
Glasgow Math. J. 52 (2010) 303–313. C© Glasgow Mathematical Journal Trust 2009.
doi:10.1017/S0017089509990358.

ZINBIEL ALGEBRAS AND COMMUTATIVE ALGEBRAS
WITH DIVIDED POWERS

IOANNIS DOKAS
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus

e-mail: dokas@ucy.ac.cy

(Received 7 January 2009; accepted 10 June 2009; first published online 25 November 2009)

Abstract. In this paper, we prove that any Zinbiel algebra can be endowed with
the structure of commutative algebra with divided powers. We introduce the notion
of universal enveloping Zinbiel algebra of a commutative algebra with divided powers
algebras. We prove that the free divided powers algebra on a free module M, is the
divided powers sub-algebra generated by M, of the divided powers algebra induced by
the free Zinbiel algebra on M. Finally, we construct a basis for the enveloping Zinbiel
algebra.
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1. Introduction. The category dCom of commutative algebras with divided
powers has been defined by H. Cartan in [2]. In particular it is proved in [2] that
the homotopy of a commutative simplicial algebra is endowed with divided powers
operations. Besides, we have to notice the contribution of N. Roby to the theory of
commutative algebras with divided powers in [9–11]. In the theory of operads the
category of commutative algebras with divided powers is the category of �(Com)-
algebras, where Com denotes the commutative operad (for details see [3]). Moreover,
the notion of commutative algebras with divided powers plays an essential role in the
theory of crystalline cohomology. In particular, commutative divided powers algebras
are used in order to overcome technical difficulties which arise in positive characteristic.
In this way it is proved in [1], a crystalline Poincaré lemma analogue to Poincaré
lemma in complex analytic geometry. Also, the structure of commutative algebras with
divided powers appears in the calculation of Mac Lane homology of certain rings [5].
Moreover, we note that the notion of p-envelope is an important tool in the theory of
PD1 differential operators developed by P. Berthelot and A. Ogus.

The category Zinb of Zinbiel algebras has been defined by J.-L. Loday in [4]. In
connection with the notion of Koszul duality, Zinbiel algebras are Koszul dual to
Leibniz algebras. A Zinbiel algebra is a commutative Dendiform algebra (for details,
see [6]).

In this paper we prove that the category of Zinbiel algebras plays for the category
of commutative algebras with divided powers a role analogue to this one of associative
algebras for p-restricted Lie algebras. In particular, in Section 3 we prove that any
Zinbiel algebra can be equipped with the structure of commutative algebra with divided
powers. Thus, we construct the functor dCom : Zinb → dCom. As a consequence we
obtain that the shuffle algebra has the structure of commutative algebra with divided
powers. In Section 4 we introduce and we study the notion of Zinbiel enveloping

1The abbreviation PD it seems that comes from the french terminology puissances divisées.
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algebra Uz(C) of commutative algebra with divided powers C. Moreover, we prove
that the functor Uz : dCom → Zinb is left adjoint to the functor dCom : Zinb → dCom.
In Section 5, we prove that the free commutative divided power algebra �(M) on a
free k-module M is the smallest divided powers sub-algebra of (Zinb(M))dCom which
contains M. Finally, in the last Section 6 we construct a k-basis for the enveloping
Zinbiel algebra of a finite dimensional commutative algebra with divided powers.

2. Commutative algebras with divided powers. Let k be a commutative ring. We
recall the notion of commutative algebra with divided powers, for further details the
reader may consult [2, 9–11]. Let A be an augmented commutative algebra over k, we
will denote by Ā the augmentation ideal of A.

DEFINITION 2.1. The unital algebra (A, ∗) (or the non-unital algebra Ā) is called
an algebra with divided powers if there are, for i > 0, operations γi : Ā → Ā such that
the following relations hold:

γ1(x) = x, γi(λx) = λiγi(x), λ ∈ k, (1)

γi(x + y) =
i∑

j=0

γj(x) ∗ γi−j(y), (2)

γi(x ∗ y) = i! γi(x) ∗ γi(y), (3)

γi(x) ∗ γj(x) = (i + j)!
i!j!

