ON THE DERIVED CUBOID OF AN EULERIAN TRIPLE

BY
E. Z. CHEIN

One of the interesting mathematical problems is whether the system of four Diophantine equations

$$
\begin{gather*}
x^{2}+y^{2}=l^{2}, \quad x^{2}+z^{2}=m^{2}, \quad y^{2}+z^{2}=n^{2}, \tag{1}\\
x^{2}+y^{2}+z^{2}=w^{2} \tag{2}
\end{gather*}
$$

has a solution in x, y, z, l, m, n, w. To this day the problem has not been shown to be impossible, nor has it been solved.

Throughout this paper all symbols denote natural numbers. It is known that the Eulerian triple

$$
x=a\left(4 b^{2}-c^{2}\right), \quad y=b\left(4 a^{2}-c^{2}\right), \quad z=4 a b c, \quad\left(a^{2}+b^{2}=c^{2}\right)
$$

which satisfies equation (1), cannot also satisfy equation (2) (SPOHN [1]). It is easy to see that if the x, y, z satisfies equation (1), then $x y, z x, y z$ have the same property. It was shown by SPOHN [2] that the derived Eulerian triple

$$
a\left(4 b^{2}-c^{2}\right) b\left(4 a^{2}-c^{2}\right), \quad a\left(4 b^{2}-c^{2}\right) 4 a b c, \quad b\left(4 a^{2}-c^{2}\right) 4 a b c
$$

does not satisfy equation (2) except possibly when one of the generators of the equation $a^{2}+b^{2}=c^{2}$ is divisible by 705180 . In the present paper we show the derived Eulerian triple does not satisfy equation (2). This is accomplished by the following theorem;

Theorem. Let a, b, c satisfy $a^{2}+b^{2}=c^{2}$ with $(a, b, c)=1$. Then the number $k=\left(a\left(4 b^{2}-c^{2}\right) b\left(4 a^{2}-c^{2}\right)\right)^{2}+\left(4 a b c a\left(4 b^{2}-c^{2}\right)\right)^{2}+\left(4 a b c b\left(4 a^{2}-c^{2}\right)\right)^{2}$ is never a perfect square.

Proof. Let us assume that k is a perfect square and then we will reach a contradiction.

Since $a^{2}+b^{2}=c^{2}$, we have

$$
\begin{aligned}
\frac{k}{a^{2} b^{2}} & =25 a^{8}+4 a^{6} b^{2}+214 a^{4} b^{4}+4 a^{2} b^{6}+25 b^{8} \\
& =(4 a b)^{4}-6(4 a b)^{2} c^{4}+25 c^{8} \\
& =\left((4 a b)^{2}-3 c^{4}\right)^{2}+\left(4 c^{4}\right)^{2}=h^{2}
\end{aligned}
$$

We observe that since $2 \uparrow c$ and $(a, b, c)=1$, we have $\left((4 a b)^{2}-3 c^{4}, 4 c^{4}\right)=1$; then there exists e, f such that

$$
(4 a b)^{2}-3 c^{4}=e^{2}-f^{2}, \quad 4 c^{4}=2 e f, \quad h=e^{2}+f^{2} . \quad(e, f)=1
$$

Since c is odd, then $-3=e^{2}-f^{2} \bmod 4$, and hence e is odd. Then

$$
e=c_{1}^{4}, \quad f=2 c_{2}^{4}, \quad\left(c=c_{1} c_{2}\right)
$$

and

$$
(4 a b)^{2}=e^{2}+3 c^{4}-f^{2}=\left(c_{1}^{4}+4 c_{2}^{4}\right)\left(c_{1}^{4}-c_{2}^{4}\right)
$$

Since $\left(c_{1}, c_{2}\right)=1$, we have $\left(c_{1}^{4}+4 c_{2}^{4}, c_{1}^{4}-c_{2}^{4}\right) \mid 5$. By a well known result, the number $c_{1}^{4}-c_{2}^{4}$ is not a perfect square, except in trivial cases which are not acceptable here. So it follows that

$$
\begin{equation*}
c_{1}^{4}+4 c_{2}^{4}=5 d_{1}^{2}, \quad c_{1}^{4}-c_{2}^{4}=5 d_{2}^{2}, \quad\left(4 a b=5 d_{1} d_{2}\right) \tag{3}
\end{equation*}
$$

or

$$
d_{1}^{2}=d_{2}^{2}+c_{2}^{4}, \quad c_{1}^{4}=d_{1}^{2}+4 d_{2}^{2} .
$$

We observe that since $\left(d_{1}, d_{2}\right)=1$ and $2 \mid d_{2}$, then the solution of equation (3) is given by

$$
d_{1}=s^{2}+t^{2}, \quad c_{2}^{2}=s^{2}-t^{2}, \quad d_{2}=2 s t,
$$

and we obtain

$$
c_{1}^{4}=\left(s^{2}+t^{2}\right)^{2}+4(2 s t)^{2}=s^{4}+18 s^{2} t^{2}+t^{4}
$$

which is impossible (Pocklington [3]). The proof for the case ($4 a b)^{2}-3 c^{4}<0$ proceeds similarly by interchanging c_{1} and c_{2}. This completes the proof of our theorem.

References

1. W. G. Spohn, On the integral cuboid, Amer. Math. Monthly, 79 (1972), 57-5G.
2. -, On the derived cuboid, Canad. Math. Bull. 17 (1974), no. 4, 575-577.
3. H. C. Pocklington, Some Diophantine impossibilities, Proc. Cambridge Phil. Soc., 17 (1914), 110-118.

University Park, Pennsylvania 16802

