h2δ)
4N+2)

under the special choice of the indices p0, p1, . . . , pN∗ as

(H1) N∗ = N and pi = 2i (i = 0, 1, . . . , N) in the case of the flat bottom b(x) ≡ 0,

(H2) N∗ = 2N and pi = i (i = 0, 1, . . . , 2N) in the case with general bottom
topographies.

Theorem 3.5. Let c,M be positive constants and m an integer such that m �
4(N + 1) and m > n

2 + 1. We assume (H1) or (H2). There exists a positive constant
C such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying h1δ, h2δ � 1 and

for any solution (ζ,φ1,φ2) to the Kakinuma model (2.18) on a time interval [0, T ]
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with a bottom topography b ∈Wm+1,∞ satisfying{
h−1

1 ‖ζ(t)‖Hm + h−1
2 ‖ζ(t)‖Hm + h−1

2 ‖b‖W m+1,∞ � M,

H1(x, t) � c, H2(x, t) � c for x ∈ Rn, t ∈ [0, T ],
(3.18)

if we define φ� := l�(H�) · φ� for � = 1, 2, then (ζ, φ1, φ2) satisfy approximately the
full model for interfacial gravity waves as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tζ + Λ1(ζ, δ, h1)φ1 = r1,

∂tζ − Λ2(ζ, b, δ, h2)φ2 = r2,

ρ
1

(
∂tφ1 + 1

2 |∇φ1|2 − 1
2δ

2 (Λ1(ζ,δ,h1)φ1−∇ζ·∇φ1)
2

1+δ2|∇ζ|2
)

−ρ
2

(
∂tφ2 + 1

2 |∇φ2|2 − 1
2δ

2 (Λ2(ζ,b,δ,h2)φ2+∇ζ·∇φ2)
2

1+δ2|∇ζ|2
)
− ζ = r0.

Here, the errors (r1, r2, r0) satisfy{
‖r�(t)‖Hm−4(N+1) � Ch�(h�δ)

4N+2‖∇φ�(t)‖Hm−1 (� = 1, 2),

‖r0(t)‖Hm−4(N+1) � C
∑

�=1,2 ρ�
(h�δ)

4N+2‖∇φ�(t)‖2
Hm−1

for t ∈ [0, T ].

Particularly, we see that under the special choice of indices (H1) or (H2), the
solutions to the Kakinuma model (2.18)–(2.20) constructed in theorem 3.1 satisfy
approximately the full model for interfacial gravity waves (2.17) with the choice
φ� = l�(H�) · φ� (� = 1, 2) and that the error is of order O((h1δ)

4N+2 + (h2δ)
4N+2).

Conversely, the next theorem shows that the full model for interfacial gravity
waves is consistent with the Kakinuma model at order O((h1δ)

4N+2 + (h2δ)
4N+2)

under the special choice of indices (H1) or (H2).

Theorem 3.6. Let c,M be positive constants and m an integer such that m �
4(N + 1) and m > n

2 + 1. We assume (H1) or (H2). There exists a positive constant
C such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying h1δ, h2δ � 1 and

for any solution (ζ, φ1, φ2) to the full model for interfacial gravity waves (2.17) on
a time interval [0, T ] with a bottom topography b ∈Wm+1,∞ satisfying (3.18), if
we define H1 and H2 as in (2.19) and φ1 and φ2 as the unique solutions to the
problems{

l1(H1) · φ1 = φ1, L1,i(H1, δ, h1)φ1 = 0 for i = 1, 2, . . . , N,
l2(H2) · φ2 = φ2, L2,i(H2, b, δ, h2)φ2 = 0 for i = 1, 2, . . . , N∗,

(3.19)

then (ζ,φ1,φ2) satisfy approximately the Kakinuma model as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
l1(H1)h−1

1 ∂tζ + L1(H1, δ, h1)φ1 = r̃1,

l2(H2)h−1
2 ∂tζ − L2(H2, b, δ, h2)φ2 = r̃2,

ρ
1

{
l1(H1) · ∂tφ1 + 1

2

(|u1|2 + (h1δ)
−2w2

1

)}
−ρ

2

{
l2(H2) · ∂tφ2 + 1

2

(|u2|2 + (h2δ)
−2w2

2

)}− ζ = r̃0.
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Here, the errors (r̃1, r̃2, r̃0) satisfy

{
‖r̃�(t)‖Hm−4(N+1) � C(h�δ)

4N+2‖∇φ�(t)‖Hm−1 (� = 1, 2),

‖r̃0(t)‖Hm−4(N+1) � C
∑

�=1,2 ρ�
(h�δ)

4N+2‖∇φ�(t)‖2
Hm−1

(3.20)

for t ∈ [0, T ].

Remark 3.7. The unique existence of the solutions φ1 and φ2 to the prob-
lems (3.19) is guaranteed by lemma 4.4 below under an additional assumption
φ1(·, t), φ2(·, t) ∈ H̊m. Lemma 4.4 is essentially a simple corollary of [19, lemma 3.4].

Remark 3.8. In order to define the approximate solution (φ1,φ2) to the Kakinuma
model (2.18) from the solution (ζ, φ1, φ2) to the full model, we can use, in place of
(3.19), the following system of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i(H1, δ, h1)φ1 = 0 for i = 1, 2, . . . , N,
L2,i(H1, b, δ, h2)φ2 = 0 for i = 1, 2, . . . , N∗,
h1L1,0(H1, δ, h1)φ1 + h2L2,0(H2, b, δ, h2)φ2 = 0,
ρ
2
l2(H2) · φ2 − ρ

1
l1(H1) · φ1 = φ,

(3.21)

where φ = ρ
2
φ2 − ρ

1
φ1 is the canonical variable for the full model for interfacial

gravity waves. The above system is nothing but the compatibility conditions (3.7)
together with the definition (3.17) of the canonical variable for the Kakinuma model.
The existence of the approximate solution (φ1,φ2) is guaranteed by lemma 5.1
given in § 5. Then, we have similar error estimates to (3.20). For details, we refer
to proposition 7.6.

The above theorems 3.5 and 3.6 concern essentially the approximation of the
equations. To give a rigorous justification of the Kakinuma model (2.18) as a higher
order shallow water approximation to the full model for interfacial gravity waves
(2.17), one needs to give an error estimate between solutions to the Kakinuma model
and that to the full model. However, we cannot expect to construct general solutions
to the initial value problem for the full model for interfacial gravity waves because
the initial value problem is ill-posed. Nevertheless, if we assume the existence of a
solution to the full model with a uniform bound with respect to the shallowness
parameters δ1 = h1δ and δ2 = h2δ, then we can give an error estimate with respect
to a solution to the Kakinuma model by making use of the well-posedness of the
initial value problem for the Kakinuma model as we can see in the following theorem.

Theorem 3.9. Let c,M, hmin be positive constants and m an integer such that
m > n

2 + 4(N + 1). We assume (H1) or (H2). Then, there exist a time T > 0 and
a constant C > 0 such that the following holds true. Let ρ

1
, ρ

2
, h1, h2, δ be positive

parameters satisfying the natural restrictions (2.14), h1δ, h2δ � 1, and the condition
hmin � h1, h2, and let b ∈Wm+2,∞ such that h−1

2 ‖b‖W m+2,∞ � M . Suppose that the
full model for interfacial gravity waves (2.17) possesses a solution (ζIW, φIW

1 , φIW
2 ) ∈
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C([0, T IW];Hm+1 × H̊m+1 × H̊m+1) satisfying a uniform bound{
‖ζIW(t)‖2

Hm+1 +
∑

�=1,2 ρ�
h�‖∇φIW

� (t)‖2
Hm � M,

HIW
1 (x, t) � c, HIW

2 (x, t) � c for x ∈ Rn, t ∈ [0, T IW],

where we denote HIW
1 := 1 − h−1

1 ζIW and HIW
2 := 1 + h−1

2 ζIW − h−1
2 b. Let ζ(0) :=

ζIW|t=0 and φ(0) := (ρ
2
φIW

2 − ρ
1
φIW

1 )|t=0 be the initial data for the canonical
variables, and let (φ1(0),φ2(0)) be the initial data to the Kakinuma model con-
structed from (ζ(0), φ(0)) by proposition 3.4. Assume moreover that the initial data
(ζ(0),φ1(0),φ2(0)) satisfy the stability condition (3.12), let (ζK,φK

1 ,φ
K
2 ) be the solu-

tion to the initial value problem for the Kakinuma model (2.18)–(2.20) on the
time interval [0, T ] whose unique existence is guaranteed by theorem 3.1, and put
φK

� = l�(H�) · φK
� for � = 1, 2. Then, we have the error bound

‖ζK(t) − ζIW(t)‖Hm−4(N+1) +
∑

�=1,2

√
ρ

�
h�‖∇φK

� (t) −∇φIW
� (t)‖Hm−(4N+5)

� C((h1δ)
4N+2 + (h2δ)

4N+2)

for 0 � t � min{T, T IW}.

The next theorem is the final main result in this paper and states the consistency
of the Hamiltonian H K(ζ, φ) of the Kakinuma model with respect to the Hamilto-
nian H IW(ζ, φ) of the full model for interfacial gravity waves. We recall that these
Hamiltonians are defined in (2.25) and (2.22), respectively.

Theorem 3.10. Let c,M, hmin be positive constants and m an integer such that
m > n

2 + 1 and m � 4(N + 1). We assume (H1) or (H2). There exists a positive
constant C such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying the nat-

ural restrictions (2.14), h1δ, h2δ � 1, and the condition hmin � h1, h2, and for any
(ζ, φ) ∈ Hm × H̊4(N+1) and b ∈Wm+1,∞ satisfying{

h−1
1 ‖ζ‖Hm + h−1

2 ‖ζ‖Hm + h−1
2 ‖b‖W m+1,∞ � M,

H1(x) � c, H2(x) � c for x ∈ Rn,

with H1 and H2 defined by (2.19), we have

|H K(ζ, φ) − H IW(ζ, φ)| � C‖∇φ‖H4N+3‖∇φ‖L2((h1δ)
4N+2 + (h2δ)

4N+2).

4. Consistency of the Kakinuma model; proof of theorems 3.5 and 3.6

In this section, we show that under the special choice of the indices p0, p1, . . . ,
pN∗ as

(H1) N∗ = N and pi = 2i (i = 0, 1, . . . , N) in the case of the flat bottom b(x) ≡ 0,

(H2) N∗ = 2N and pi = i (i = 0, 1, . . . , 2N) in the case with general bottom
topographies,
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A mathematical analysis of the Kakinuma model 27

the Kakinuma model (2.18)is a higher order model to the full model for interfacial
gravity waves (2.17) in the limit δ1 = h1δ → 0, δ2 = h2δ → 0, in the sense of con-
sistency. Specifically, we prove theorems 3.5 and 3.6. Our proof relies essentially on
results obtained in the framework of surface waves in [19], which are recalled in
§ 4.1. The extension to the framework of interfacial waves and the completion of
the proof are provided in § 4.2.

4.1. Results in the framework of surface waves

In this subsection, we consider the case of surface waves where the water surface
and the bottom of the water are represented as z = ζ(x) and z = −1 + b(x), respec-
tively. Here, the time t is fixed arbitrarily, so that we omit the dependence of t in
notations. Let H(x) = 1 + ζ(x) − b(x) be the water depth. For a non-negative inte-
ger N , let N∗ and p0, p1, . . . , pN∗ be non-negative integers satisfying the condition
(H1) or (H2). Put

l(H) := (1,Hp1 , . . . , HpN∗ )T (4.1)

and define Lij = Lij(H, b, δ) (i, j = 0, 1, . . . , N∗) by

Lijϕj := −∇ ·
(

1
pi + pj + 1

Hpi+pj+1∇ϕj − pj

pi + pj
Hpi+pjϕj∇b

)

− pi

pi + pj
Hpi+pj∇b · ∇ϕj +

pipj

pi + pj − 1
Hpi+pj−1(δ−2 + |∇b|2)ϕj , (4.2)

where we use the notational convention 0/0 = 0. Introduce linear operators Li =
Li(H, b, δ) (i = 0, 1, . . . , N∗) acting on ϕ = (ϕ0, . . . , ϕN∗)T by

{
L0ϕ :=

∑N∗

j=0 L0jϕj ,

Liϕ :=
∑N∗

j=0(Lijϕj −HpiL0jϕj) for i = 1, 2, . . . , N∗.
(4.3)

The following lemma has been proved in [19, lemmas 3.2 and 3.4].

Lemma 4.1. Let c,M be positive constants and m an integer such that m > n
2 + 1.

There exists a positive constant C such that if ζ ∈ Hm, b ∈Wm,∞ and H = 1 +
ζ − b satisfy {

‖ζ‖Hm + ‖b‖W m,∞ � M,

H(x) � c for x ∈ Rn,
(4.4)

then for any k = ±0, . . . ,±(m− 1), any δ ∈ (0, 1] and any φ ∈ H̊k+1, there exists a
unique solution φ = (φ0, φ1, . . . , φN∗) = (φ0,φ

′) ∈ H̊k+1 × (Hk+1)N∗
to the prob-

lem {
Li(H, b, δ)φ = 0 for i = 1, 2, . . . , N∗,
l(H) · φ = φ.

(4.5)

Moreover, the solution satisfies ‖∇φ‖Hk + δ−1‖φ′‖Hk � C‖∇φ‖Hk .
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28 V. Duchêne and T. Iguchi

As a corollary of this lemma, under the assumptions of lemma 4.1

Λ(N)(ζ, b, δ) : φ �→ L0(H, b, δ)φ,

where φ is the unique solution to (4.5), is defined as a bounded linear operator from
H̊k+1 to Hk−1 for any k = ±0, . . . ,±(m− 1). A key result is that the operator
Λ(N)(ζ, b, δ) provides good approximations in the shallow water regime δ � 1 to
the corresponding Dirichlet-to-Neumann map Λ(ζ, b, δ), which is defined by

Λ(ζ, b, δ)φ :=
(
δ−2∂zΦ −∇ζ · ∇Φ

) ∣∣
z=ζ

, (4.6)

where Φ is the unique solution to the boundary value problem⎧⎪⎨
⎪⎩

ΔΦ + δ−2∂2
zΦ = 0 in − 1 + b(x) < z < ζ(x),

Φ = φ on z = ζ(x),
∇b · ∇Φ − δ−2∂zΦ = 0 on z = −1 + b(x).

(4.7)

More precisely, we have the following lemma.

Lemma 4.2. Let c,M be positive constants and m, j integers such that m > n
2 + 1,

m � 2(j + 1) and 1 � j � 2N + 1. We assume (H1) or (H2). There exists a positive
constant C such that if ζ ∈ Hm, b ∈Wm+1,∞ and H = 1 + ζ − b satisfy{

‖ζ‖Hm + ‖b‖W m+1,∞ � M,

H(x) � c for x ∈ Rn,
(4.8)

then for any φ ∈ H̊k+2(j+1) with 0 � k � m− 2(j + 1) and any δ ∈ (0, 1] we have

‖Λ(N)(ζ, b, δ)φ− Λ(ζ, b, δ)φ‖Hk � Cδ2j‖∇φ‖Hk+2j+1 .

Proof. We observe that the bound on r1 := Λ(N)(ζ, b, δ)φ− Λ(ζ, b, δ)φ in the case
j = 2N + 1 and k = m− 4(N + 1) is given in [19, theorem 2.2] and proved in [19,
§ 8.1 and 8.2]. The proof is also valid in the case 1 � j � 2N + 1 and 0 � k �
m− 2(j + 1). �

The above estimate allows us to obtain the desired consistency result on the
equations describing the conservation of mass. We need a similar estimate for the
contributions of Bernoulli’s equation. To this end, we denote

B(φ; ζ, b, δ) :=
1
2
|∇φ|2 − 1

2
δ2

(Λ(ζ, b, δ)φ+ ∇ζ · ∇φ)2

1 + δ2|∇ζ|2 (4.9)

and

B(N)(φ; ζ, b, δ) :=
1
2
(|u|2 + δ−2w2

)− wΛ(N)(ζ, b, δ)φ (4.10)

with {
u := (l(H) ⊗∇)Tφ− (l′(H) · φ)∇b,
w := l′(H) · φ,

where l′(H) := (0, p1H
p1−1, . . . , pN∗HpN∗−1)T and φ := (φ0, φ1, . . . , φN∗)T is the

solution to (4.5), whose unique existence is guaranteed by lemma 4.1. Then, the
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following lemma shows that B(N)(φ; ζ, b, δ) is a higher order approximation to
B(φ; ζ, b, δ) in the shallow water regime δ � 1.

Lemma 4.3. Let c,M be positive constants and m an integer such that
m � 4(N + 1) and m > n

2 + 1. We assume (H1) or (H2). There exists a positive
constant C such that if ζ ∈ Hm, b ∈Wm+1,∞ and H = 1 + ζ − b satisfy (4.8), then
for any φ ∈ H̊m and any δ ∈ (0, 1] we have

‖B(N)(φ; ζ, b, δ) −B(φ; ζ, b, δ)‖Hm−4(N+1) � Cδ4N+2‖∇φ‖2
Hm−1 .

Proof. Notice first that differentiating φ = l(H) · φ we have ∇φ = u+ w∇ζ, so that

B(N)(φ; ζ, b, δ) =
1
2
(|∇φ|2 + δ−2w2(1 + δ2|∇ζ|2))− w

(
∇ζ · ∇φ+ Λ(N)(ζ, b, δ)φ

)
=

1
2
(|∇φ|2 + δ−2w2(1 + δ2|∇ζ|2))− w (Λ(ζ, b, δ)φ+ ∇ζ · ∇φ)

+ w
(
Λ(ζ, b, δ)φ− Λ(N)(ζ, b, δ)φ

)
.

If we introduce a residual r by

r = (δ−2∂zΦapp −∇ζ · ∇Φapp)|z=ζ − (δ−2∂zΦ −∇ζ · ∇Φ)|z=ζ ,

where Φ is the solution to the boundary value problem (4.7) and Φapp is an
approximate velocity potential defined by

Φapp(x, z) =
N∗∑
i=0

(z + 1 − b(x))piφi(x),

then we have r = δ−2w −∇ζ · u− Λ(ζ, b, δ)φ = δ−2w(1 + δ2|∇ζ|2) −∇ζ · ∇φ−
Λ(ζ, b, δ)φ. Therefore, we obtain

B(N)(φ; ζ, b, δ) −B(φ; ζ, b, δ) =
1
2
δ2

r2

1 + δ2|∇ζ|2 + w
(
Λ(ζ, b, δ)φ− Λ(N)(ζ, b, δ)φ

)
.