γi+j(x), (4)

γi(γj(x)) = (ij)!
i!(j!)i

γij(x), (5)

where by convention γ0(x) := 1 and x, y ∈ Ā.

DEFINITION 2.2. Let A, B be commutative algebras with divided powers. A
commutative algebra homomorphism f : A → B is called a homomorphism of divided
powers algebras if f γi = γif . We denote by dCom the category of divided powers
algebras over k.

DEFINITION 2.3. Let C ∈ dCom be a divided powers algebra. We call an ideal I of
C divided ideal if for all k > 0 and for all ι ∈ I we have γk(ι) ∈ I .

REMARK 2.4. If C is a divided powers algebra and I a divided ideal of C, then
the quotient algebra C/I is endowed canonically with the structure of divided powers
algebra.

REMARK 2.5. If the ring k is a field of characteristic 0 any commutative graded
algebra A can be equipped with a unique system of divided powers given by

γi(x) := xi/ i! where x ∈ Ā, and i > 0.

REMARK 2.6. If the ring k is a field of positive characteristic p, then by a theorem
of H. Cartan in [2] we have that the system of divided powers on A is induced by the
operation γp. Moreover, let A be an augmented commutative algebra together with a
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map π : Ā → Ā which verifies the relations of the pth divided power. Then by Theorem
1 in [12], A is equipped with a unique system of divided powers with γp = π .

3. Zinbiel algebras. We remind that Zinbiel algebras have been introduced by
J.-L. Loday in [4]. In particular in [4] is shown that Zinbiel algebras are Koszul dual to
Leibniz algebras.

DEFINITION 3.1. A Zinbiel algebra (R,≺) is a k-module equipped with a binary
operation ≺ such that the following relation holds:

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (z ≺ y)

for all x, y, z ∈ R. We denote by Zinb the category of Zinbiel algebras over k.

REMARK 3.2. Any Zinbiel algebra (R,≺) can be considered with unit 1 by defining
(R+,≺), where R+ := k1 + R and for all x ∈ R we define 1 ≺ x = 0 and x ≺ 1 = x. We
note that 1 ≺ 1 is not defined (for details, see [7]).

Any Zinbiel algebra R is endowed with the structure of commutative algebra by
defining a new operation ∗ for all x, y ∈ R as x ∗ y := x ≺ y + y ≺ x. Therefore we have
a functor Zinb → Com where Com denotes the category of commutative algebras over
k.

Free Zinbiel algebras. It is shown in [4] that the free Zinbiel algebra over a k-module
V is the k-module T̄(V ) := ⊕n≥1V⊗n equipped with the product

(x0 . . . xp) ≺ (xp+1 . . . xp+q) := x0shp,q(x1 . . . xp+q),

where shp,q is the sum over all (p, q)-shuffles. We will denote the free Zinbiel algebra on
V by Zinb(V).

PROPOSITION 3.3. Let (R,≺) be a Zinbiel algebra over k. For n > 0, we define γn(x)
inductively by γ1(x) = x and γn(x) = x ≺ γn−1(x), hence

γn(x) := (. . . (x ≺ (x ≺ (x ≺ . . . (x ≺ x︸ ︷︷ ︸
n

) . . .)).

Then we have the following relations:

γn(x) ≺ x = nγn+1(x) (6)

x∗n = n!γn(x) (7)

for all x ∈ R and n ≥ 1.

Proof. Obviously relation (6) is true for n = 1. Besides,

γn+1(x) ≺ x = (x ≺ γn(x)) ≺ x

= x ≺ (γn(x) ≺ x + x ≺ γn(x)).

Thus, by induction hypothesis we have

x ≺ (γn(x) ≺ x + x ≺ γn(x)) = x ≺ (nγn+1(x) + γn+1(x))

= (n + 1)γn+2(x).
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For, relation (7) we easily see that for n = 1 it is true. We suppose that is true for n, then

x∗n+1 = x∗n ∗ x

= n!γn(x) ∗ x

= n!(γn(x) ≺ x + x ≺ γn(x)).