The desired estimate for the second term readily follows from lemmas 4.1 and
4.2. As for the first term, in view of m > n

2 we can use a calculus inequality
‖r2‖Hk � ‖r‖2

H(m+k)/2 for k ∈ {0, 1, . . . ,m}. Particularly, we have ‖r2‖Hm−4(N+1) �
‖r‖2

Hm−2(N+1) . The last term can be evaluated by estimates in [19, § 8.1 and 8.2]. �

4.2. Results in the framework of interfacial waves

In this section, we prove theorems 3.5 and 3.6. To this end, we first rewrite the
Kakinuma model (2.18) using a formulation which allows a direct comparison with
the full model for interfacial gravity waves (2.17), thanks to the following lemma.

Lemma 4.4. Let c,M be positive constants and m an integer such that m > n
2 + 1.

There exists a positive constant C such that for any positive parameters h1, h2, δ sat-
isfying h1δ, h2δ � 1, if ζ ∈ Hm, b ∈Wm,∞, H1 = 1 − h−1

1 ζ and H2 = 1 + h−1
2 ζ −
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30 V. Duchêne and T. Iguchi

h−1
2 b satisfy

{
h−1

1 ‖ζ‖Hm + h−1
2 ‖ζ‖Hm + h−1

2 ‖b‖W m,∞ � M,

H1(x) � c, H2(x) � c for x ∈ Rn,
(4.11)

then for any k = 0,±1, . . . ,±(m− 1) and any φ1, φ2 ∈ H̊k+1 there exists a unique
solution φ1 = (φ1,0,φ

′
1) ∈ H̊k+1 × (Hk+1)N , φ2 = (φ2,0,φ

′
2) ∈ H̊k+1 × (Hk+1)N∗

to the problem

{
l1(H1) · φ1 = φ1, L1,i(H1, δ, h1)φ1 = 0 for i = 1, 2, . . . , N,

l2(H2) · φ2 = φ2, L2,i(H2, b, δ, h2)φ2 = 0 for i = 1, 2, . . . , N∗.
(4.12)

Moreover, the solution satisfies ‖∇φ�‖Hk + (h�δ)
−1‖φ′

�‖Hk � C‖∇φ�‖Hk for
� = 1, 2.

Proof. Notice that we have identities

L1,ij(H1, δ, h1) = Lij(H1, 0, h1δ), L2,ij(H2, b, δ, h2) = Lij(H2, h
−1
2 b, h2δ)

with suitable choices of indices {pi}. Hence, lemma 4.1 gives the desired result. �

As a corollary of this lemma, under the assumptions of lemma 4.4

Λ(N)
1 (ζ, δ, h1) : φ1 �→ L1,0(H1, h1, δ)φ1,

Λ(N)
2 (ζ, b, δ, h2) : φ2 �→ L2,0(H2, b, h2, δ)φ2,

where (φ1,φ2) is the unique solution to (4.12), are defined as bounded linear oper-
ators from H̊k+1 to Hk−1 for any k = ±0, . . . ,±(m− 1). Using these definitions
and noting the relations (3.8) and l�(H�) · ∂tφ� = ∂t(l�(H�) · φ�) − w�h

−1
� ∂tζ, we

can transform the Kakinuma model (2.18) equivalently as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tζ + h1Λ
(N)
1 (ζ, δ, h1)φ1 = 0,

∂tζ − h2Λ
(N)
1 (ζ, b, δ, h2)φ2 = 0,

ρ
1

{
∂tφ1 + 1

2

(|u1|2 + (h1δ)
−2w2

1

)
+ w1Λ

(N)
1 (ζ, δ, h1)φ1

}
−ρ

2

{
∂tφ2 + 1

2

(|u2|2 + (h2δ)
−2w2

2

)− w2Λ
(N)
2 (ζ, b, δ, h2)φ2

}
− ζ = 0,

(4.13)
where we recall that u1, u2, w1 and w2 are uniquely determined from φ1 and φ2

by (3.4), wherein φ1 and φ2 are defined as the solutions to (4.12).
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We further introduce notations, which are contributions of Bernoulli’s equation
and interfacial versions of B and B(N) defined by (4.9) and (4.10). We denote

⎧⎨
⎩
B1(φ1; ζ, δ, h1) := 1

2 |∇φ1|2 − 1
2δ

2 (Λ1(ζ,δ,h1)φ1−∇ζ·∇φ1)
2

1+δ2|∇ζ|2 ,

B2(φ2; ζ, b, δ, h2) := 1
2 |∇φ2|2 − 1

2δ
2 (Λ2(ζ,b,δ,h2)φ2+∇ζ·∇φ2)

2

1+δ2|∇ζ|2 ,

and

{
B

(N)
1 (φ1; ζ, δ, h1) := 1

2

(|u1|2 + (h1δ)
−2w2

1

)
+ w1Λ

(N)
1 (ζ, δ, h1)φ1,

B
(N)
2 (φ2; ζ, b, δ, h2) := 1

2

(|u2|2 + (h2δ)
−2w2

2

)− w2Λ
(N)
2 (ζ, b, δ, h2)φ2.

Then, the full model for interfacial gravity waves (2.17) and the Kakinuma model
(4.13) can be written simply as

⎧⎪⎨
⎪⎩
∂tζ + Λ1(ζ, δ, h1)φ1 = 0,
∂tζ − Λ2(ζ, b, δ, h2)φ2 = 0,
ρ
1
(∂tφ1 +B1(φ1; ζ, δ, h1)) − ρ

2
(∂tφ2 +B2(φ2; ζ, b, δ, h2)) − ζ = 0,

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂tζ + h1Λ

(N)
1 (ζ, δ, h1)φ1 = 0,

∂tζ − h2Λ
(N)
1 (ζ, b, δ, h2)φ2 = 0,

ρ
1

(
∂tφ1 +B

(N)
1 (φ1; ζ, δ, h1)

)
− ρ

2

(
∂tφ2 +B

(N)
2 (φ2; ζ, b, δ, h2)

)
− ζ = 0,

respectively. The following lemmas show that h1Λ
(N)
1 , h2Λ

(N)
2 , B(N)

1 and B(N)
2 are

higher order approximations in the shallow water regime δ1 = h1δ � 1 and δ2 =
h2δ � 1 to Λ1, Λ2, B1 and B2, respectively.

Lemma 4.5. Let c,M be positive constants and m, j integers such that m > n
2 + 1,

m � 2(j + 1) and 1 � j � 2N + 1. We assume (H1) or (H2). There exists a positive
constant C such that for any positive parameters h1, h2, δ satisfying h1δ, h2δ � 1,
if ζ ∈ Hm, b ∈Wm+1,∞, H1 = 1 − h−1

1 ζ and H2 = 1 + h−1
2 ζ − h−1

2 b satisfy

{
h−1

1 ‖ζ‖Hm + h−1
2 ‖ζ‖Hm + h−1

2 ‖b‖W m+1,∞ � M,

H1(x) � c, H2(x) � c for x ∈ Rn,
(4.14)

then for any φ1, φ2 ∈ H̊k+2(j+1) with 0 � k � m− 2(j + 1) we have

{
‖h1Λ

(N)
1 (ζ, δ, h1)φ1 − Λ1(ζ, δ, h1)φ1‖Hk � Ch1(h1δ)

2j‖∇φ1‖Hk+2j+1 ,

‖h2Λ
(N)
2 (ζ, b, δ, h2)φ2 − Λ2(ζ, b, δ, h2)φ2‖Hk � Ch2(h2δ)

2j‖∇φ2‖Hk+2j+1 .
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32 V. Duchêne and T. Iguchi

Proof. By simple scaling arguments, we have⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Λ1(ζ, δ, h1) = h1Λ(−h−1
1 ζ, 0, h1δ),

Λ2(ζ, b, δ, h2) = h2Λ(h−1
2 ζ, h−1

2 b, h2δ),

Λ(N)
1 (ζ, δ, h1) = Λ(N)(−h−1

1 ζ, 0, h1δ),

Λ(N)
2 (ζ, b, δ, h2) = Λ(N)(h−1

2 ζ, h−1
2 b, h2δ).

(4.15)

Therefore, the results follow from lemma 4.2. �

Lemma 4.6. Let c,M be positive constants and m an integer such that
m � 4(N + 1) and m > n

2 + 1. We assume (H1) or (H2). There exists a positive
constant C such that for any positive parameters h1, h2, δ satisfying h1δ, h2δ � 1,
if ζ ∈ Hm, b ∈Wm+1,∞, H1 = 1 − h−1

1 ζ and H2 = 1 + h−1
2 ζ − h−1

2 b satisfy (4.14),
then for any φ1, φ2 ∈ H̊m we have{
‖B(N)

1 (φ1; ζ, δ, h1) −B1(φ1; ζ, δ, h1)‖Hm−4(N+1) � C‖∇φ1‖2
Hm−1(h1δ)

4N+2,

‖B(N)
2 (φ2; ζ, b, δ, h2) −B2(φ2; ζ, b, δ, h2)‖Hm−4(N+1) � C‖∇φ2‖2

Hm−1(h2δ)
4N+2.

Proof. By simple scaling arguments, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B1(φ1; ζ, δ, h1) = B(φ1;−h−1

1 ζ, 0, h1δ),
B2(φ2; ζ, b, δ, h1) = B(φ2;h−1

2 ζ, h−1
2 b, h2δ),

B
(N)
1 (φ1; ζ, δ, h1) = B(N)(φ1;−h−1

1 ζ, 0, h1δ),
B

(N)
2 (φ2; ζ, b, δ, h1) = B(N)(φ2;h−1

2 ζ, h−1
2 b, h2δ).

Therefore, the results follow from lemma 4.3. �

We can now prove theorems 3.5 and 3.6. In view of (3.8) the errors (r1, r2, r0)
and (r̃1, r̃2, r̃0) can be written explicitly as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = Λ1(ζ, δ, h1)φ1 − h1Λ
(N)
1 (ζ, δ, h1)φ1,

r2 = h2Λ
(N)
2 (ζ, b, δ, h2)φ2 − Λ2(ζ, b, δ, h2)φ2,

r0 = 1
2ρ1

(
B1(φ1; ζ, δ, h1) −B

(N)
1 (φ1; ζ, δ, h1)

)
− 1

2ρ2

(
B2(φ2; ζ, b, δ, h2) −B

(N)
2 (φ2; ζ, b, δ, h2)

)
,

r̃1 = −h−1
1 l1(H1)r1, r̃2 = −h−1

2 l2(H2)r2, r̃0 = −r0.

Therefore, the theorems are simple corollaries of the above lemmas 4.5 and 4.6.

5. Elliptic estimates and time derivatives

In this section, we derive useful uniform a priori bounds on regular solutions to the
Kakinuma model (2.18). Firstly, due to the fact that the hypersurface t = 0 in the
space-time Rn × R is characteristic for the Kakinuma model, we need the following
key elliptic estimate in order to be able to estimate time derivatives of the solution.
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A mathematical analysis of the Kakinuma model 33

Let us recall that the operators L1,i for i = 0, 1, . . . , N and L2,i for i = 0, 1, . . . , N∗

are defined by (3.6), and the vectors l1(H1) and l2(H2) are defined by (3.3). We
recall the convention that for a vector φ = (φ0, φ1, . . . , φN )T we denote the last N
components by φ′ = (φ1, . . . , φN )T.

Lemma 5.1. Let c,M be positive constants and m an integer such that m >
n
2 + 1. There exists a positive constant C such that for any positive parame-
ters ρ

1
, ρ

2
, h1, h2, δ satisfying h1δ, h2δ � 1, if ζ ∈ Hm, b ∈Wm,∞, H1 = 1 − h−1

1 ζ

and H2 = 1 + h−1
2 ζ − h−1

2 b satisfy (4.11), then for any f ′
1 = (f1,1, . . . , f1,N )T ∈

(Hk)N , f ′
2 = (f2,1, . . . , f2,N∗)T ∈ (Hk)N∗

, f3 ∈ (Hk)n and f4 ∈ H̊k+1 with k ∈
{0, 1, . . . ,m− 1}, there exists a solution (ϕ1,ϕ2) to⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i(H1, δ, h1)ϕ1 = f1,i for i = 1, 2, . . . , N,
L2,i(H2, b, δ, h2)ϕ2 = f2,i for i = 1, 2, . . . , N∗,
h1L1,0(H1δ, h1)ϕ1 + h2L2,0(H2, b, δ, h2)ϕ2 = ∇ · f3, −ρ

1
l1(H1) ·ϕ1

+ρ
2
l2(H2) ·ϕ2 = f4,

(5.1)

satisfying ∑
�=1,2

ρ
�
h�

(‖∇ϕ�‖2
Hk + (h�δ)

−2‖ϕ′
�‖2

Hk

)

� C

⎛
⎝∑

�=1,2

ρ
�
h� min

{‖f ′
�‖2

Hk−1 , (h�δ)
2‖f ′

�‖2
Hk

}

+ min
{
ρ
1

h1

,
ρ
2

h2

}
‖f3‖2

Hk + min

{
h1

ρ
1

,
h2

ρ
2

}
‖∇f4‖2

Hk

)
.

Moreover, the solution is unique up to an additive constant of the form (Cρ
2
, Cρ

1
)

to (ϕ1,0, ϕ2,0).

Proof. The existence and uniqueness up to an additive constant of the solution has
been given in the companion paper [14, lemma 6.4]. We focus here on the derivation
of uniform estimates. By direct rescaling within the proof of [14, lemma 6.1], we
infer that

(L�ϕ�,ϕ�)L2 � ‖∇ϕ�‖2
L2 + (h�δ)

−2‖ϕ′
�‖2

L2

for � = 1, 2. We note the identities{
L1ϕ1 = l1L1,0ϕ1 + (0,L1,1ϕ1, . . . ,L1,Nϕ1)T,
L2ϕ2 = l2L2,0ϕ2 + (0,L2,1ϕ2, . . . ,L2,N∗ϕ2)T,

so that for the solution (ϕ1,ϕ2) to (5.1) we have∑
�=1,2

ρ
�
h�(L�ϕ�,ϕ�)L2 =

∑
�=1,2

ρ
�
h�(L�,0ϕ�, l� ·ϕ�)L2 +

∑
�=1,2

ρ
�
h�(f

′
�,ϕ

′
�)L2

=: I1 + I2. (5.2)
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34 V. Duchêne and T. Iguchi

Therefore, it is sufficient to evaluate I1 and I2. As for the term I2 we have

|(f ′
�,ϕ

′
�)L2 | � min{‖f ′

�‖H−1‖ϕ′
�‖H1 , ‖f ′

�‖L2‖ϕ′
�‖L2}

� min{‖f ′
�‖H−1 , (h�δ)‖f ′

�‖L2}(‖∇ϕ�‖L2 + (h�δ)
−1‖ϕ′

�‖L2).

As for the term I1, we note the trivial identities

∑
�=1,2

ρ
�
h�(L�,0ϕ�, l� ·ϕ�)L2

=

{
(h1L1,0ϕ1 + h2L2,0ϕ2, ρ1

l1 ·ϕ1)L2 + (h2L2,0ϕ2, ρ2
l2 ·ϕ2 − ρ

1
l1 ·ϕ1)L2 ,

(h1L1,0ϕ1 + h2L2,0ϕ2, ρ2
l2 ·ϕ2)L2 + (h1L1,0ϕ1, ρ1

l1 ·ϕ1 − ρ
2
l2 ·ϕ2)L2 .

Therefore, the term I1 in (5.2) can be expressed in two ways as

I1 =

{
ρ
1
(∇ · f3, l1 ·ϕ1)L2 + h2(L2,0ϕ2, f4)L2 ,

ρ
2
(∇ · f3, l2 ·ϕ2)L2 − h1(L1,0ϕ1, f4)L2 .

By the linearity of (5.1) it is sufficient to evaluate it in the case f4 = 0 and in the
case f3 = 0, separately. In the case f4 = 0, we evaluate it as

|I1| � min{ρ
1
‖f3‖L2‖∇(l1 ·ϕ1)‖L2 , ρ

2
‖f3‖L2‖∇(l2 ·ϕ2)‖L2}

= min
{√

ρ
1

h1

‖f3‖L2

√
ρ
1
h1‖∇(l1 ·ϕ1)‖L2 ,

√
ρ
2

h2

‖f3‖L2

√
ρ
2
h2‖∇(l2 ·ϕ2)‖L2

}

� min
{√

ρ
1

h1

,

√
ρ
2

h2

}
‖f3‖L2

∑
�=1,2

√
ρ

�
h�(‖∇ϕ�‖L2 + ‖ϕ′

�‖L2).

In the case f3 = 0, we evaluate it as

|I1| � min{h1‖∇ϕ1‖L2‖∇f4‖L2 , h2(‖∇ϕ2‖L2 + ‖ϕ′
2‖L2)‖∇f4‖L2}

= min

{√
h1

ρ
1

‖∇f4‖L2

√
ρ
1
h1‖∇ϕ1‖L2 ,

√
h2

ρ
2

‖∇f4‖L2

√
ρ
2
h2(‖∇ϕ1‖L2 + ‖ϕ′

2‖L2)

}

� min

{√
h1

ρ
1

,

√
h2

ρ
2

}
‖∇f4‖L2

∑
�=1,2

√
ρ

�
h�(‖∇ϕ�‖L2 + ‖ϕ′

�‖L2).

From the above estimates, we deduce immediately the desired inequality for k = 0.
In order to obtain the desired inequality on derivatives, we let k ∈ {1, 2, . . . ,

m− 1} and β be a multi-index such that 1 � |β| � k. Applying the differential
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operator ∂β to (5.1), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i∂

βϕ1 = ∂βf1,i + f1,i,β for i = 1, 2, . . . , N,
L2,i∂

βϕ2 = ∂βf2,i + f2,i,β for i = 1, 2, . . . , N∗,
h1L1,0∂

βϕ1 + h2L2,0∂
βϕ2 = ∇ · (∂βf3 + h1f3,1,β + h2f3,2,β),

−ρ
1
l1 · ∂βϕ1 + ρ

2
l2 · ∂βϕ2 = ∂βf4 + ρ

1
f4,1,β + ρ

2
f4,2,β ,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1,i,β := −[∂β ,L1,i(H1, δ, h1)]ϕ1 for i = 1, 2, . . . , N,
f2,i,β := −[∂β ,L2,i(H2, b, δ, h2)]ϕ2 for i = 1, 2, . . . , N∗,
∇ · f3,1,β := −[∂β ,L1,0(H1, δ, h1)]ϕ1,

∇ · f3,2,β := −[∂β ,L2,0(H2, b, δ, h2)]ϕ2,

f4,1,β := [∂β , l1(H1)] ·ϕ1,

f4,2,β := −[∂β , l2(H2)] ·ϕ2.

We put f1,β = (0, f1,1,β , . . . , f1,N,β) and f2,β = (0, f2,1,β , . . . , f2,N∗,β). Then, with
a suitable decomposition f �,β = fhigh

�,β + f low
�,β for � = 1, 2, we see that

‖fhigh
�,β ‖H−1 + (h�δ)‖f low

�,β ‖L2 + ‖f3,�,β‖L2

+ ‖∇f4,�‖L2 � ‖∇ϕ�‖Hk−1 + (h�δ)
−1‖ϕ′

�‖Hk−1

for � = 1, 2. Therefore, in view of the linearity of (5.1), the desired inequality for
k � 1 follows by induction on k. �

From the above elliptic estimates, we deduce the following bounds on time
derivatives of regular solutions to the Kakinuma model (2.18). We introduce a
mathematical energy Em(t) for a solution (ζ,φ1,φ2) to the Kakinuma model by

Em(t) := ‖ζ(t)‖2
Hm +

∑
�=1,2

ρ
�
h�(‖∇φ�(t)‖2

Hm + (h�δ)
−2‖φ′

�(t)‖2
Hm), (5.3)

where φ′
1 = (φ1,1, . . . , φ1,N )T and φ′

2 = (φ2,1, . . . , φ2,N∗)T.

Lemma 5.2. Let c,M1, hmin be positive constants and m an integer such that
m > n

2 + 1. There exists a positive constant C1 such that for any positive parame-
ters ρ

1
, ρ

2
, h1, h2, δ satisfying the natural restrictions (2.14), h1δ, h2δ � 1, and the

condition hmin � h1, h2, if a regular solution (ζ,φ1,φ2) to the Kakinuma model
(2.18) with bottom topography b ∈Wm+1,∞ satisfy

{
Em(t) + h−1

2 ‖b‖W m+1,∞ � M1,

H1(x, t) � c, H2(x, t) � c for x ∈ Rn, 0 � t � T,
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then we have

‖∂tζ(t)‖2
Hm−1 +

∑
�=1,2

ρ
�
h�(‖∇∂tφ�(t)‖2

Hm−1 + (h�δ)
−2‖∂tφ

′
�(t)‖2

Hm−1)

+ ‖∂2
t ζ(t)‖2

Hm−2

+
∑

�=1,2

ρ
�
h�(‖∇∂2

tφ�(t)‖2
Hm−2 + (h�δ)

−2‖∂2
tφ

′
�(t)‖2

Hm−2) � C1Em(t) (5.4)

for 0 � t � T .

Proof. First, we recall that the Kakinuma model (2.18) can be written compactly
as (3.5). It follows from the first component of the first two equations in (3.5) that
∂tζ can be written in two ways as ∂tζ = −h1L1,0φ1 = h2L2,0φ2, so that

‖∂tζ‖2
Hm−1 = min{h2

1‖L1,0φ1‖2
Hm−1 , h

2
2‖L2,0φ2‖2

Hm−1}
� min{h2

1‖∇φ1‖2
Hm , h2

2(‖∇φ2‖2
Hm + ‖φ′

2‖2
Hm)}

� min

{
h1

ρ
1

,
h2

ρ
2

}
Em � 2Em,

where we used (2.15).
As for the estimate of (∂tφ1, ∂tφ2), we differentiate the compatibility conditions

(3.7) with respect to time and use the last equation in (3.5). Then, we have

⎧⎪⎨
⎪⎩
L1,i∂tφ1 = f1,i for i = 1, 2, . . . , N,
L2,i∂tφ2 = f2,i for i = 1, 2, . . . , N∗,
h1L1,0∂tφ1 + h2L2,0∂tφ2 = ∇ · f3, −ρ1

l1 · ∂tφ1 + ρ
2
l2 · ∂tφ2 = f4,

(5.5)

where⎧⎪⎪⎪⎨
⎪⎪⎪⎩
f1,i := −[∂t,L1,i(H1, δ, h1)]φ1 for i = 1, 2, . . . , N,
f2,i := −[∂t,L2,i(H2, b, δ, h2)]φ2 for i = 1, 2, . . . , N∗,
f3 := (u2 − u1)∂tζ,

f4 := 1
2ρ1

(|u1|2 + (h1δ)
−2w2

1

)− 1
2ρ2

(|u2|2 + (h2δ)
−2w2

2

)− ζ.

(5.6)

Therefore, by lemma 5.1 we have
∑

�=1,2

ρ
�
h�(‖∇∂tφ�‖2

Hm−1 + (h�δ)
−2‖∂tφ

′
�‖2

Hm−1)

�
∑

�=1,2

ρ
�
h�(h�δ)

2‖f ′
�‖2

Hm−1 + min
{
ρ
1

h1

,
ρ
2

h2

}
‖f3‖2

Hm−1 + ‖f4‖2
Hm , (5.7)

where f ′
1 = (f1,1, . . . , f1,N )T, f ′

2 = (f2,1, . . . , f2,N∗)T, and we used (2.15). We pro-
ceed to evaluate the right-hand side. By writing down the operators L�,i explicitly,
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we see that the operators do not include any derivatives of H�. Therefore, we can
write f�,i as

f1,i =
((

∂

∂H1
L1,i

)
φ1

)
h−1

1 ∂tζ, f2,i = −
((

∂

∂H2
L2,i

)
φ2

)
h−1

2 ∂tζ.

We note also that the differential operators ∂
∂H�

L�,i have a similar structure as L�,i.
Therefore,

ρ
�
h�(h�δ)

2‖f ′
�‖2

Hm−1 � ρ
�
h�(h�δ)

2(‖∇φ�‖2
Hm + (h�δ)

−4‖φ′
�‖2

Hm−1)‖h−1
� ∂tζ‖2

Hm−1

� E2
m for � = 1, 2,

where, here and henceforth, we utilize fully our restriction h−1
1 , h−1

2 � 1. In view of
the definition (3.4) of u1,u2, w1 and w2, we see easily that∑

�=1,2

ρ
�
h�(‖u�‖2

Hm + (h�δ)
−2‖w�‖2

Hm) � Em. (5.8)

We evaluate the term on f3 as

min
{
ρ
1

h1

,
ρ
2

h2

}
‖f3‖2

Hm−1 �
∑

�=1,2

ρ
�

h�

‖u�∂tζ‖2
Hm−1

�
∑

�=1,2

ρ
�
h�‖u�‖2

Hm−1‖h−1
� ∂tζ‖2

Hm−1

� E2
m.

Similarly, we have

‖f4‖2
Hm �

∑
�=1,2

ρ2
�
(‖u�‖2

Hm + (h1δ)
−2‖w�‖2

Hm)2 + ‖ζ‖2
Hm

�
∑

�=1,2

h−2
� {ρ

�
h�(‖u�‖2

Hm + (h1δ)
−2‖w�‖2

Hm)}2 + ‖ζ‖2
Hm

� E2
m + Em.

Plugging in (5.7) the above estimates, we obtain the desired estimate for
(∂tφ1, ∂tφ2).

Finally, the estimate of ∂2
t ζ can be obtained by differentiating ∂tζ = −h1L1,0φ1 =

h2L2,0φ2 with respect to time. Then, the estimate of (∂2
tφ1, ∂

2
tφ2) can be obtained

by differentiating (5.5) with respect to time once more and applying lemma 5.1. �

Remark 5.3. In view of the above arguments, we see easily that for the Kak-
inuma model (2.18), (∂tφ1, ∂tφ2)|t=0 can be determined from the initial data
(ζ(0),φ1(0),φ2(0)) and the bottom topography b, although the hypersurface t = 0 is
characteristic for the model. They are unique up to an additive constant of the form
(Cρ

2
, Cρ

1
) to (∂tφ1,0, ∂tφ2,0)|t=0. Particularly, (∂tφ

′
1, ∂tφ

′
2)|t=0 and hence a|t=0 with

the function a given in (3.9) can be uniquely determined from the data.
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38 V. Duchêne and T. Iguchi

6. Uniform energy estimates; proof of theorem 3.1

In this section, we provide uniform energy estimates for solutions to the Kakinuma
model. Consequently, we prove theorem 3.1. We recall that the Kakinuma model
(2.18) can be written compactly as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
l1(H1)∂tζ + h1L1(H1, δ, h1)φ1 = 0,
l2(H2)∂tζ − h2L2(H2, b, δ, h2)φ2 = 0,
ρ
1

{
l1(H1) · ∂tφ1 + 1

2

(|u1|2 + (h1δ)
−2w2

1

)}
−ρ

2

{
l2(H2) · ∂tφ2 + 1

2

(|u2|2 + (h2δ)
−2w2

2

)}− ζ = 0,

(6.1)

where we recall that H1 := 1 − h−1
1 ζ, H2 := 1 + h−1

2 ζ − h−1
2 b, φ1 := (φ1,0, φ1,1, . . . ,

φ1,N )T, φ2 := (φ2,0, φ2,1, . . . , φ2,N∗)T, and l1, l2, L1, L2, u1, u2, w1, w2 are defined
in § 3.

6.1. Analysis of linearized equations

Before deriving linearized equations to the Kakinuma model (6.1), we introduce
some more notations. For � = 1, 2, the coefficient matrices of the principal part and
the singular part with respect to the small parameter δ� = h�δ of the operator L�

are denoted by A�(H�) and C�(H�), respectively, that is,⎧⎪⎨
⎪⎩
A1(H1) :=

(
1

2(i+j)+1H
2(i+j)+1
1

)
0�i,j�N

,

A2(H2) :=
(

1
pi+pj+1H

pi+pj+1
2

)
0�i,j�N∗

,
(6.2)

and ⎧⎪⎨
⎪⎩
C1(H1) :=

(
4ij

2(i+j)−1H
2(i+j)−1
1

)
0�i,j�N

,

C2(H2) :=
(

pipj

pi+pj−1H
pi+pj−1
2

)
0�i.j�N∗

.
(6.3)

We put also ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B2(H2) :=

(
pj

pi+pj
H

pi+pj

2

)
0�i,j�N∗

,

B̃2(H2) := B2(H2) −B2(H2)T,

C̃2(H2, h
−1
2 b) := |h−1

2 ∇b|2C2(H2) + h−1
2 (Δb)B2(H2).

(6.4)

In the above expressions, we used the notational convention 0/0 = 0. Then, the
operators L1 and L2 can also be written as{
L1φ1 = −A1Δφ1 − l1(u1 · ∇H1) + (h1δ)

−2C1φ1,

L2φ2 = −A2Δφ2 − l2(u2 · ∇H2) + (h2δ)
−2C2φ2 + B̃2(h−1

2 ∇b · ∇)φ2 + C̃2φ2.

(6.5)
For � = 1, 2, we decompose the operator L� as L� = Lpr

� + Llow
� , where

Lpr
� (H�)ϕ� := −

n∑
l=1

∂l(A�(H�)∂lϕ�) + (h�δ)
−2C�(H�)ϕ�. (6.6)
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We now linearize the Kakinuma model (6.1) around an arbitrary flow (ζ,φ1,φ2)
and denote the variation by (ζ̇ , φ̇1, φ̇2). After neglecting lower order terms, the
linearized equations have the form

⎧⎪⎨
⎪⎩
l1(H1)(∂t + u1 · ∇)ζ̇ + h1L

pr
1 (H1, δ, h1)φ̇1 = ḟ1,

l2(H2)(∂t + u2 · ∇)ζ̇ − h2L
pr
2 (H2, δ, h2)φ̇2 = ḟ2,

ρ
1
l1(H1) · (∂t + u1 · ∇)φ̇1 − ρ

2
l2(H2) · (∂t + u1 · ∇)φ̇2 − aζ̇ = ḟ0,

(6.7)

where the function a is defined by (3.9). In order to derive a good symmetric
structure of the equations, following the companion paper [14] we introduce

θ1 :=
ρ
2
h1H1α1

ρ
1
h2H2α2 + ρ

2
h1H1α1

, θ2 :=
ρ
1
h2H2α2

ρ
1
h2H2α2 + ρ

2
h1H1α1

, (6.8)

where

α� :=
detA�,0

det Ã�,0

, Ã�,0 :=
(
0 1T − 1 A�,0

)
, A�,0 := A�(1) (6.9)

for � = 1, 2 and 1 := (1, . . . , 1)T. Then, we have θ1 + θ2 = 1. We recall that α1

and α2 are positive constants depending only on N and the non-negative integers
0 = p0 < p1 < . . . < pN∗ , respectively, and go to 0 asN,N∗ → ∞. We also introduce

u := θ2u1 + θ1u2, v := u2 − u1.

Then, we have u1 = u− θ1v and u2 = u+ θ2v. Plugging these into the linearized
equations (6.7), we can write them in a matrix form as

A1(∂t + u · ∇)U̇ + A mod
0 U̇ = Ḟ , (6.10)

where

U̇ :=

⎛
⎝ ζ̇

φ̇1

φ̇2

⎞
⎠ , Ḟ :=

⎛
⎜⎝ ḟ0
ρ
1
(ḟ1 − (∇ · (θ1l1 ⊗ v))ζ̇

ρ
2
(ḟ2 − (∇ · (θ2l2 ⊗ v))ζ̇

⎞
⎟⎠ ,

and

A1 :=
(

0 −ρ
1
lT1 ρ

2
lT2

ρ
1
l1 O O − ρ

2
l2 O O

)
,

A mod
0 :=

⎛
⎝ a ρ

1
θ1l

T
1 (v · ∇) ρ

2
θ2l

T
2 (v · ∇)

(v · ∇)∗(ρ
1
θ1l1 · ) ρ

1
h1L

pr
1 O

(v · ∇)∗(ρ
2
θ1l2 · ) O ρ

2
h2L

pr
2

⎞
⎠ .

Here, (v · ∇)∗ denotes the adjoint operator of v · ∇ in L2, that is, (v · ∇)∗f =
−∇ · (fv). We note that A1 is a skew-symmetric matrix and A mod

0 is symmetric
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in L2. Therefore, the corresponding energy function is given by (A mod
0 U̇ , U̇)L2 .

We put

E (U̇) := ‖ζ̇‖2
L2 +

∑
�=1,2

ρ
�
h�(‖∇φ̇�‖2

L2 + (h�δ)
−2‖φ̇′

�‖2
L2). (6.11)

The following lemma shows that (A mod
0 U̇ , U̇)L2 � E (U̇) under the non-cavitation

assumption and the stability condition, stated respectively as (3.11) and (3.12) in
theorem 3.1.

Lemma 6.1. Let c,M, hmin be positive constants. There exists a positive constant C
such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying the condition hmin �

h1, h2, if H1,H2,u1,u2 and the function a satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
�=1,2

(
‖H�‖L∞ +

√
ρ

�
h�‖u�‖L∞

)
+ ‖a‖L∞ � M,

a(x) − ρ
1
ρ
2

ρ
1
h2H2(x)α2+ρ

2
h1H1(x)α1

|u2(x) − u1(x)|2 � c,

H1(x) � c, H2(x) � c for x ∈ Rn,

(6.12)

then for any U̇ = (ζ̇ , φ̇1, φ̇2)T ∈ L2 × (H̊1 × (H1)N ) × (H̊1 × (H1)N∗
) we have

C−1E (U̇) � (A mod
0 U̇ , U̇)L2 � CE (U̇).

Proof. This lemma can be shown along with the proof of [14, lemma 7.4]. For the
sake of completeness, we sketch the proof. We first note that

(A mod
0 U̇ , U̇)L2 = (aζ̇, ζ̇)L2 +

∑
�=1,2

{ρ
�
h�(L

pr
� φ̇�, φ̇�)L2 + 2ρ

�
(θ�l� · (v · ∇)φ̇�, ζ̇)L2}

= (aζ̇, ζ̇)L2

+
∑

�=1,2

{
ρ

�
h�

(
n∑

l=1

(A�∂lφ̇�, ∂lφ̇�)L2 + (h�δ)
−2(C�φ̇�, φ̇�)L2

)

+2ρ
�
(θ�v · (l� ⊗∇)Tφ̇�, ζ̇)L2

}
,

where we used the identity a · (v · ∇)ϕ = v · (a⊗∇)Tϕ. On the other hand, we
can put

(
q�(H�) q�(H�)T − q�(H�) Q�(H�)

)
:=
(
0 l�(H�)T − l�(H�) A�(H�)

)−1

for � = 1, 2. Then, we see that q�(H�) = H�α� and that Q�(H�) is non-negative.
Moreover, the identity

A�(H�)ϕ� ·ϕ� = q�(H�)(l�(H�) ·ϕ�)
2 +Q�(H�)A�(H�)ϕ� ·A�(H�)ϕ� (6.13)
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holds for any ϕ�. Therefore,

n∑
l=1

(A�∂lφ̇�, ∂lφ̇�)L2 =
n∑

l=1

{(q�l� · ∂lφ̇�, l� · ∂lφ̇�)L2 + (Q�A�∂lφ̇�, A�∂lφ̇�)L2}

= (H�α�(l� ⊗∇)Tφ̇�, (l� ⊗∇)Tφ̇�)L2

+
n∑

l=1

(Q�A�∂lφ̇�, A�∂lφ̇�)L2 ,

so that

(A mod
0 U̇ , U̇)L2 = (aζ̇, ζ̇)L2 +

∑
�=1,2

{ρ
�
h�(H�α�(l� ⊗∇)Tφ̇�, (l� ⊗∇)Tφ̇�)L2

+ 2ρ
�
(θ�v · (l� ⊗∇)Tφ̇�, ζ̇)L2}

+
∑

�=1,2

ρ
�
h�

{
n∑

l=1

(Q�A�∂lφ̇�, A�∂lφ̇�)L2 + (h�δ)
−2(C�φ̇�, φ̇�)L2

}

=: I1 + I2.

We proceed to evaluate I1.

I1 �
∫
Rn

⎧⎨
⎩aζ̇2 +

∑
�=1,2

(
ρ

�
h�H�α�|(l� ⊗∇)Tφ̇�|2 − 2ρ

�
θ�|v||(l� ⊗∇)Tφ̇�||ζ̇|

)⎫⎬
⎭ dx

=
∫
Rn

A0

⎛
⎜⎜⎝

ζ̇√
ρ
1
h1|(l1 ⊗∇)Tφ̇1|√

ρ
2
h2|(l2 ⊗∇)Tφ̇2|

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

ζ̇√
ρ
1
h1|(l1 ⊗∇)Tφ̇1|√

ρ
2
h2|(l2 ⊗∇)Tφ̇2|

⎞
⎟⎟⎟⎠dx,

where the matrix A0 is given by

A0 =

⎛
⎝a −

√
ρ
1
/h1θ1|v| −

√
ρ
2
/h2θ2|v|

−
√
ρ
1
/h1θ1|v| H1α1 0 −

√
ρ
2
/h2θ2|v| 0 H2α2

⎞
⎠ .