Therefore by relation (6) above we obtain that

x∗n+1 = n!(n + 1)γn+1(x)

= (n + 1)!γn+1(x).

�
THEOREM 3.4. Let (R,≺) be a Zinbiel algebra over k. Then (R, ∗) is a commutative

algebra with divided powers.

Proof. In order to prove the relations of the Definition 2.1 we proceed by induction.
Obviously the relation (2) is true for n = 1. We suppose that the relation is true for n
and by induction hypothesis we have,

(x + y) ≺ γn(x + y)

= (x + y) ≺
( n∑

k=0

γk(x) ∗ γn−k(y)
)

= γn+1(x) + γn+1(y) + x ≺ γn(y) + y ≺ γn(x) + (x + y) ≺
( n−1∑

k=1

γk(x) ∗ γn−k(y)
)

.

Besides,

(x + y)≺
( n−1∑

k=1

γk(x) ∗ γn−k(y)
)

=
n−1∑
k=1

((x ≺ γk(x)) ≺ γn−k(y)) +
n−1∑
k=1

((y≺γn−k(y))≺γk(x))

=
n−1∑
k=1

(γk+1(x) ≺ γn−k(y)) +
n−1∑
k=1

(γn−k+1(y) ≺ γk(x))

=
n∑

m=2

(γm(x) ≺ γn−m+1(y)) +
n−1∑
k=1

(γn−k+1(y) ≺ γk(x))

= γn(x) ≺ γ1(y) + γn(y) ≺ γ1(x) +
n−1∑
m=2

(γm ∗ γn−m−1).

Now, the relation (3) is true for n = 1. Suppose that the relation is true for n, we
obtain

(x ∗ y) ≺ γn(x ∗ y) = n!(x ≺ y + y ≺ x) ≺ (γn(x) ∗ γn(y)).

Besides,

(x ≺ y) ≺ (γn(x) ∗ γn(y)) = ((x ≺ y) ≺ γn(y)) ≺ γn(x)

= (x ≺ γn+1(y) + x ≺ (γn(y) ≺ y)) ≺ γn(x).
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Thus using the relation (6) we get,

(x ≺ y) ≺ (γn(x) ∗ γn(y)) = (n + 1)(x ≺ γn+1(y)) ≺ γn(x))

= (n + 1)(x ≺ γn(x)) ≺ γn+1(y)

= (n + 1)(γn+1(x) ≺ γn+1(y)).

Therefore we have

(x ∗ y) ≺ γn(x ∗ y) = n!(n + 1)(γn+1(x) ≺ γn+1(y) + γn+1(y) ≺ γn+1(x))

= (n + 1)!γn+1(x) ∗ γn+1(y).

For the relation (4) we see that for i = 1 and for all j ∈ �, we have that

γ1(x) ∗ γj(x) = x ∗ γj(x)

= x ≺ γj(x) + γj(x) ≺ x

therefore by relation the (6) we obtain γ1(x) ∗ γj(x) = (j + 1)γj+1(x). We suppose that
the relation is true for i and for all j ∈ �. We have

γi+1(x) ∗ γj(x)

= γi+1(x) ≺ γj(x) + γj(x) ≺ γi+1(x)

= (x ≺ γi(x)) ≺ γj(x) + γj(x) ≺ (x ≺ γi(x))

= x ≺ (γi(x) ∗ γj(x)) + (x ≺ γj−1(x)) ≺ γi+1(x)

= x ≺ (γi(x) ∗ γj(x)) + x ≺ (γj−1(x) ≺ γi+1(x) + (x ≺ γi(x)) ≺ γj−1(x))

= x ≺ (γi(x) ∗ γj(x)) + x ≺ (γj−1(x) ≺ γi+1(x)) + x ≺ (x ≺ (γi(x) ∗ γj−1(x))).