Here, we see that

det A0 = H1H2α1α2

(
a− ρ

1
ρ
2

ρ
1
h2H2α2 + ρ

2
h1H1α1

|v|2
)

� c3α1α2 > 0,

so that A0 is positive definite by Sylvester’s criterion. Moreover, trA0 �
max{1, α1, α2}M � 1 and the minimal eigenvalue of the matrix A0 is bounded
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42 V. Duchêne and T. Iguchi

from below by 4 det A0/(tr A0)2 � 1. Therefore, we obtain

I1 �
∫
Rn

⎛
⎝ζ̇2 +

∑
�=1,2

ρ
�
h�H�α�|(l� ⊗∇)Tφ̇�|2

⎞
⎠dx.

As for I2, it is easy to see that (C�φ̇�, φ̇�)L2 � ‖φ̇′
�‖2

L2 for � = 1, 2. Summariz-
ing the above estimates and using the decomposition (6.13) again, we obtain
(A mod

0 U̇ , U̇)L2 � E (U̇).
In order to obtain the estimate of (A mod

0 U̇ , U̇)L2 from above, it is sufficient to
show that each element of the matrix A0 is uniformly bounded. Since θ1 + θ2 = 1,
we have ⎧⎪⎨

⎪⎩
√
ρ
1
/h1θ1|v| � h−1

1

√
ρ
1
h1|u1| +

√
ρ
1
/h1θ1|u2|,√

ρ
2
/h2θ2|v| �

√
ρ
2
/h2θ2|u1| + h−1

2

√
ρ
2
h2|u2|.

Here, we see that

√
ρ
1
/h1θ1|u2| =

1
h2

√
H1α1

H2α2

√
(ρ

1
h2H2α2)(ρ2

h1H1α1)

ρ
1
h2H2α2 + ρ

2
h1H1α1

√
ρ
2
h2|u2|

� 1
2h2

√
H1α1

H2α2

√
ρ
2
h2|u2|

� 1

2hmin

√
Mα1
cα2

M
� 1.

Similarly, we have
√
ρ
2
/h2θ2|u1| � 1. Therefore, we obtain (A mod

0 U̇ , U̇)L2 �
E (U̇). �

In the following lemma we provide uniform energy estimates for regular solutions
to the linearized Kakinuma model (6.7).

Proposition 6.2. Let c,M,M1, hmin be positive constants. There exist positive
constants C = C(c,M, hmin) and C1 = C1(c,M,M1, hmin) such that for any pos-
itive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying the natural restrictions (2.14) and the

condition hmin � h1, h2, if H1,H2,u1,u2 and the function a satisfy (6.12) and

∑
�=1,2

(
‖∂tH�‖L∞ + ‖∇H�‖L∞ + ρ

�
h�(‖∂tu�‖2

L∞ + ‖∇u�‖2
L∞)
)

+ ‖∂ta‖L∞ + ‖∇a‖L∞ � M1,
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then for any regular solution U̇ = (ζ̇, φ̇1, φ̇2)T to the linearized Kakinuma model
(6.7) we have

E (U̇(t)) � C eC1tE (U̇(0)) + C1

∫ t

0

eC1(t−τ)

{
‖ḟ0(τ)‖H1(‖∂tζ̇(τ)‖H−1 + ‖ζ̇(τ)‖L2)

+
∑

�=1,2

ρ
�
(‖ḟ �(τ)‖L2 + ‖ζ̇(τ)‖L2)‖(∂tφ̇�(τ),∇φ̇�(τ))‖L2

}
dτ.

Proof. We deduce from (6.10) that

d
dt

(A mod
0 U̇ , U̇)L2

= ([∂t,A
mod
0 ]U̇ , U̇)L2 + 2(A mod

0 ∂tU̇ , U̇)L2

= ([∂t,A
mod
0 ]U̇ , U̇)L2 + 2((∂t + u · ∇)U̇ ,A mod

0 U̇)L2 − 2((u · ∇)U̇ ,A mod
0 U̇)L2

= ([∂t,A
mod
0 ]U̇ , U̇)L2 − 2((u · ∇)U̇ ,A mod

0 U̇)L2 + 2((∂t + u · ∇)U̇ , Ḟ )L2

=: I1 + I2 + I3,

where we used the fact that A mod
0 is a symmetric operator in L2 and that A1 is a

skew-symmetric matrix. As for I1, we have

I1 = ((∂ta)ζ̇, ζ̇)L2

+
∑

�=1,2

{
ρ

�
h�

(
n∑

l=1

((∂tA�)∂lφ̇�, ∂lφ̇�)L2 + (h�δ)
−2((∂tC�)φ̇�, φ̇�)L2

)

+2ρ
�
([∂t, θ�l

T
� (v · ∇)]φ̇�, ζ̇)L2

}
.

Here, as in the proof of lemma 6.1 we have
√
ρ

�
/h�θ�(|v| + |∂tv|) � 1 for � = 1, 2. In

view of the relations ∂tθ1 = −∂tθ2 = θ1θ2(H−1
1 ∂tH1 −H−1

2 ∂tH2), we have |∂tθ�| �
θ1θ2 for � = 1, 2. Therefore, we obtain |I1| � E (U̇). As for I2, by integration by
parts we have

I2 = ((∇ · (au))ζ̇ , ζ̇)L2

−
∑

�=1,2

ρ
�
h�

{
n∑

l=1

{
2(A�∂lφ̇�, ((∂lu) · ∇)φ̇�)L2 + (((u · ∇)∗A�)∂lφ̇�, ∂�φ̇�)L2

}

+(h�δ)
−2(((u · ∇)∗C�)φ̇�, φ̇�)L2

}

+ 2
∑

�=1,2

ρ
�

{
((∇ · u)ζ̇, θ�l

T
� (v · ∇)φ̇�)L2 + (ζ̇, [u · ∇, θ�l

T
� (v · ∇)]φ̇�)L2 .
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44 V. Duchêne and T. Iguchi

By using (2.14), we see that

θ1 � ρ
2
h1

ρ
1
h2 + ρ

2
h1

=
ρ
2

h2

, θ2 � ρ
1
h2

ρ
1
h2 + ρ

2
h1

=
ρ
1

h1

.

Therefore, we have |u| � θ2|u1| + θ1|u2| � 1. In view of |∇θ�| � θ1θ2 for � = 1, 2,
we have also |∇u| � 1 and

√
ρ�/h�θl|∇v| � 1 for � = 1, 2. Hence, we obtain |I2| �

E (U̇). Finally, as for I3, we have

I3 = 2(∂tζ̇, ḟ0)L2 − 2(ζ̇ ,∇ · (uḟ0))L2

+ 2
∑

�=1,2

ρ
�
((∂t + u · ∇)φ̇�, ḟ � − (∇ · (θ�l� ⊗ v))ζ̇)L2

� ‖ḟ0‖H1(‖∂tζ̇‖H−1 + ‖ζ̇‖L2) +
∑

�=1,2

ρ
�
(‖ḟ �‖L2 + ‖ζ̇‖L2)‖(∂tφ̇�,∇φ̇�)‖L2 .

Summarizing the above estimates we obtain

d
dt

(A mod
0 U̇ , U̇)L2 � E (U̇) + ‖ḟ0‖H1(‖∂tζ̇‖H−1 + ‖ζ̇‖L2)

+
∑

�=1,2

ρ
�
(‖ḟ �‖L2 + ‖ζ̇‖L2)‖(∂tφ̇�,∇φ̇�)‖L2 .

This together with lemma 6.1 and Gronwall’s inequality gives the desired estimate.
�

6.2. Energy estimates

In this subsection, we will complete the proof of theorem 3.1. The existence
and the uniqueness of the solution to the initial value problem for the Kakinuma
model (6.1) has already been established in the companion paper [14], so that it is
sufficient to derive the uniform bound (3.14) of the solution for some time interval
[0, T ] independent of parameters. The following lemma can be shown in the same
way as the proof of [19, lemma 4.2].

Lemma 6.3. Let c,M be positive constants and m an integer such that m > n
2 + 1.

There exists a positive constant C such that for any positive parameters h1, h2, δ sat-
isfying h1δ, h2δ � 1, if ζ ∈ Hm−1, b ∈Wm,∞, H1 = 1 − h−1

1 ζ and H2 = 1 + h−1
2 ζ −

h−1
2 b satisfy {

h−1
1 ‖ζ‖Hm−1 + h−1

2 ‖ζ‖Hm−1 + h−1
2 ‖b‖W m,∞ � M,

H1(x) � c, H2(x) � c for x ∈ Rn,

and if ϕ1 and ϕ2 satisfy{
L1,i(H1, δ, h1)ϕ1 = f1,i for i = 1, 2, . . . , N,
L2,i(H2, b, δ, h2)ϕ2 = f2,i for i = 1, 2, . . . , N∗,

then for any k = 0,±1, . . . ,±(m− 1) we have

(h�δ)
−2‖ϕ′

�‖Hk � C(‖∇ϕ�‖Hk+1 + ‖ϕ′
�‖Hk+1 + ‖f ′

�‖Hk) (� = 1, 2).
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The next lemma gives an energy estimate of the solution to the Kakinuma
model (6.1) under appropriate assumptions on the solution. We recall that the
mathematical energy function Em(t) is defined by (5.3).

Lemma 6.4. Let c,M,M1, hmin be positive constants. There exist two pos-
itive constants C = C(c,M, hmin) and C1 = C1(c,M,M1, hmin) such that for
any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying the natural restrictions (2.14),

h1δ, h2δ � 1, and the condition hmin � h1, h2, if a regular solution (ζ,φ1,φ2)
to the Kakinuma model (6.1) with a bottom topography b satisfies (6.12),
h−1

2 (‖b‖W m+1,∞ + (h2δ)‖b‖W m+2,∞) � M1, and Em(t) � M1 for some time interval
[0, T ], then we have Em(t) � CeC1tEm(0) for 0 � t � T .

Proof. Let β be a multi-index such that 1 � |β| � m. Applying ∂β to the Kakinuma
model (6.1), after a tedious but straightforward calculation, we obtain⎧⎪⎪⎪⎨
⎪⎪⎪⎩
l1(H1)(∂t + u1 · ∇)∂βζ + h1L

pr
1 (H1, δ, h1)∂

βφ1 = f1,β ,

l2(H2)(∂t + u2 · ∇)∂βζ − h2L
pr
2 (H2, δ, h2)∂

βφ2 = f2,β ,

ρ
1
l1(H1) · (∂t + u1 · ∇)∂βφ1 − ρ

2
l2(H2) · (∂t + u2 · ∇)∂βφ2 − a∂βζ = f0,β ,

(6.14)
where Lpr

1 and Lpr
2 are defined by (6.6), the function a by (3.9), and

f1,β := −[∂β , l1(H1)]∂tζ+h1

{
[∂β , A1(H1)]Δφ1−(l1(H1) ⊗ l1(H1))(∇H1 · ∇)∂βφ1

+ [∂β , l1(H1) ⊗ u1]∇H1−(h1δ)
−2[∂β , C1(H1)]φ1

}
, (6.15)

f2,β := −[∂β , l2(H2)]∂tζ−h2

{
[∂β , A2(H2)]Δφ2−(l2(H2) ⊗ l2(H2))(∇H2 · ∇)∂βφ2

+ [∂β , l2(H2) ⊗ u2]∇H2 − (h2δ)
−2[∂β , C2(H2)]φ2

−l2(H2)(u2 · ∂β(h−1
2 ∇b))−∂β

(
B̃2(H2)(h−1

2 ∇b · ∇)φ2+C̃2(H2, h
−1
2 b)φ2

)}
,

(6.16)

f0,β := −ρ
1

{(
[∂β , l1(H1)] − l′1(H1)(∂βH1)

)T
∂tφ1

+ 1
2 [∂β ;u1,u1] + 1

2 (h1δ)
−2[∂β ;w1, w1]

+ u1 ·
((

[∂β , l1(H1)] − l′1(H1)(∂βH1)
)⊗∇)T φ1

−(h1δ)
−2w1

((
[∂β , l′1(H1)] − l′′1(H1)(∂βH1)

)T
φ1 + l′1(H1) · ∂βφ1

)}
+ ρ

2

{(
[∂β , l2(H2)] − l′2(H2)(∂βH2) − l′2(H2)(∂β(h−1

2 b))
)T
∂tφ2

+ 1
2 [∂β ;u2,u2] + 1

2 (h2δ)
−2[∂β ;w2, w2]

+ u2 ·
((

[∂β , l2(H2)] − l′2(H2)(∂βH2) − l′2(H2)(∂β(h−1
2 b))

)⊗∇)T φ2

− u2 · [∂β , h−1
2 ∇b⊗ φ2]l

′
2(H2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core


46 V. Duchêne and T. Iguchi

− (u2 · h−1
2 ∇b)φ2 ·

(
∂βl′2(H2) − l′′2(H2)(∂βH2) − l′′2(H2)(∂β(h−1

2 b))
)

+ (h2δ)
−2w2

((
[∂β , l′2(H2)] − l′′2(H2)(∂βH2) − l′′2(H2)(∂β(h−1

2 b))
)T
φ2

+l′2(H2) · ∂βφ2

)}
. (6.17)

Here, [∂β ;u, v] = ∂β(uv) − (∂βu)v − u(∂βv) is the symmetric commutator. For
vector valued functions, it is defined by [∂β ;u,v] = ∂β(u · v) − (∂βu) · v − u ·
(∂βv).

On the other hand, by lemma 5.2 we have estimate (5.4) for time derivatives of
the solution. Particularly, we have∑
�=1,2

ρ
�
h�

(‖∂tu�‖2
Hm−1 + (h�δ)

−2‖∂tw�‖2
Hm−1 + ‖∂tφ

′
�‖2

Hm + ‖∂2
tφ

′
�‖2

Hm−1

)
� Em.

(6.18)
Note that we have also estimate (5.8) for the velocities (u�, w�) (� = 1, 2). Moreover,
it follows from lemma 6.3 that ρ

�
h�(h�δ)

−4‖φ′
�‖2

Hm−1 � Em for � = 1, 2. In view
of the definition (3.9) of the function a, it is not difficult to check the estimate
‖a− 1‖2

Hm + ‖∂ta‖2
Hm−1 � Em. Therefore, by the Sobolev imbedding theorem we

see that all the assumptions in proposition 6.2 are satisfied, so that for the solution
U = (ζ,φ1,φ2)T we have

E (∂βU(t)) � C eC1tE (∂βU(0)) + C1

∫ t

0

eC1(t−τ)Fβ(τ) dτ,

where

Fβ = ‖f0,β‖H1(‖∂t∂
βζ‖H−1 + ‖∂βζ‖L2)

+
∑

�=1,2

ρ
�
(‖f �,β‖L2 + ‖∂βζ‖L2)‖(∂t∂

βφ�,∇∂βφ�)‖L2 .

In view of estimates (5.4), (5.8) and (6.18) together with

‖([∂β , l�(H�)] − l′�(H1)(∂βH�))Tϕ�‖H1 � ‖ϕ′
�‖Hm

for � = 1, 2, we obtain Fβ � Em. We note that the multi-index β is assumed to sat-
isfy 1 � |β| � m. As for the case β = 0, in view of d

dtE (U(t)) � Em(t) we infer the
inequality E (U(t)) � E (U(0)) + C1

∫ t

0
Em(τ)dτ . Summarizing the above estimates

we obtain

Em(t) � C eC1tEm(0) + C1

∫ t

0

eC1(t−τ)Em(τ) dτ

with constants C = C(c,M, hmin) and C1 = C1(c,M,M1, hmin). Therefore, Gron-
wall’s inequality gives the desired estimate. �

Now, we are ready to prove theorem 3.1. Suppose that the initial data
(ζ(0),φ1(0),φ2(0)) and the bottom topography b satisfy (3.10)–(3.13). Let C0 be
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a positive constant such that∑
�=1,2

(‖H�(0)‖L∞ + ρ
�
h�‖u�(0)‖2

L∞) + ‖a(0)‖L∞ � C0.

Such a constant C0 exists as a constant depending on c0,M0, hmin and m. We will
show that the solution (ζ,φ1,φ2) satisfies (3.14), (3.15) and∑

�=1,2

(‖H�(t)‖L∞ + ρ
�
h�‖u�(t)‖2

L∞) + ‖a(t)‖L∞ � 2C0 (6.19)

for 0 � t � T with a constant M and a time T which will be determined below.
We note that (3.14) is equivalent to Em(t) � M . To this end, we assume that the
solution satisfies (3.14), (3.15), and (6.19) for 0 � t � T . In the following, the con-
stant depending on c0, C0, hmin,m but not on M is denoted by C and the constant
depending also on M by C1. These constants may change from line to line. Then,
it follows from lemma 6.4 that Em(t) � C eC1tM0 for 0 � t � T . Therefore, if we
chose M = 2CM0 and if T is so small that T � C−1

1 log 2, then (3.14) holds in fact
for 0 � t � T . It remains to show (3.15) and (6.19). As before, we can check⎧⎨

⎩
∑

�=1,2

(
‖∂tH�(t)‖L∞ +

√
ρ

�
h�‖∂tu�(t)‖L∞

)
+ ‖∂ta(t)‖L∞ � C1,

‖∂t

(
a(t) − ρ

1
ρ
2

ρ
1
H2(t)α2+ρ

2
H1(t)α1

|u1(t) − u2(t)|2
)
‖L∞ � C1.

Therefore, if T is so small that T � (2C1)−1c0 and T � ((2C1/2
0 + 1)C1)−1C0, then

the lower bound (3.15) and the upper bound (6.19) hold in fact for 0 � t � T . This
completes the proof of theorem 3.1.

7. Approximation of solutions; proof of theorem 3.9

In this section, we prove theorem 3.9, which gives a rigorous justification of the
Kakinuma model (2.18) as a higher order shallow water approximation to the full
model for interfacial gravity waves (2.17) under the hypothesis of the existence of
the solution to the full model with uniform bounds.

7.1. Supplementary estimate for the Dirichlet-to-Neumann map

In this subsection, we give a supplementary estimate to lemma 4.2 for the
Dirichlet-to-Neumann map Λ(ζ, b, δ) defined by (4.6) appearing in the framework of
surface waves. We recall the map Λ(N)(ζ, b, δ) : φ �→ L0(H, b, δ)φ, where L0(H, b, δ)
is defined by (4.3) and φ is the unique solution to (4.5). In this section, we omit
the dependence of t in notations.

Lemma 7.1. Let c,M be positive constants and m, j integers such that m > n
2 + 1,

m � 2(j + 1) and 1 � j � 2N + 1. We assume (H1) or (H2). There exists a positive
constant C such that if ζ ∈ Hm, b ∈Wm+1,∞ and H = 1 + ζ − b satisfy (4.8), then
for any φ ∈ H̊k+2(j+1) with 0 � k � m− 2(j + 1) and any δ ∈ (0, 1] we have

‖(−Δ)−
1
2 (Λ(N)(ζ, b, δ)φ− Λ(ζ, b, δ)φ)‖Hk � Cδ2j‖∇φ‖Hk+2j+1 .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core
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Proof. This lemma can be proved in a similar way to the proof of lemma 4.2 with
a slight modification. For the completeness, we sketch the proof. By the duality
(Hk)∗ = H−k and the symmetry of the operator (−Δ)−

1
2 , it is sufficient to show

the estimate

|((Λ − Λ(N))φ, ψ)L2 | � δ2j‖∇φ‖Hk+2j+1‖∇ψ‖H−k

for any φ ∈ H̊k+2(j+1) and any ψ ∈ H1−k. We decompose it as

((Λ − Λ(N))φ, ψ)L2 = ((Λ − Λ(2N+2))φ, ψ)L2 + ((Λ(2N+2) − Λ(N))φ, ψ)L2

=: I1 + I2

and evaluate the two components of the right-hand side separately.
We recall the definitions (4.1) of the (N∗ + 1) vector-valued function l(H)

and (4.3) of the operator Li(H, b, δ), which acts on (N∗ + 1) vector-valued func-
tions. These depend on N , so that we denote them by l(N)(H) and L(N)

i (H, b, δ),
respectively, in the following argument. Let Φ be the solution to the boundary
value problem (4.7) and let φ = (φ0, φ1, . . . , φN∗), φ̃ = (φ̃0, φ̃1, . . . , φ̃2N∗+2), and
ψ = (ψ0, ψ1, . . . , ψ2N∗+2) be the solutions to the problems{

L(N)
i (H, b, δ)φ = 0 for i = 1, 2, . . . , N∗,

l(N)(H) · φ = φ,

{
L(2N+2)

i (H, b, δ)φ̃ = 0 for i = 1, 2, . . . , 2N∗ + 2,

l(2N+2)(H) · φ̃ = φ,

and {
L(2N+2)

i (H, b, δ)ψ = 0 for i = 1, 2, . . . , 2N∗ + 2,

l(2N+2)(H) ·ψ = ψ,

respectively. Put {
Φ̃app(x, z) :=

∑2N∗+2
i=0 (z + 1 − b(x))pi φ̃i(x),

Ψ(x, z) :=
∑2N∗+2

i=0 (z + 1 − b(x))piψi(x),
(7.1)

and Φres := Φ − Φ̃app. We note that Φ̃app is a higher order approximation of
the velocity potential Φ and that it satisfies the boundary value problem (4.7)
approximately in the sense that⎧⎪⎨

⎪⎩
ΔΦ̃app + δ−2∂2

z Φ̃app = R in − 1 + b(x) < z < ζ(x),
Φ̃app = φ on z = ζ(x),
∇b · ∇Φ̃app − δ−2∂zΦ̃app = rB on z = −1 + b(x),

where the residual R can be written in the form

R(x, z) =
2N∗+2∑

i=0

(z + 1 − b(x))piri(x).
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Estimates for the residuals (r0, r1, . . . , r2N∗+2) and rB were given in [19, lemmas
6.4 and 6.9]. In fact, we have ‖(r0, r1, . . . , r2N∗+2)‖Hk + ‖rB‖Hk � δ2j‖∇φ‖Hk+2j+1

for −m � k � m− 2(j + 1) and 0 � j � 2N + 1.
Now, with a slight modification from the strategy in [19], we use the identity

I1 =
∫

Ω

Iδ∇XΦres · Iδ∇XΨ dX,

where we denote Ω := {X = (x, z) ;−1 + b(x) < z < ζ(x)}, Iδ := diag(1,
. . . , 1, δ−1) and ∇X := (∇, ∂z) = (∂1, . . . , ∂n, ∂z). Indeed, we have on one hand

(Λφ, ψ)L2 =
∫

Ω

Iδ∇XΦ · Iδ∇XΨ dX

as a consequence of (4.7), Ψ(x, ζ(x)) = ψ(x) and Green’s identity, and on the other
hand

(Λ(2N+2)φ, ψ)L2 = (L(2N+2)
0 φ̃, l(2N+2) ·ψ)L2 =

2N∗+2∑
i=0

(HpiL(2N+2)
0 φ̃, ψi)L2

=
2N∗+2∑
i,j=0

(Lij φ̃j , ψi)L2 =
∫

Ω

Iδ∇XΦ̃app · Iδ∇XΨ dX,

where the last identity follows from expressions (4.2) and (7.1).
To evaluate I1, it is convenient to transform the water region Ω into a simple

flat domain Ω0 = Rn × (−1, 0) by using a diffeomorphism which simply stretches
the vertical direction Θ(x, z) = (x, θ(x, z)) : Ω0 → Ω, where θ(x, z) = ζ(x)
(z + 1) + (1 − b(x))z. Put Φ̃res = Φres ◦ Θ and Ψ̃ = Ψ ◦ Θ. Then, the above integral
is transformed into

I1 =
∫

Ω0

PIδ∇XΦ̃res · Iδ∇XΨ̃ dX,

where

P = det
(
∂Θ
∂X

)
I−1
δ

(
∂Θ
∂X

)−1

I2
δ

((
∂Θ
∂X

)−1
)T

I−1
δ .

Therefore, under the restriction |k| � m− 1 and using hypothesis (4.8), we have

|I1| � ‖JkIδ∇XΦ̃res‖L2(Ω0)‖J−kIδ∇XΨ̃‖L2(Ω0),

where J = (1 − Δ)
1
2 . Moreover, Φ̃res satisfies the boundary value problem⎧⎪⎨
⎪⎩
∇X · IδPIδ∇XΦ̃res = −R̃ in Ω0,

Φ̃res = 0 on z = 0,
ez · IδPIδ∇XΦ̃res = −rB on z = −1,

where R̃ = R ◦ Θ =
∑2N∗+2

i=0 (z + 1)piHpirj and ez = (0, . . . , 0, 1)T. By applying the
standard theory of elliptic partial differential equations to the above problem, for
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50 V. Duchêne and T. Iguchi

0 � k � m− 1 we have

‖JkIδ∇XΦ̃res‖L2(Ω0) � δ(‖JkR̃‖L2(Ω0) + ‖rB‖Hk)

� δ(‖(r0, r1, . . . , r2N∗+2)‖Hk + ‖rB‖Hk).

Moreover, in view of Ψ̃ =
∑2N∗+2

i=0 (z + 1)piHpiψj and by lemma 4.1, we have

‖J−kIδ∇XΨ̃‖L2(Ω0) � ‖∇ψ‖H−k + δ−1‖ψ′‖H−k

� ‖∇ψ‖H−k

for |k| � m− 1. Summarizing the above estimates we have |I1| � δ2j+1‖∇φ‖Hk+2j+1

‖∇ψ‖H−k for 0 � k � m− 2(j + 1) and 0 � j � 2N + 1.
As for the term I2, the evaluation is exactly the same as in [19]. In fact, the

identities

I2 =
2N∗+2∑
i,j=0

(Lij φ̃j , ψi)L2 −
N∗∑
j=0

(L0jφj , ψ)L2

=
N∗∑
j=0

2N∗+2∑
i=N∗+1

((Lij −HpiL0j)ϕj , ψi)L2 −
2N∗+2∑

i,j=N∗+1

((Lij −HpiL0j)φ̃j , ψi)L2

were shown in [19, equation (7.7)], where ϕ := (ϕ0, ϕ1, . . . , ϕN∗) was defined by
ϕi := φi − φ̃i for i = 0, 1, . . . , N∗. Now, we decompose j = j1 + j2 such that 1 �
j1 � N + 1 and 0 � j2 � N . Then, by [19, lemmas 5.2, 5.4, 6.2 and 6.7] we see that

|I2| � {‖ϕ‖Hk+2j1+1 + ‖(φ̃N∗+1, . . . , φ̃2N∗+2)‖Hk+2j1+1

+ δ−2(‖ϕ‖Hk+2j1−1

+ ‖(φ̃N∗+1, . . . , φ̃2N∗+2)‖Hk+2j1−1)}‖(ψN∗+1, . . . , ψ2N∗+2)‖H−(k+2j1−1)

� δ2(j1+j2)‖∇φ‖Hk+2(j1+j2)‖∇ψ‖H−k

if max{|k|, |k + 2j1 − 2|, |k + 2j1 + 1|, |k + 2(j1 + j2)|} � m− 1 and max{|k|, |k +
1|, |k + 2j1 − 1|} � m. These conditions are satisfied under the restriction −m+
1 � k � m− 2(j + 1).

To summarize, we obtain as desired |((Λ − Λ(N))φ, ψ)L2 | � δ2j‖∇φ‖Hk+2j+1

‖∇ψ‖H−k for 0 � k � m− 2(j + 1) and 1 � j � 2N + 1. The proof is complete. �

This lemma and the scaling relations (4.15) imply immediately the following
lemma.

Lemma 7.2. Let c,M be positive constants and m, j integers such that m > n
2 + 1,

m � 2(j + 1) and 1 � j � 2N + 1. We assume (H1) or (H2). There exists a positive
constant C such that for any positive parameters h1, h2, δ satisfying h1δ, h2δ � 1,
if ζ ∈ Hm, b ∈Wm+1,∞, H1 = 1 − h−1

1 ζ and H2 = 1 + h−1
2 ζ − h−1

2 b satisfy (4.14),

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core
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then for any φ1, φ2 ∈ H̊k+2(j+1) with 0 � k � m− 2(j + 1) we have⎧⎪⎪⎨
⎪⎪⎩
‖(−Δ)−

1
2 (h1Λ

(N)
1 (ζ, δ, h1)φ1 − Λ1(ζ, δ, h1)φ1)‖Hk � Ch1(h1δ)

2j‖∇φ1‖Hk+2j+1 ,

‖(−Δ)−
1
2 (h2Λ

(N)
2 (ζ, b, δ, h2)φ2 − Λ2(ζ, b, δ, h2)φ2)‖Hk

� Ch2(h2δ)
2j‖∇φ2‖Hk+2j+1 .

We recall also the estimate for the Dirichlet-to-Neumann map Λ(ζ, b, δ) itself.
The following lemma is now standard. For sharper estimates, we refer to Iguchi
[17] and Lannes [29].

Lemma 7.3. Let c,M be positive constants m an integer such that m > n
2 + 2. There

exists a positive constant C such that if ζ ∈ Hm, b ∈Wm,∞ and H = 1 + ζ − b
satisfy (4.4), then for any φ ∈ H̊k+1 with |k| � m− 1 and any δ ∈ (0, 1] we have
‖Λ(ζ, b, δ)φ‖Hk−1 � C‖∇φ‖Hk .

This lemma and the scaling relations (4.15) imply immediately the following
lemma.

Lemma 7.4. Let c,M be positive constants and m an integer such that m > n
2 + 2.

There exists a positive constant C such that for any positive parameters h1, h2, δ sat-
isfying h1δ, h2δ � 1, if ζ ∈ Hm, b ∈Wm,∞, H1 = 1 − h−1

1 ζ and H2 = 1 + h−1
2 ζ −

h−1
2 b satisfy (4.11), then for any φ1, φ2 ∈ H̊k+1 with |k| � m− 1 we have{

‖Λ1(ζ, δ, h1)φ1‖Hk−1 � Ch1‖∇φ1‖Hk ,

‖Λ2(ζ, b, δ, h2)φ2‖Hk−1 � Ch2‖∇φ2‖Hk .

7.2. Consistency of the Kakinuma model revisited

As we mentioned in remark 3.8, the approximate solution to the Kakinuma model
(2.18) made from the solution (ζ, φ1, φ2) to the full model can be constructed as a
solution to (3.21), that is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i(H1, δ, h1)φ̃1 = 0 for i = 1, 2, . . . , N,
L2,i(H2, b, δ, h2)φ̃2 = 0 for i = 1, 2, . . . , N∗,
h1L1,0(H1, δ, h1)φ̃1 + h2L2,0(H2, b, δ, h2)φ̃2 = 0,
ρ
2
l2(H2) · φ̃2 − ρ

1
l1(H1) · φ̃1 = ρ

2
φ2 − ρ

2
φ1,

(7.2)

in place of (3.19), that is,{
l1(H1) · φ1 = φ1, L1,i(H1, δ, h1)φ1 = 0 for i = 1, 2, . . . , N,
l2(H2) · φ2 = φ2, L2,i(H2, b, δ, h2)φ2 = 0 for i = 1, 2, . . . , N∗.

(7.3)

To show this fact, we need to guarantee that the difference between these two
solutions is of order O((h1δ)

4N+2 + (h2δ)
4N+2). The following lemma gives such an

estimate.
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Lemma 7.5. Let c,M be positive constants and m an integer such that m > n
2 + 1

and m � 4(N + 1). We assume (H1) or (H2). There exists a positive constant C
such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying h1δ, h2δ � 1, if ζ ∈

Hm, b ∈Wm+1,∞, H1 = 1 − h−1
1 ζ and H2 = 1 + h−1

2 ζ − h−1
2 b satisfy (4.14), then

for any φ1, φ2 ∈ H̊k+4(N+1) with 0 � k � m− 4(N + 1) satisfying the compatibility
condition Λ1(ζ, δ, h1)φ1 + Λ2(ζ, b, δ, h2)φ2 = 0 the solution (φ1,φ2) to (7.3) and the
solution (φ̃1, φ̃2) to (7.2) satisfy∑

�=1,2

ρ
�
h�(‖∇(φ̃� − φ�)‖2

Hk + (h�δ)
−2‖φ̃′

� − φ′
�‖2

Hk + (h�δ)
−4‖φ̃′

� − φ′
�‖2

Hk−1)

� C
∑

�=1,2

ρ
�
h�(h�δ)

2(4N+2)‖∇φ�‖2
Hk+4N+3 .

Proof. For simplicity, we write L1,i = L1,i(H1, δ, h1), l1 = l1(H1), and so on. We
recall that Λ(N)

1 : φ1 �→ L1,0φ1 and Λ(N)
2 : φ2 �→ L2,0φ2. Notice that φ̃� − φ� for

� = 1, 2 satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩
L1,i(φ̃1 − φ1) = 0 for i = 1, 2, . . . , N,
L2,i(φ̃2 − φ2) = 0 for i = 1, 2, . . . , N∗,
h1L1,0(φ̃1 − φ1) + h2L2,0(φ̃2 − φ2) = (Λ1 − h1Λ

(N)
1 )φ1 + (Λ2 − h2Λ

(N)
2 )φ2,

ρ
2
l2 · (φ̃2 − φ2) − ρ

1
l1 · (φ̃1 − φ1) = 0.

Since the right-hand side of the third equation can be written as ∇ · f3 with

f3 = −∇(−Δ)−1
(
(Λ1 − h1Λ

(N)
1 )φ1 − (Λ2 − h2Λ

(N)
2 )φ2

)
,

by lemmas 5.1 and 7.2 we obtain∑
�=1,2

ρ
�
h�(‖∇(φ̃� − φ�)‖2

Hk + (h�δ)
−2‖φ̃′

� − φ′
�‖2

Hk)

� min
{
ρ
1

h1

,
ρ
2

h2

}
‖f3‖2

Hk

�
∑
l=1,2

ρ
�

h�

‖(−Δ)−
1
2 (Λ� − h�Λ

(N)
� )φ�‖2

Hk

�
∑
l=1,2

ρ
�
h�(h�δ)

2(4N+2)‖∇φ�‖2
Hk+4N+3 .

Moreover, it follows from lemma 6.3 that

(h�δ)
−2‖φ̃′

� − φ′
�‖Hk−1 � ‖∇(φ̃� − φ�)‖Hk + (h�δ)

−1‖φ̃′
� − φ′

�‖Hk

for � = 1, 2. This completes the proof. �

The following proposition gives another version of theorem 3.6 for the consistency
of the Kakinuma model.
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Proposition 7.6. Let c,M be positive constants and m an integer such that m �
4N + 4 and m > n

2 + 2. We assume (H1) or (H2). There exists a positive constant
C such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying h1δ, h2δ � 1, and

for any solution (ζ, φ1, φ2) to the full model for interfacial gravity waves (2.17) on
a time interval [0, T ] satisfying (3.18), if we define H1 and H2 as in (2.19) and
(φ̃1, φ̃2) as a solution to (7.2), then (ζ, φ̃1, φ̃2) satisfy approximately the Kakinuma
model as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

l1(H1)h−1
1 ∂tζ + L1(H1, δ, h1)φ̃1 = r1,

l2(H2)h−1
2 ∂tζ − L2(H2, b, δ, h2)φ̃2 = r2,

ρ
1

{
l1(H1) · ∂tφ̃1 + 1

2

(|ũ1|2 + (h1δ)
−2w̃2

1

)}
−ρ

2

{
l2(H2) · ∂tφ̃2 + 1

2

(|ũ2|2 + (h2δ)
−2w̃2

2

)}− ζ = r0,

(7.4)

where ũ1, ũ2, w̃1, w̃2 are defined by (3.4) with (φ1,φ2) replaced by (φ̃1, φ̃2), and the
errors (r1, r2, r0) satisfy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
�=1,2 ρ�

h�‖r�(t)‖2
Hm−(4N+5) � C

∑
�=1,2 ρ�

h�(h�δ)
2(4N+2)‖∇φ�(t)‖2

Hm−1 ,

‖r0(t)‖Hm−4(N+1) � C
(
(h1δ)

4N+2 + (h2δ)
4N+2

)
(h−1

1 + h−1
2 )∑

�=1,2 ρ�
h�‖∇φ�(t)‖2

Hm−1 ,

(7.5)
for t ∈ [0, T ].