Moreover,

γj−1(x) ≺ γi+1(x) = (x ≺ γj−2(x)) ≺ (x ≺ γi(x))

= x ≺ (γj−2(x) ≺ (x ≺ γi(x)) + (x ≺ γi(x)) ≺ γj−2(x))

= x ≺ (γj−2(x) ≺ γi+1(x) + x ≺ (γi(x) ∗ γj−2(x)).

Therefore using induction hypothesis we get

γi+1(x) ∗ γj(x) =
(

(i + j)!
i!j!

+ (i + j − 1)!
i!(j − 1)!

+ · · · + (i + 1)!
i!1!

+ i!
i!0!

)
γi+1+j(x)

= (i + 1 + j)!
(i + 1)!j!

γi+1+j(x).

Finally, for the relation (5) we easily see that for i = 1 we have γj(x) = (j!/j!)γj(x) for
all j ∈ �. Suppose that the relation is true for i and for all j ∈ � then we have

γi+1(γj(x)) = γj(x) ≺ (γj(x) ≺ (γj(x) ≺ (. . . (γj(x) ≺ γj(x)︸ ︷︷ ︸
i

) . . .)).

Therefore by induction hypothesis we have

γi+1(γj(x)) = γj(x) ≺
(

(ij)!
i!(j!)i

γij(x)
)

.
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Moreover,

γj(x) ≺ γij(x) = (x ≺ γj−1(x)) ≺ γij(x)

= x ≺ (γj−1(x) ∗ γij(x))

thus by the relation (4) we have

γi+1(γj(x)) = (ij)!
i!(j!)i

(j − 1 + ij)!
(j − 1)!(ij)!

γij+(j−1)+1(x)

= (ij)!
i!(j!)i

(j(i + 1))!
j(i + 1)(j − 1)!(ij)!

γ(i+1)j(x)

= ((i + 1)j)!
(i + 1)!(j!)i+1

γ(i+1)j(x).

�

Let V be a k-module. We consider an ordered basis B of V . We denote by B∗ the
free monoid on B and we put the lexicographical order > on B∗. Any element of B∗

is called a word. We recall that a word l ∈ B∗ is called Lyndon word if it is smaller
than all its non-trivial proper right factors. The tensor module T(V ) equipped with the
shuffle product becomes a commutative algebra called shuffle algebra which we denote
by (Tsh(V ), �). (For details see [8].)

COROLLARY 3.5. Let V be a k-module. Then the shuffle algebra (Tsh(V ), �) is a
commutative algebra with divided powers γi. Moreover, if k is a field of characteristic 0
then a k-basis for (Tsh(V ), �) is given by the elements of the form:

γi1 (l1) � γi2 (l2) · · · � γin (ln)

where lj, j = 1, 2 . . . , n are Lyndon words such that l1 > l2 > · · · > ln and i1, i2, . . . , in ≥
1.

Proof. Let (Zinb(V)+,≺) be the free augmented Zinbiel algebra on the k-
module V . From Theorem 3.2 above we have that Zinb(V)+ is equipped with the
structure of commutative algebra with divided powers γi. Moreover we note that
for v,w ∈ Zinb(V)+ we have v � w = v ≺ w + w ≺ v. Therefore the divided powers
algebra Zinb(V)+dCom is just the shuffle algebra (Tsh(V ), �, γi). The Corollary follows
easily from the Proposition 3.3 and the Theorem 6.1 in [8]. �

4. Universal enveloping Zinbiel algebra. From the Theorem 3.4 above we obtain
a functor −dCom : Zinb → dCom. In particular, to each Zinbiel algebra R ∈ Zinb we
associate a divided powers algebra RdCom. In this section we will construct a left adjoint
functor to the functor −dCom. We will define the notion of enveloping Zinbiel algebra
of a divided powers algebra.