Proof. Let φ1 and φ2 be the unique solutions to (7.3), and (r̃1, r̃2, r̃0) the errors in
theorem 3.6. Then, the errors (r1, r2, r0) in the proposition can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 = r̃1 − L1(H1, δ, h1)(φ̃1 − φ1),

r2 = r̃2 + L2(H2, b, δ, h2)(φ̃2 − φ2),

r0 = r̃0 + ρ
1
{h−1

1 (∂tζ)(w̃1 − w1) − 1
2 ((ũ1 + u1) · (ũ1 − u1)

+(h1δ)
−2(w̃1 + w1)(w̃1 − w1)

)}
−ρ

2
{h−1

2 (∂tζ)(w̃2 − w2) − 1
2 ((ũ2 + u2) · (ũ2 − u2)

+(h2δ)
−2(w̃2 + w2)(w̃2 − w2)

)}.
Therefore, we have

‖r� − r̃�‖Hk � ‖∇(φ̃� − φ�)‖Hk+1 + ‖φ̃′
� − φ′

�‖Hk+1 + (h�δ)
−2‖φ̃′

� − φ′
�‖Hk

for −m � k � m− 1 and � = 1, 2. Applying this estimate with k = m− (4N + 5)
and the estimate in lemma 7.5 with k = m− 4(N + 1) and using the result in

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core


54 V. Duchêne and T. Iguchi

theorem 3.6, we obtain the first estimate in (7.5). Since m− 2 > n
2 , we have

‖r0 − r̃0‖Hk �
∑

�=1,2

ρ
�
{(‖ũ�‖Hm−2 + ‖u�‖Hm−2)‖ũ� − u�‖Hk

+
(
h−1

� ‖∂tζ‖Hm−2 + (h�δ)
−2(‖w̃�‖Hm−2 +‖w�‖Hm−2)

) ‖w̃�− w�‖Hk}
for |k| � m− 2. Here, it follows from lemmas 4.4, 5.1 and 7.5 that∑

�=1,2

ρ
�
h�(‖u�‖2

Hm−1 + (h�δ)
−2‖w�‖2

Hm−1)

�
∑

�=1,2

ρ
�
h�(‖∇φ�‖2

Hm−1 + (h�δ)
−2‖φ′

�‖2
Hm−1)

�
∑

�=1,2

ρ
�
h�‖∇φ�‖2

Hm−1 ,

∑
�=1,2

ρ
�
h�(‖ũ�‖2

Hm−1 + (h�δ)
−2‖w̃�‖2

Hm−1)

�
∑

�=1,2

ρ
�
h�(‖∇φ̃�‖2

Hm−1 + (h�δ)
−2‖φ̃′

�‖2
Hm−1)

� min

{
h1

ρ
1

,
h2

ρ
2

}
‖∇(ρ

2
φ2 − ρ

1
φ1)‖2

Hm−1

�
∑

�=1,2

ρ
�
h�‖∇φ�‖2

Hm−1 ,

and ∑
�=1,2

ρ
�
h�(‖ũ� − u�‖2

Hk + (h�δ)
−2‖w̃� − w�‖2

Hk)

�
∑

�=1,2

ρ
�
h�(‖∇(φ̃� − φ�)‖2

Hk + (h�δ)
−2‖φ̃′

� − φ′
�‖2

Hk)

�
∑

�=1,2

ρ
�
h�(h�δ)

2(4N+2)‖∇φ�‖2
Hk+4N+3

for 0 � k � m− 4(N + 1). Moreover, it follows from lemma 7.4 that ‖∂tζ‖Hm−2 =
‖Λ�φ�‖Hm−2 � h�‖∇φ�‖Hm−1 for � = 1, 2. Summarizing the above estimates and
using the result in theorem 3.6, we easily obtain the second estimate in (7.5). The
proof is complete. �

7.3. Completion of the proof of theorem 3.9

Now we are ready to prove theorem 3.9. Let (ζIW, φIW
1 , φIW

2 ) be the solution
to the full model for interfacial gravity waves (2.17) with uniform bound stated
in the theorem, and define φIW := ρ

2
φIW

2 − ρ
1
φIW

1 , which is a canonical variable
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of the full model. We first ensure a uniform bound on the time derivative of
the canonical variables (ζIW, φIW). It follows from the first and the second equa-
tions in (2.17) that ∂tζ

IW = −ΛIW
1 φIW

1 = ΛIW
2 φIW

2 , where ΛIW
1 = Λ1(ζIW, δ, h1) and

ΛIW
2 = Λ2(ζIW, b, δ, h2). Similar notations will be used in the following without any

comment. Therefore, by lemma 7.4 we have

‖∂tζ
IW‖2

Hm−1 = min{‖ΛIW
1 φIW

1 ‖2
Hm−1 , ‖ΛIW

2 φIW
2 ‖2

Hm−1}
� min{h2

1‖∇φIW
1 ‖2

Hm , h2
2‖∇φIW

2 ‖2
Hm}

� min

{
h1

ρ
1

,
h2

ρ
2

} ∑
�=1,2

ρ
�
h�‖∇φIW

� ‖2
Hm

� 2
∑

�=1,2

ρ
�
h�‖∇φIW

� ‖2
Hm ,

where we used (2.15). It follows from the third equation in (2.17) that

∂tφ
IW = ρ

2
∂tφ

IW
2 − ρ

1
∂tφ

IW
1

=
1
2
ρ
1

(
|∇φIW

1 |2 − δ2
(ΛIW

1 φIW
1 −∇ζIW · ∇φIW

1 )2

1 + δ2|∇ζIW|2
)

− 1
2
ρ
2

(
|∇φIW

2 |2 − δ2
(ΛIW

2 φIW
2 + ∇ζIW · ∇φIW

2 )2

1 + δ2|∇ζIW|2
)
− ζIW.

Here, we note that in view of the conditions h1δ, h2δ � 1 and h−1
1 , h−1

2 � 1 we have
δ � 1. Therefore, by lemma 7.4 we have

‖∂tφ
IW‖Hm−1 � ‖ζIW‖Hm−1

+
∑

�=1,2

ρ
�
{‖∇φIW

� ‖2
Hm−1 + δ2(h2

�‖∇φIW
� ‖2

Hm + ‖∇φIW
� ‖2

Hm−1)}

� ‖ζIW‖Hm−1 +
∑

�=1,2

ρ
�
h�‖∇φIW

� ‖2
Hm .

Hence, we obtain ‖∂tζ
IW‖Hm−1 + ‖∂tφ

IW‖Hm−1 � 1.
Let (φ̃

IW

1 , φ̃
IW

2 ) be the solution to (7.2) with (ζ, φ) = (ζIW, φIW). Then, propo-
sition 7.6 states that (ζIW, φ̃

IW

1 , φ̃
IW

2 ) satisfy approximately the Kakinuma model
as (7.4) and the errors (r1, r2, r0) satisfy (7.5). Moreover, it follows from lemma 5.1
that

∑
�=1,2

ρ
�
h�(‖∇φ̃

IW

� ‖2
Hm + (h�δ)

−2‖φ̃IW ′
� ‖2

Hm) � min

{
h1

ρ
1

,
h2

ρ
2

}
‖∇φIW‖2

Hm

�
∑

�=1,2

ρ
�
h�‖∇φIW

� ‖2
Hm � 1,

which yields∑
�=1,2

ρ
�
h�(‖ũIW

� ‖2
Hm + (h�δ)

−2‖w̃IW
� ‖2

Hm + (h�δ)
−4‖φ̃IW ′

� ‖2
Hm−1) � 1,
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where ũIW
1 , ũIW

2 , w̃IW
1 , w̃IW

2 are defined by (3.4) with (φ1,φ2) replaced by
(φ̃

IW

1 , φ̃
IW

2 ), and we used lemma 6.3. We proceed to evaluate (∂tφ̃
IW

1 , ∂tφ̃
IW

2 ). To
this end, we derive equations for these time derivatives by differentiating (7.2) with
respect to t. The procedure is almost the same as in the proof of lemma 5.2. The
only difference is the last equation in (5.5), especially, the expression of f4. In this
case, f4 has the form

f4 = ∂tφ
IW + ρ

1
w̃IW

1 h−1
1 ∂tζ

IW − ρ
2
w̃IW

2 h−1
2 ∂tζ

IW,

so that ‖f4‖Hm−1 � 1. Therefore, we obtain∑
�=1,2

ρ
�
h�(‖∇∂tφ̃

IW

� ‖2
Hm−2 + (h�δ)

−2‖∂tφ̃
IW ′
� ‖2

Hm−2) � 1.

Let (ζK,φK
1 ,φ

K
2 ) be the solution to the initial value problem for the Kakinuma

model (2.18)–(2.20) stated in the theorem, whose unique existence is guaranteed by
theorem 3.1 and proposition 3.4. Note also that the solution satisfies the uniform
bound (3.14) together with the stability and non-cavitation conditions (3.15). It
follows from lemma 6.3 that ρ

�
h�(h�δ)

−4‖φK ′
� ‖2

Hm−1 � 1 for � = 1, 2. Moreover, the
time derivatives (∂tζ

K, ∂tφ
K
1 , ∂tφ

K
2 ) satisfy (5.4) and (uK

� , w
K
� ) (� = 1, 2), which are

defined by (3.4) with (φ1,φ2) replaced by (φK
1 ,φ

K
2 ), satisfy (5.8). Putting

ζres := ζK − ζIW, φres
� := φK

� − φ̃IW

� (� = 1, 2),

we will show that (ζres,φres
1 ,φres

2 ) can be estimated by the errors (r1, r2, r0). To this
end, we are going to evaluate

Eres
k (t) := ‖ζres(t)‖2

Hk +
∑

�=1,2

ρ
�
h�(‖∇φres

� (t)‖2
Hk + (h�δ)

−2‖φres ′
� (t)‖2

Hk)

for an appropriate integer k by making use of energy estimates similar to the ones
obtained in § 5 and 6 for the proof of the well-posedness of the initial value problem
for the Kakinuma model (2.18)–(2.20). Here, we note that Eres

k (0) = 0.
As in the case of the energy estimate for the Kakinuma model, we first need

to evaluate times derivatives (∂tζ
res, ∂tφ

res
1 , ∂tφ

res
2 ) in terms of Eres

k . By taking
difference between the first components of the first two equations in (3.5) and
(7.4), ∂tζ

res can be written in two ways as

∂tζ
res = −h1{LK

1,0φ
res
1 + (LK

1,0 − LIW
1,0 )φ̃

IW

1 + r1,0}
= h2{LK

2,0φ
res
2 + (LK

2,0 − LIW
2,0 )φ̃

IW

2 + r2,0},

where LK
1,0 = L1,0(HK

1 , δ, h1), H
K
1 = 1 − h−1

1 ζK and similar simplifications are used,
and r�,0 is the 0th component of the error r� for � = 1, 2. Therefore, we have

‖∂tζ
res‖Hk−1 � h�{‖∇φres

� ‖Hk + ‖φres ′
� ‖Hk

+ ‖ζres‖Hk(‖∇φ̃IW

� ‖Hm + ‖φ̃IW ′
� ‖Hm) + ‖r�,0‖Hk−1}
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for � = 1, 2 and |k| � m. Hence, by the technique used in the proof of lemma 5.2
we obtain

‖∂tζ
res‖2

Hk−1 �
∑

�=1,2

ρ
�
h�{‖∇φres

� ‖2
Hk + ‖φres ′

� ‖2
Hk

+ ‖ζres‖2
Hk(‖∇φ̃IW

� ‖2
Hm + ‖φ̃IW ′

� ‖2
Hm) + ‖r�,0‖2

Hk−1}
� Eres

k +
∑

�=1,2

ρ
�
h�‖r�‖2

Hk−1

for |k| � m. We proceed to evaluate (∂tφ
res
1 , ∂tφ

res
2 ). We recall that (∂tφ

K
1 , ∂tφ

K
2 )

satisfy (5.5) with (ζ,φ1,φ2) = (ζK,φK
1 ,φ

K
2 ) and note that, differentiating the first

three equations of (7.2) with respect to t and using the last equation in (7.4),
(∂tφ̃

IW

1 , ∂tφ̃
IW

2 ) also satisfy (5.5) with (ζ,φ1,φ2) = (ζIW, φ̃
IW

1 , φ̃
IW

2 ) and f4 added
with the error term −r0. By taking the difference between these equations, we have
therefore⎧⎪⎪⎨
⎪⎪⎩
LIW

1,i ∂tφ
res
1 = f res

1,i for i = 1, 2, . . . , N,

LIW
2,i ∂tφ

res
2 = f res

2,i for i = 1, 2, . . . , N∗,

h1LIW
1,0∂tφ

res
1 + h2LIW

2,0∂tφ
res
2 = ∇ · f res

3 ,−ρ
1
lIW1 · ∂tφ

res
1 + ρ

2
lIW2 · ∂tφ

res
2 = f res

4 ,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f res
1,i = fK

1,i − f̃ IW
1,i + (LIW

1,i − LK
1,i)∂tφ

K
1 for i = 1, 2, . . . , N,

f res
2,i = fK

2,i − f̃ IW
2,i + (LIW

2,i − LK
2,i)∂tφ

K
2 for i = 1, 2, . . . , N∗,

f res
3 = fK

3 − f̃ IW

3 + h1((a
K
1,0 − aIW

1,0 ) ⊗∇)T∂tφ
K
1

+ h2{((aK
2,0 − aIW

2,0 ) ⊗∇)T∂tφ
K
2 − ((bK2,0 − bIW2,0 ) · ∂tφ

K
2 )h−1

2 ∇b},
f res
4 = fK

4 − f̃ IW
4 + r0 − ρ

1
(lIW1 − lK1 ) · ∂tφ

K
1 + ρ

2
(lIW2 − lK2 ) · ∂tφ

K
2 .

Here, fK
1,i, fK

2,i, fK
3 , fK

4 (respectively f̃ IW
1,i , f̃ IW

2,i , f̃
IW

3 , f̃ IW
4 ) are those in

(5.6) with (ζ,φ1,φ2) = (ζK,φK
1 ,φ

K
2 ) (respectively (ζ,φ1,φ2) = (ζIW, φ̃

IW

1 , φ̃
IW

2 )),
aK

�,0 = a�,0(HK
� ) and bK2,0 = b2,0(HK

2 ), where a�,0(H�) and b2,0(H2) are the 0th
columns of the matrixes A�(H�) and B2(H2) defined by (6.2) and (6.4), respec-
tively, and so on. Note the relations L1,0φ1 = −∇ · ((a1,0 ⊗∇)Tφ1) and L2,0φ2 =
−∇ · ((a2,0 ⊗∇)Tφ2 − (b2,0 · φ2)h

−1
2 ∇b). Therefore, by lemma 5.1 we have, for

1 � k � m+ 1,∑
�=1,2

ρ
�
h�

(‖∇∂tφ
res
� ‖2

Hk−1 + (h�δ)
−2‖∂tφ

res ′
� ‖2

Hk−1

)

�
∑

�=1,2

ρ
�
h�(h�δ)

2‖f res ′
� ‖2

Hk−1 + min
{
ρ
1

h1

,
ρ
2

h2

}
‖f res

3 ‖2
Hk−1

+ min
{
h1

ρ
1

,
h2

ρ
2

}
‖f res

4 ‖2
Hk .
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58 V. Duchêne and T. Iguchi

We will evaluate each term in the right-hand side. For 1 � k � m− 1, we see that

‖f res ′
� ‖Hk−1 � h−1

� ‖ζres‖Hk(‖∇φK
� ‖Hm + (h�δ)

−2‖φK ′
� ‖Hm)h−1

� ‖∂tζ
K‖Hm−1

+ (‖∇φres
� ‖Hk + (h�δ)

−2‖φres ′
� ‖Hk)h−1

� ‖∂tζ
K‖Hm−1

+ (‖∇φ̃IW

� ‖Hm + (h�δ)
−2‖φ̃IW ′

� ‖Hm)h−1
� ‖∂tζ

res‖Hk−1

+ h−1
� ‖ζres‖Hk(‖∇∂tφ

K
� ‖Hm−1 + (h�δ)

−2‖∂tφ
K ′
� ‖Hm−1)

for � = 1, 2,

‖f res
3 ‖Hk−1 �

∑
�=1,2

{‖uK
� − ũIW

� ‖Hk‖∂tζ
K‖Hm−1 + ‖ũIW

� ‖Hm‖∂tζ
res‖Hk−1

+ ‖ζres‖Hk(‖∇∂tφ
K
� ‖Hm−1 + ‖∂tφ

K ′
� ‖Hm−1)},

and

‖f res
4 ‖Hk �

∑
�=1,2

ρ
�

{
(‖uK

� ‖Hm + ‖ũIW
� ‖Hm)‖uK

� − ũIW
� ‖Hk

+ (h�δ)
−2(‖wK

� ‖Hm + ‖w̃IW
� ‖Hm)‖wK

� − w̃IW
� ‖Hk

+h−1
� ‖ζres‖Hk‖∂tφ

K ′
� ‖Hm−1

}
+ ‖ζres‖Hk + ‖r0‖Hk .

Moreover, for any 0 � k � m we have also∑
�=1,2

ρ
�
h�

(‖uK
� − ũIW

� ‖2
Hk + (h�δ)

−2‖wK
� − w̃IW

� ‖2
Hk

)
� Eres

k . (7.6)

Summarizing the above estimates and using h−1
1 , h−1

2 � 1 we obtain, for 1 � k �
m− 1,

‖∂tζ
res‖2

Hk−1 +
∑

�=1,2

ρ
�
h�

(‖∇∂tφ
res
� ‖2

Hk−1 + (h�δ)
−2‖∂tφ

res ′
� ‖2

Hk−1

)

� Eres
k +

∑
�=1,2

ρ
�
h�‖r�‖2

Hk−1 + ‖r0‖2
Hk . (7.7)

We need also to evaluate ρ
�
h�(h�δ)

−4‖φres ′
� ‖2

Hk−1 for � = 1, 2 in terms of Eres
k . In

view of{
LIW

1,i φ
res
1 = LIW

1,i φ
K
1 = (LIW

1,i − LK
1,i)φ

K
1 =: hres

1,i for i = 1, 2, . . . , N,

LIW
2,i φ

res
2 = LIW

2,i φ
K
2 = (LIW

2,i − LK
2,i)φ

K
2 =: hres

2,i for i = 1, 2, . . . , N∗,

Lemma 6.3 yields (h�δ)
−2‖φres ′

� ‖Hk−1 � ‖∇φres
� ‖Hk + ‖φres ′

� ‖Hk + ‖hres ′
� ‖Hk−1 and

we have ‖hres ′
� ‖Hk−1 � (‖∇φK

� ‖Hm + ‖φK ′
� ‖Hm + (h�δ)

−2‖φK ′
� ‖Hm−1)‖ζres‖Hk for

1 � k � m. Therefore, for 1 � k � m we obtain∑
�=1,2

ρ
�
h�(h�δ)

−4‖φres ′
� ‖2

Hk−1 � Eres
k . (7.8)

Now, by deriving equations for spatial derivatives of (ζres,φres
1 ,φres

2 ) and applying
the energy estimate obtained in § 6.1 we will evaluate Eres

k . Let β be a multi-index
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such that 1 � |β| � k. Applying ∂β to the Kakinuma model (3.5) for (ζK,φK
1 ,φ

K
2 )

and to (7.4) for (ζIW, φ̃
IW

1 , φ̃
IW

2 ) and taking the difference between the resulting
equations, we obtain

⎧⎪⎪⎨
⎪⎪⎩
lK1 (∂t + uK

1 · ∇)∂βζres + h1L
K,pr
1 ∂βφres

1 = f res
1,β ,

lK2 (∂t + uK
2 · ∇)∂βζres − h2L

K,pr
2 ∂βφres

2 = f res
2,β ,

ρ
1
lK1 · (∂t + uK

1 · ∇)∂βφres
1 − ρ

2
lK2 · (∂t + uK

1 · ∇)∂βφres
2 − aK∂βζres = f res

0,β ,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f res
1,β := fK

1,β − f̃ IW

1,β − h1∂
βr1 + h1(L

IW,pr
1 − LK,pr

1 )∂βφ̃
IW

1

+
(
lIW1 (∂t + ũIW

1 · ∇) − lK1 (∂t + uK
1 · ∇)

)
∂βζIW,

f res
2,β := fK

2,β − f̃ IW

2,β − h2∂
βr2 − h2(L

IW,pr
2 − LK,pr

2 )∂βφ̃
IW

2

+
(
lIW2 (∂t + ũIW

2 · ∇) − lK2 (∂t + uK
2 · ∇)

)
∂βζIW,

f res
0,β := fK

0,β − f̃ IW
0,β − ∂βr0 − (ãIW − aK)∂βζIW

+ρ
1

(
lIW1 (∂t + ũIW

1 · ∇) − lK1 (∂t + uK
1 · ∇)

)
· ∂βφ̃

IW

1

−ρ
2

(
lIW2 (∂t + ũIW

2 · ∇) − lK2 (∂t + uK
2 · ∇)

)
· ∂βφ̃

IW

2 .

Here, fK
1,β , fK

2,β and fK
0,β are those in (6.15)–(6.17) with (ζ,φ1,φ2) = (ζK,φK

1 ,φ
K
2 ),

and so on. As we saw, all the assumptions in proposition 6.2 are satisfied, so that
we have

E (∂βU res(t)) �
∫ t

0

F res
β (τ)dτ,

where U res := (ζres,φres
1 ,φres

2 )T, E is defined in (6.11), and

F res
β = ‖f res

0,β‖H1(‖∂tζ
res‖Hk−1 + ‖ζres‖Hk)

+
∑

�=1,2

ρ
�
(‖f res

�,β‖L2 + ‖ζres‖Hk)(‖∇∂tφ
res
� ‖Hk−1 + ‖∇φres

� ‖Hk).

In view of ‖(ζIW, ζK)‖Hm � 1, straightforward calculations yield

‖f res
�,β‖L2 � (‖∂tζ

IW‖Hm−1 + ‖ũIW
� ‖Hm)‖ζres‖Hk

+ h�(‖∇φ̃
IW

� ‖Hm + ‖φ̃IW ′
� ‖Hm + (h�δ)

−2‖φ̃IW ′
� ‖Hm−1)‖ζres‖Hk

+ h�(‖∇φ̃
res

� ‖Hk + ‖φ̃res ′
� ‖Hk + (h�δ)

−2‖φ̃res ′
� ‖Hk−1)

+ ‖∂tζ
res‖Hk−1 + ‖ũIW

� − uK
� ‖Hk + h�‖r�‖Hk
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for � = 1, 2 and n
2 < k � m− 1. As for f res

0,β , we note the relation{(
[∂β , lK2 ] − l′2(HK

2 )(h−1
2 ∂βζK)

)
−
(
[∂β , lIW2 ] − l′2(HIW

2 )(h−1
2 ∂βζIW)

)}T

∂tφ̃
IW

2

=
∫ 1

0

{
[∂β , l′2(sH

IW + (1 − s)HK)]

−l′′2(sHIW + (1 − s)HK)h−1
2 ∂β(sζIW + (1 − s)ζK)

}T
(h−1

2 ζres)∂tφ̃
IW

2

+ l′2(sH
IW + (1 − s)HK)

{
[∂β , h−1

2 ζres] − (∂β(h−1
2 ζres))

}T
∂tφ̃

IW

2 ds.

Therefore, straightforward calculations yield

‖f res
0,β‖H1 �

∑
l=1,2

ρ
�

{
(‖∇∂tφ̃

IW

� ‖Hm−2 + ‖∂tφ̃
IW ′
� ‖Hm−2)‖ζres‖Hk

+ (‖ũIW
� ‖Hm + ‖uK

� ‖Hm)(‖∇φ̃IW

� ‖Hm + ‖φ̃IW ′
� ‖Hm)‖ζres‖Hk

+ (h�δ)
−2‖wK

� ‖Hm‖φ̃IW ′
� ‖Hm‖ζres‖Hk

+ ‖∇∂tφ̃
res

� ‖Hk−1 + ‖∂tφ̃
res ′
� ‖Hk−1

+ ‖uK
� ‖Hm(‖∇φ̃res

� ‖Hk + ‖φ̃res ′
� ‖Hk) + (h�δ)

−2‖wK
� ‖Hm‖φ̃res ′

� ‖Hk

+ (‖uK
� ‖Hm + ‖ũIW

� ‖Hm + ‖∇φ̃IW

� ‖Hm + ‖φ̃IW ′
� ‖Hm)‖ũIW

� − uK
� ‖Hk

+(h�δ)
−2(‖wK

� ‖Hm + ‖w̃IW
� ‖Hm + ‖φ̃IW ′

� ‖Hm)‖w̃IW
� − wK

� ‖Hk

}
+ ‖r0‖Hk+1

for n
2 < k � m− 2. In view of the above estimates and (7.6)–(7.8) we obtain

F res
β � Eres

k + Rk with Rk := ‖r0‖2
Hk+1 +

∑
l=1,2 ρ�

h�‖r�‖2
Hk . We note that the

multi-index β is assumed to satisfy 1 � |β| � k. As for the case β = 0, we have
d
dtE

res
0 (t) � Eres

k (t), hence Eres
0 (t) �

∫ t

0
Eres

k (τ)dτ . Summarizing the above esti-
mates we obtain Eres

k (t) �
∫ t

0
(Eres

k (τ) + Rk(τ)) dτ for n
2 < k � m− 2. Putting

k = m− 4(N + 1) and applying Gronwall’s inequality and (7.5) in proposition 7.6
we obtain Eres

m−4(N+1)(t) � (h1δ)
4N+2 + (h2δ)

4N+2 for 0 � t � min{T, T IW}.
It remains to evaluate φIW

� − φK
� for � = 1, 2. Let (φIW

1 ,φIW
2 ) be the solution

to (3.19) with (ζ, φ1, φ2) = (ζIW, φIW
1 , φIW

2 ). Then, we have φK
� − φIW

� = lK� · φres
� +

(lK� − lIW� ) · φ̃IW

� + lIW� · (φ̃IW

� − φIW
� ), so that for any 0 � k � m− 1

‖∇φK
� −∇φIW

� ‖Hk � ‖∇φres
� ‖Hk + ‖φres ′

� ‖Hk + h−1
� ‖ζres‖Hk+1‖φ̃IW ′

� ‖Hm

+ ‖∇(φ̃
IW

� − φIW
� )‖Hk + ‖φ̃IW ′

� − φIW ′
� ‖Hk .

Therefore, the previous result together with lemma 7.5 implies∑
�=1,2

ρ
�
h�‖∇φK

� −∇φIW
� ‖2

Hm−(4N+5) � (h1δ)
4N+2 + (h2δ)

4N+2.

This completes the proof of theorem 3.9.
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8. Approximation of Hamiltonians; proof of theorem 3.10

As was shown in the companion paper [14, theorem 8.4], the Kakinuma model
(2.18) enjoys a Hamiltonian structure analogous to the one exhibited on the full
model for interfacial gravity waves by Benjamin and Bridges in [3]. In this section,
we will prove theorem 3.10, which states that the Hamiltonian H K(ζ, φ) of the
Kakinuma model defined in (2.25) approximates the Hamiltonian H IW(ζ, φ) of
the full model defined in (2.22) with an error of order O((h1δ)

4N+2 + (h2δ)
4N+2).

8.1. Preliminary elliptic estimates

We consider the following transmission problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∇X · I2
δ∇XΦ� = 0 in Ω� (� = 1, 2),

n · I2
δ∇XΦ� = 0 on Σ� (� = 1, 2),

n · I2
δ∇XΦ2 − n · I2

δ∇XΦ1 = rS on Γ,

ρ
2
Φ2 − ρ1Φ1 = φ on Γ,

(8.1)

where the rigid-lid Σ1 of the upper layer Ω1, the bottom Σ2 of the lower layer Ω2 and
the interface Γ are defined by z = h1, z = −h2 + b(x) and z = ζ(x), respectively,
Iδ := diag(1, . . . , 1, δ−1), ∇X := (∇, ∂z)T = (∂1, . . . , ∂n, ∂z) and n is an upward nor-
mal vector, specifically, n = ez on Σ1, n = (−∇b, 1)T on Σ2 and n = (−ζ, 1)T

on Γ.

Lemma 8.1. Let c,M be positive constants. There exists a positive constant C
such that for any positive parameters ρ

1
, ρ

2
, h1, h2, δ satisfying h1δ, h2δ � 1, if

ζ, b ∈W 1,∞, H1 = 1 − h−1
1 ζ and H2 = 1 + h−1

2 ζ − h−1
2 b satisfy⎧⎨

⎩
h−1

1 ‖ζ‖W 1,∞ + h−1
2 ‖ζ‖W 1,∞ + h−1

2 ‖b‖W 1,∞ � M,

H1(x) � c, H2(x) � c for x ∈ Rn,

then for any (rS , φ) satisfying ∇φ ∈ H− 1
2 and (−Δ)−

1
2 rS ∈ H

1
2 there exists a solu-

tion (Φ1,Φ2) to transmission problem (8.1). The solution is unique up to an additive
constant of the form (ρ

2
C, ρ

1
C) and satisfies

∑
�=1,2

ρ
�
‖Iδ∇XΦ�‖2

L2(Ω�)

� C
(
‖((ρ

1
Λ2,0 + ρ

2
Λ1,0)−1Λ1,0Λ2,0)

1
2φ‖2

L2 + ρ
1
ρ
2
‖(ρ

1
Λ2,0 + ρ

2
Λ1,0)−

1
2 rS‖2

L2

)
,

(8.2)

where Λ1,0 = Λ1(0, δ, h1) and Λ2,0 = Λ2(0, 0, δ, h2) are Dirichlet-to-Neumann
maps in the case ζ(x) ≡ b(x) ≡ 0. Particularly, if we further impose φ ∈ H̊1,
(−Δ)−

1
2 rS ∈ H1, the natural restrictions (2.14), and hmin � h1, h2 with a positive

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core
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constant hmin, then we have

∑
�=1,2

ρ
�
‖Iδ∇XΦ�‖2

L2(Ω�)
� C‖∇φ‖2

L2 + C min
�=1,2

{
ρ

�

h�

‖((−Δ)−
1
2 + h�δ)rS‖2

L2

}
,

(8.3)
where the constant C depends also on hmin.

Proof. The existence and the uniqueness of the solution is standard, so that we focus
on deriving the uniform estimate of the solution. To this end, it is convenient to
transform the water regions Ω1 and Ω2 into simple domains Ω1,0 = Rn × (0, h1) and
Ω2,0 = Rn × (−h2, 0) by using diffeomorphisms Θ�(x, z) = (x, θ�(x, z)) : Ω�,0 →
Ω� (� = 1, 2), respectively, where θ1(x, z) = (1 − h−1

1 ζ(x))z + ζ(x) and θ2(x, z) =
(1 + h−1

2 (ζ(x) − b(x)))z + ζ(x). Put Φ̃� = Φ� ◦ Θ� (� = 1, 2). Then, transmission
problem (8.1) is transformed into

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇X · IδP�Iδ∇XΦ̃� = 0 in Ω�,0 (� = 1, 2),
ez · IδP�Iδ∇XΦ̃� = 0 on Σ�,0 (� = 1, 2),
ez · IδP2Iδ∇XΦ̃2 − ez · IδP1Iδ∇XΦ̃1 = rS on Γ0,

ρ
2
Φ̃2 − ρ1Φ̃1 = φ on Γ0,

where Σ1,0, Σ2,0 and Γ0 are represented as z = h1, z = −h2 and z = 0, respectively,
and

P� := det
(
∂Θ�

∂X

)
I−1
δ

(
∂Θ�

∂X

)−1

I2
δ

((
∂Θ�

∂X

)−1
)T

I−1
δ (� = 1, 2).

We note that ‖Iδ∇XΦ�‖L2(Ω�) � ‖Iδ∇XΦ̃�‖L2(Ω�,0) (� = 1, 2). Let (Ψ1,Ψ2) be a
solution to the transmission problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇X · I2

δ∇XΨ� = 0 in Ω�,0 (� = 1, 2),
ez · I2

δ∇XΨ� = 0 on Σ�,0 (� = 1, 2),
ez · I2

δ∇XΨ2 − ez · I2
δ∇XΨ1 = rS on Γ0,

ρ
2
Ψ2 − ρ1Ψ1 = φ on Γ0,

and put Φres
� = Φ̃� − Ψ� (� = 1, 2). Then, we can decompose

|Iδ∇XΦres
� |2 − Iδ∇XΦres

� · (I − P�)Iδ∇XΦ̃� = ∇XΦres
� · {(IδP�Iδ∇XΦ̃� − I2

δ∇XΨ�)}

for � = 1, 2 and ρ
1
Φres

1 = ρ
2
Φres

2 on z = 0. Therefore, denoting the unit outward
normal vector to ∂Ω�,0 by N� (� = 1, 2) we have

∑
�=1,2

ρ
�

∫
Ω�,0

(
|Iδ∇XΦres

� |2 − Iδ∇XΦres
� · (I − P�)Iδ∇XΦ̃�

)
dX

=
∑

�=1,2

∫
∂Ω�,0

ρ
�
Φres

� (N� · IδP�Iδ∇XΦ̃� −N� · I2
δ∇XΨ�) dS
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=
∑

�=1,2

∫
Rn

ρ
1

[
Φres

1

{
(ez · IδP2Iδ∇XΦ̃2 − ez · I2

δ∇XΨ2)

−(ez · IδP1Iδ∇XΦ̃1 − ez · I2
δ∇XΨ1)

}]∣∣
z=0

dx

= 0,

so that we obtain∑
�=1,2

ρ
�

∫
Ω�,0

|Iδ∇XΦres
� |2 dX =

∑
�=1,2

ρ
�

∫
Ω�,0

Iδ∇XΦres
� · (I − P�)Iδ∇XΦ̃� dX.

Similarly, in view of the decomposition

Iδ∇XΦres
� · P�Iδ∇XΦres

� − Iδ∇XΦres
� · (I − P�)Iδ∇XΨ�

= ∇XΦres
� · {(IδP�Iδ∇XΦ̃� − I2

δ∇XΨ�)}
for � = 1, 2, we obtain
∑

�=1,2

ρ
�

∫
Ω�,0

Iδ∇XΦres
� · P�Iδ∇XΦres

� =
∑

�=1,2

ρ
�

∫
Ω�,0

Iδ∇XΦres
� · (I − P�)Iδ∇XΨ� dX.

It follows from these two identities that∑
�=1,2

ρ
�
‖Iδ∇XΦres

� ‖2
L2(Ω�,0)

� min

⎧⎨
⎩
∑

�=1,2

ρ
�
‖Iδ∇XΦ̃�‖2

L2(Ω�,0)
,
∑

�=1,2

ρ
�
‖Iδ∇XΨ�‖2

L2(Ω�,0)

⎫⎬
⎭ ,

which yields the equivalence∑
�=1,2

ρ
�
‖Iδ∇XΦ̃�‖2

L2(Ω�,0)
�
∑

�=1,2

ρ
�
‖Iδ∇XΨ�‖2

L2(Ω�,0)
.

Therefore, it is sufficient to evaluate the right-hand side of the above equation. In
other words, the evaluation is reduced to the simple case ζ(x) ≡ b(x) ≡ 0.

Putting ψ� = Ψ�|z=0 (� = 1, 2), we see that∑
�=1,2

ρ
�
‖Iδ∇XΨ�‖2

L2(Ω�,0)
=
∑

�=1,2

ρ
�
(Λ�,0ψ�, ψ�)L2

and that {
Λ1,0ψ1 + Λ2,0ψ2 = rS ,

ρ
2
ψ2 − ρ

1
ψ1 = φ.

Particularly, we have(
ψ1

ψ2

)
= (ρ

1
Λ2,0 + ρ

2
Λ1,0)−1

(−Λ2,0φ+ ρ
2
rS

Λ1,0φ+ ρ
1
rS

)
.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/prm.2024.30
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.216, on 20 Nov 2025 at 20:39:04, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/prm.2024.30
https://www.cambridge.org/core


64 V. Duchêne and T. Iguchi

Therefore,

∑
�=1,2

ρ
�
‖Iδ∇XΨ�‖2

L2(Ω�,0)
=

{
‖((ρ

1
Λ2,0 + ρ

2
Λ1,0)−1Λ1,0Λ2,0)

1
2φ‖2

L2 if rS = 0,
ρ
1
ρ
2
‖(ρ

1
Λ2,0 + ρ

2
Λ1,0)−

1
2 rS‖2

L2 if φ = 0.

Hence, by the linearity of the problem we obtain (8.2).
Finally, in order to show (8.3) it is sufficient to evaluate the symbols of the

Fourier multipliers (ρ
1
Λ2,0 + ρ

2
Λ1,0)−1Λ1,0Λ2,0 and ρ

1
ρ
2
(ρ

1
Λ2,0 + ρ

2
Λ1,0)−1. We

recall that the symbol of the Dirichlet-to-Neumann map Λ�,0 is given by σ(Λ�,0) =
δ−1|ξ| tanh(h�δ|ξ|) for � = 1, 2. In view of 0 � tanh ξ � ξ for ξ � 0, we have

σ((ρ
1
Λ2,0 + ρ

2
Λ1,0)−1Λ1,0Λ2,0) � min

{
σ(Λ1,0)
ρ
1

,
σ(Λ2,0)
ρ
2

}

� min

{
h1

ρ
1

,
h2

ρ
2

}
|ξ|2

� 2|ξ|2,

where we used (2.15). In view of tanh ξ � (1 + ξ)−1ξ for ξ � 0 and relation (2.14),
we have

σ(ρ
1
ρ
2
(ρ

1
Λ2,0 + ρ

2
Λ1,0)−1) � ρ

1
ρ
2

h1h2

(1 + h1δ|ξ|)(1 + h2δ|ξ|)
(1 + δ|ξ|)|ξ|2

� min
{
ρ
1

h1

ρ
2

1 + h1δ|ξ|
|ξ|2 ,

ρ
2

h2

ρ
1

1 + h2δ|ξ|
|ξ|2

}

� min
{
ρ
1

h1

(|ξ|−1 + h1δ)
2,
ρ
2

h2

(|ξ|−1 + h2δ)
2

}
,

where we used 1 � h1, h2. These estimates imply (8.3). The proof is complete. �

8.2. Completion of the proof of theorem 3.10

Now we are ready to prove theorem 3.10. We recall the definitions (3.3) of l1(H1),
l2(H2) and (3.6) of the operators L1,i(H1, δ, h1) and L2,i(H2, b, δ, h2). These depend
on N , so that we denote them by l

(N)
1 (H1), l

(N)
2 (H2) and L(N)

1,i (H1, δ, h1) and

L(N)
2,i (H2, b, δ, h2), respectively, in the following argument. For given (ζ, φ), let Φ

be the solution to transmission problem (8.1) with rS = 0 and let (φ1,φ2) and
(φ̃1, φ̃2) be the solutions to the problems

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(N)
1,i (H1, δ, h1)φ1 = 0 for i = 1, 2, . . . , N,

L(N)
2,i (H2, b, δ, h2)φ2 = 0 for i = 1, 2, . . . , N∗,

h1L(N)
1,0 (H1, δ, h1)φ1 + h2L(N)

2,0 (H2, b, δ, h2)φ2 = 0,

ρ
2
l
(N)
2 (H2) · φ2 − ρ

1
l
(N)
1 (H1) · φ1 = φ
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and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(2N+2)
1,i (H1, δ, h1)φ̃1 = 0 for i = 1, 2, . . . , 2N + 2,

L(2N+2)
2,i (H2, b, δ, h2)φ̃2 = 0 for i = 1, 2, . . . , 2N∗ + 2,

h1L(2N+2)
1,0 (H1, δ, h1)φ̃1 + h2L(2N+2)

2,0 (H2, b, δ, h2)φ̃2 = 0,

ρ
2
l
(2N+2)
2 (H2) · φ̃2 − ρ

1
l
(2N+2)
1 (H1) · φ̃1 = φ,

respectively, and define (Φapp
1 ,Φapp

2 ) and (Φ̃app
1 , Φ̃app

2 ) by (2.24) and

{
Φ̃app

1 (x, z) =
∑2N+2

i=0 (1 − h−1
1 z)2iφ̃1,i(x),

[2.5ex]Φ̃app
2 (x, z) =

∑2N∗+2
i=0 (1 + h−1

2 (z − b(x)))pi φ̃2,i(x),

respectively. Then, by the definitions of the Hamiltonian functionals H IW(ζ, φ)
and H K(ζ, φ) given in § 2.3, we have

2(H IW(ζ, φ) − H K(ζ, φ)) =
∑

�=1,2

ρ
�

∫
Ω�

(|Iδ∇XΦ�|2 − |Iδ∇XΦapp
� |2) dX

=
∑

�=1,2

ρ
�

∫
Ω�

(|Iδ∇XΦ�|2 − |Iδ∇XΦ̃app
� |2) dX

+
∑

�=1,2

ρ
�

∫
Ω�

(|Iδ∇XΦ̃app
� |2 − |Iδ∇XΦapp

� |2) dX

=: I1 + I2.

We will evaluate I1 and I2, separately.
In order to evaluate I1, we put Φres

� = Φ� − Φ̃app
� (� = 1, 2), so that

|I1| =

∣∣∣∣∣∣
∑

�=1,2

ρ
�

∫
Ω�

Iδ∇XΦres
� · Iδ∇X(Φ� + Φ̃app

� ) dX

∣∣∣∣∣∣
�
∑

�=1,2

ρ
�
‖Iδ∇XΦres

� ‖L2(Ω�)(‖Iδ∇XΦ�‖L2(Ω�) + ‖Iδ∇XΦ̃app
� ‖L2(Ω�)).

It follows from lemma 8.1 that
∑

�=1,2 ρ�
‖Iδ∇XΦ�‖2

L2(Ω�)
� ‖∇φ‖2

L2 . We see also
that

∑
�=1,2

ρ
�
‖Iδ∇XΦ̃app

� ‖2
L2(Ω�)

=
∑

�=1,2

ρ
�
h�(L

(2N+2)
� φ̃�, φ̃�)L2

�
∑

�=1,2

ρ
�
h�(‖∇φ̃�‖2

L2 + (h�δ)
−2‖φ̃′‖2

L2)

� ‖∇φ‖2
L2 ,
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where we used lemma 5.1 and (2.15). In order to evaluate ‖Iδ∇XΦres
� ‖L2(Ω�), we

first notice that (Φres
1 ,Φres

2 ) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇X · I2
δ∇XΦres

� = R� in Ω� (� = 1, 2),

n · I2
δ∇XΦres

1 = 0 on Σ1,

n · I2
δ∇XΦres

2 = h2rB on Σ2,

ρ
2
Φres

2 − ρ
1
Φres

1 = 0 on Γ,

Λ1[Φres
1 |z=ζ ] + Λ2[Φres

2 |z=ζ ] = rS ,

where ⎧⎪⎪⎨
⎪⎪⎩
R� = −∇X · I2

δ∇XΦ̃app
� (� = 1, 2),

rB = −h−1
2 (−∇b, 1)T · I2

δ (∇XΦ̃app
� )|z=−h2+b,

rS =
∑

�=1,2(h�Λ
(2N+2)
� − Λ�)[Φ̃

app
� |z=ζ ].

Here, we note that R� (� = 1, 2) can be written in the form{
R1(x, z) =

∑2N+2
i=0 (1 − h−1

1 z)2ir1,i(x),

R2(x, z) =
∑2N∗+2

i=0 (1 + h−1
2 (z − b(x)))pir2,i(x).

Estimates for the residuals (r1,0, r1,1, . . . , r1,2N+2), (r2,0, r2,0, . . . , r2,2N∗+2), and rB
were given in [19, lemmas 6.4 and 6.9] and their proofs. In fact, we have

‖(r1,0, r1,1, . . . , r1,2N+2)‖L2 � ‖φ̃1,2N+2‖H2

� (h1δ)
4N+2‖∇φ̃1‖H4N+3

and

‖(r2,0, r2,1, . . . , r2,2N∗+2)‖L2 + ‖rB‖L2 � ‖(φ̃2,2N∗+1, φ̃2,2N∗+2)‖H2

� (h2δ)
4N+2(‖∇φ̃2‖H4N+3 + ‖φ̃′

2‖H4N+3).

We decompose Φres
� = Φres,1

� + Φres,2
� , where (Φres,1

1 ,Φres,1
2 ) is a unique solution to

the problem ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇X · I2

δ∇XΦres,1
� = R� in Ω� (� = 1, 2),

n · I2
δ∇XΦres,1

1 = 0 on Σ1,

n · I2
δ∇XΦres,1

2 = h2rB on Σ2,

Φres,1
� = 0 on Γ (� = 1, 2),

so that (Φres,2
1 ,Φres,2

2 ) satisfy⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∇X · I2

δ∇XΦres,2
� = 0 in Ω� (� = 1, 2),

n · I2
δ∇XΦres,2

� = 0 on Σ� (� = 1, 2),
n · I2

δ∇XΦres,2
2 − n · I2

δ∇XΦres,2
1 = rS on Γ,

ρ
2
Φres,2

2 − ρ
1
Φres,2

1 = 0 on Γ,

(8.4)
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where we used the relations Λ1[Φ
res,2
1 |z=ζ ] = −n · I2

δ∇XΦres,2
1 and Λ2[Φ

res,2
2 |z=ζ ] =

n · I2
δ∇XΦres,2

2 on Γ. It is easy to see that

‖Iδ∇XΦres,1
1 ‖2

L2(Ω1)
� (h1δ)

2‖R1‖2
L2(Ω1)

� h1(h1δ)
2‖(r1,0, r1,1, . . . , r1,2N+2)‖L2

� h1(h1δ)
2(4N+3)‖∇φ̃1‖2

H4N+3

and that

‖Iδ∇XΦres,1
2 ‖2

L2(Ω2)
� h2(h2δ)

2(h−1
2 ‖R2‖2

L2(Ω2)
+ ‖rB‖2

L2)

� h2(h2δ)
2(‖(r2,0, r2,1, . . . , r2,2N∗+2)‖L2 + ‖rB‖2

L2)

� h2(h2δ)
2(4N+3)(‖∇φ̃2‖H4N+3 + ‖φ̃′

2‖H4N+3).

Therefore, by lemma 5.1 together with (2.15) we have

∑
�=1,2

ρ
�
‖Iδ∇XΦres,1

� ‖2
L2(Ω�)

� ((h1δ)
4N+3 + (h2δ)

4N+3)2‖∇φ‖2
H4N+3 .

On the other hand, it follows from lemmas 8.1, 4.5, 7.2 and 5.1 that

∑
�=1,2

ρ
�
‖Iδ∇XΦres,2

� ‖2
L2(Ω�)

� min
�=1,2

ρ
�

h�

‖((−Δ)−
1
2 + h�δ)rS‖2

L2

�
∑

�=1,2

ρ
�

h�

‖((−Δ)−
1
2

+ h�δ)(h�Λ
(2N+2)
� − Λ�)[Φ̃

app
� |z=ζ ]‖2

L2

�
∑

�=1,2

ρ
�
h�(h�δ)

2(4N+2)‖∇(Φ̃app
� |z=ζ)‖2

H4N+3

�
∑

�=1,2

ρ
�
h�(h�δ)

2(4N+2)(‖∇φ̃�‖2
H4N+3 + ‖φ̃′

�‖2
H4N+3)

� ((h1δ)
4N+2 + (h2δ)

4N+2)2‖∇φ‖2
H4N+3 .

Summarizing the above estimates, we obtain |I1| � ((h1δ)
4N+2 + (h2δ)

4N+2)‖∇φ
‖H4N+3‖∇φ‖L2 .

We proceed to evaluate I2, which can be written as

I2 =
∑

�=1,2

ρ
�
h�(L

(2N+2)
� φ̃�, φ̃�)L2 −

∑
�=1,2

ρ
�
h�(L

(N)
� φ�,φ�)L2

=: I2,1 + I2,2.
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In view of (3.8), we see that

I2,1 = ρ
1
h1(L(2N+2)

1,0 φ̃1, l
(2N+2)
1 · φ̃1)L2 + ρ

2
h2(L(2N+2)

2,0 φ̃2, l
(2N+2)
2 · φ̃2)L2

= (h2L(2N+2)
2,0 φ̃2, ρ2

l
(2N+2)
2 · φ̃2 − ρ

1
l
(2N+2)
1 · φ̃1)L2

= (h2L(2N+2)
2,0 φ̃2, φ)L2

= (h2L(2N+2)
2,0 φ̃2, ρ2

l
(N)
2 · φ2 − ρ

1
l
(N)
1 · φ1)L2

= ρ
1
h1(L(2N+2)

1,0 φ̃1, l
(N)
1 · φ1)L2 + ρ

2
h2(L(2N+2)

2,0 φ̃2, l
(N)
2 · φ2)L2

= ρ
1
h1

N∑
i=0

2N+2∑
j=0

(L1,ij φ̃1,j , φ1,i)L2 + ρ
2
h2

N∗∑
i=0

2N∗+2∑
j=0

(L2,ij φ̃2,j , φ2,i)L2

= ρ
1
h1

N∑
i=0

2N+2∑
j=0

(L1,jiφ1,i, φ̃1,j)L2 + ρ
2
h2

N∗∑
i=0

2N∗+2∑
j=0

(L2,jiφ2,i, φ̃2,j)L2 ,

where we used L∗
�,ij = L�,ji. Similarly, we see also that

I2,2 = ρ
1
h1(L(N)

1,0 φ1, l
(N)
1 · φ1)L2 + ρ

2
h2(L(N)

2,0 φ2, l
(N)
2 · φ2)L2

= (h2L(N)
2,0 φ2, ρ2

l
(N)
2 · φ2 − ρ

1
l
(N)
1 · φ1)L2

= (h2L(N)
2,0 φ2, φ)L2

= (h2L(N)
2,0 φ2, ρ2

l
(2N+2)
2 · φ̃2 − ρ

1
l
(2N+2)
1 · φ̃1)L2

= ρ
1
h1(L(N)

1,0 φ1, l
(2N+2)
1 · φ̃1)L2 + ρ

2
h2(L(N)

2,0 φ2, l
(2N+2)
2 · φ̃2)L2

= ρ
1
h1

2N+2∑
j=0

(H2j
1 L(N)

1,0 φ1, φ̃1,j)L2 + ρ
2
h2

2N∗+2∑
j=0

(Hpj

2 L(N)
2,0 φ2, φ̃2,j)L2 .

Here, it follows from (3.8) that H2j
1 L(N)

1,0 φ1 =
∑N

i=0 L1,jiφ1,i and H
pj

2 L(N)
2,0 φ1 =∑N∗

i=0 L2,jiφ2,i hold only for j = 0, 1, . . . , N and for j = 0, 1, . . . , N∗, respectively.
Therefore, we have

I2,2 = ρ
1
h1

N∑
i=0

N∑
j=0

(L1,jiφ1,i, φ̃1,j)L2 + ρ
2
h2

N∗∑
i=0

N∗∑
j=0

(L2,jiφ2,i, φ̃2,j)L2

+ ρ
1
h1

N∑
i=0

2N+2∑
j=N+1

(H2j
1 L1,0iφ1,i, φ̃1,j)L2

+ ρ
2
h2

N∗∑
i=0

2N∗+2∑
j=N∗+1

(Hpj

2 L2,0iφ2,i, φ̃2,j)L2 ,
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so that

I2 = ρ
1
h1

N∑
i=0

2N+2∑
j=N+1

((L1,ji −H2j
1 L1,0i)φ1,i, φ̃1,j)L2

+ ρ
2
h2

N∗∑
i=0

2N∗+2∑
j=N∗+1

((L2,ji −H
pj

2 L2,0i)φ2,i, φ̃2,j)L2

= ρ
1
h1

N∑
i=0

2N+2∑
j=N+1

((L1,ji −H2j
1 L1,0i)(φ1,i − φ̃1,i), φ̃1,j)L2

+ ρ
2
h2

N∗∑
i=0

2N∗+2∑
j=N∗+1

((L2,ji −H
pj

2 L2,0i)(φ2,i − φ̃2,i), φ̃2,j)L2

− ρ
1
h1

2N+2∑
i=N+1

2N+2∑
j=N+1

((L1,ji −H2j
1 L1,0i)φ̃1,i, φ̃1,j)L2

− ρ
2
h2

2N∗+2∑
i=N∗+1

2N∗+2∑
j=N∗+1

((L2,ji −H
pj

2 L2,0i)φ̃2,i, φ̃2,j)L2 .

Hence, denoting by ϕ1 = (ϕ1,0, ϕ1,1, . . . , ϕ1,N )T and ϕ2 = (ϕ2,0, ϕ2,1, . . . , ϕ2,N∗)T

with ϕ�,i = φ�,i − φ̃�,i we obtain

|I2| �
∑

�=1,2

ρ
�
h�(‖∇ϕ�‖2

L2 + (h�δ)
−2‖ϕ′

�‖2
L2)

+ ρ
1
h1‖(φ̃1,N+1, φ̃1,N+2, . . . , φ̃1,2N+2)‖2

H1

+ ρ
2
h2‖(φ̃2,N∗+1, φ̃2,N∗+2, . . . , φ̃2,2N∗+2)‖2

H1

+ ρ
1
h1(h1δ)

−2‖(φ̃1,N+1, φ̃1,N+2, . . . , φ̃1,2N+2)‖2
L2

+ ρ
2
h2(h2δ)

−2‖(φ̃2,N∗+1, φ̃2,N∗+2, . . . , φ̃2,2N∗+2)‖2
L2 .

Here, we note that (ϕ1,ϕ2) satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

L(N)
1,i ϕ1 = r1,i for i = 0, 1, . . . , N,

L(N)
2,i ϕ2 = r2,i for i = 0, 1, . . . , N∗,

h1L(N)
1,0 ϕ1 + h2L(N)

2,0 ϕ2 = ∇ · (h1r3,1 + h2r3,2),

ρ
2
l
(N)
2 ·ϕ2 − ρ

1
l
(N)
1 ·ϕ1 = ρ

1
r4,1 + ρ

2
r4,2,
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where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r1,i = −∑2N+2
j=N+1(L1,ij −H2iL1,0j)φ̃1,j for i = 0, 1, . . . , N,

r2,i = −∑2N∗+2
j=N∗+1(L2,ij −HpiL2,0j)φ̃2,j for i = 0, 1, . . . , N∗,

∇ · r3,1 =
∑2N+2

j=N+1 L1,0j φ̃1,j , ∇ · r3,2 =
∑2N∗+2

j=N∗+1 L2,0j φ̃2,j ,

r4,1 =
∑2N+2

j=N+1H
2j
1 φ̃1,j , r4,2 = −∑2N∗+2

j=N∗+1H
pj

2 φ̃2,j .

We put r′1 = (0, r1,1, . . . , r1,N )T and r′2 = (0, r2,1, . . . , r2,N )T. Then, with a suitable
decomposition r� = rhigh

� + (h�δ)
−2rlow

� for � = 1, 2, and using the linearity of (5.1),
we see by lemma 5.1 that∑

�=1,2

ρ
�
h�(‖∇ϕ�‖2

L2 + (h�δ)
−2‖ϕ′

�‖2
L2)

�
∑

�=1,2

ρ
�
h�(‖rhigh

� ‖2
H−1 + (h�δ)

−2‖rlow
� ‖2

L2 + ‖r3,�‖2
L2 + ‖r4,�‖2

H1)

� ρ
1
h1‖(φ̃1,N+1, φ̃1,N+2, . . . , φ̃1,2N+2)‖2

H1

+ ρ
2
h2‖(φ̃2,N∗+1, φ̃2,N∗+2, . . . , φ̃2,2N∗+2)‖2

H1

+ ρ
1
h1(h1δ)

−2‖(φ̃1,N+1, φ̃1,N+2, . . . , φ̃1,2N+2)‖2
L2

+ ρ
2
h2(h2δ)

−2‖(φ̃2,N∗+1, φ̃2,N∗+2, . . . , φ̃2,2N∗+2)‖2
L2 .

Moreover, it follows from [19, lemmas 5.2 and 5.4] that

‖(φ̃1,N+1, φ̃1,N+2, . . . , φ̃1,2N+2)‖Hk � (h1δ)
2N+2−k‖∇φ̃1‖H2N+1

‖(φ̃2,N∗+1, φ̃2,N∗+2, . . . , φ̃2,2N∗+2)‖Hk � (h2δ)
2N+2−k(‖∇φ̃2‖H2N+1 + ‖φ̃′

2‖H2N+1),

for k = 0, 2, and hence also for k = 1 by interpolation, so that

|I2| �
∑

�=1,2

ρ
�
h�(h�δ)

4N+2(‖∇φ̃�‖2
H2N+1 + ‖φ̃′

�‖2
H2N+1)

� ((h1δ)
4N+2 + (h2δ)

4N+2)‖∇φ‖2
H2N+1

� ((h1δ)
4N+2 + (h2δ)

4N+2)‖∇φ‖H4N+2‖∇φ‖L2 ,

where we used lemma 5.1 with (2.15), and interpolation. This completes the proof
of theorem 3.10.
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