Let (C, ∗, γi) ∈ dCom be a divided powers algebra. We consider the free Zinbiel
algebra Zinb(C) on the k-module C. We denote by J the Zinbiel ideal of Zinb(C) which
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is generated by the elements:

(x ≺ y + y ≺ x)−x ∗ y, for all x, y ∈ C

(. . . (x ≺ (. . . (x ≺ (x ≺ x︸ ︷︷ ︸
i

)) . . . )−γi(x), for all x ∈ C.

DEFINITION 4.1. Let (C, ∗, γi) ∈ dCom be a divided powers algebra. The Zinbiel
algebra Uz(C) := Zinb(C)/J is called enveloping Zinbiel algebra of C.

PROPOSITION 4.2. Let C ∈ dCom be a divided powers algebra and let σC : C →
Uz(C) be the natural map. Let R ∈ Zinb be a Zinbiel algebra. If f : C → RdCom is
a divided powers algebras homomorphism then there exists Zinbiel homomorphism α :
Uz(C) → R such that ασC = f .

Proof. Since f : C → R is a k-linear map it can be extended to a unique Zinbiel
homomorphism α′ : Zinb(C) → R. Moreover, for all x, y ∈ C we obtain:

α′(x ≺ y + y ≺ x − x ∗ y) = α′(x) ≺ α′(y) − α′(y) ≺ α′(x) − α′(x ∗ y),

= f (x) ≺ f (y) − f (y) ≺ f (x) − f (x ∗ y),

= 0.

Besides, for all x ∈ C we have

α′((. . . (x ≺ (. . . (x ≺ (x ≺ x︸ ︷︷ ︸
i

)) . . . ) = (. . . (α′(x) ≺ (. . . (α′(x) ≺ (α′(x) ≺ α′(x)︸ ︷︷ ︸
i

)) . . . ),

= f (x) ≺ (. . . (f (x) ≺ (f (x) ≺ f (x)︸ ︷︷ ︸
i

)) . . . ),

= f (γi(x)),

= α′(γi(x)).

Therefore the Zinbiel homomorphism α′ : Zinb(C) → R induces a unique Zinbiel
homomorphism α : Uz(C) → R such that ασC = f . �

COROLLARY 4.3. The functor Uz : dCom → Zinb is left adjoint to the functor
−dCom : Zinb → dCom.

Proof. Let f : C → RdCom be a divided powers algebras homomorphism. From
Proposition 4.2 above we associate to f a Zinbiel homomorphism αf : Uz(C) → R.
Let us denote by φ the map φ : f �→ αf . Moreover, let α : Uz(C) → R be a Zinbiel
homomorphism. We associate to α a divided powers homomorphism fα given by
fα := ασC where σC : C → Uz(C) is the natural map. If we denote by ψ the map
ψ : α �→ fα then we easily see that ψφ = φψ . Therefore we get:

HomdCom(C, RdCom) � HomZinb(Uz(C), R).

�

5. Free divided powers algebras. Let M be a k-module and let �(M) the free
divided powers algebra on M. We denote by −[n] : x �→ x[n] the divided powers
operations on �(M). In [11], the tensor module T(V ) is equipped with the structure of
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divided powers algebra. We denote this structure by (T(V ),�). Moreover, by Theorem
3 in [11] is proved that the module (TS(M),�) of symmetric tensors is divided powers
sub-algebra of (T(V ),�).

THEOREM 5.1. Let M be a free k-module. The free divided powers algebra �(M) on
M is the smallest divided powers sub-algebra of Zinb(M)+dCom which contains M.

Proof. Let M be a free k-module with basis B = (ei)i∈I . Since M is a free k-module
by the Proposition IV.5 in [10] there is a divided powers isomorphism ψ : �(M) →
TS(M) such that ψ(x[n]) = e⊗n. Moreover, we have by the Proposition IV.5 in [10] that
the elements of the form e⊗k1

i1 � · · · � e⊗kh
ih form a k-basis for (TS(M),�).

We denote by (F(M), �, γi) the smallest powers sub-algebra of (Zinb(M)+dCom, �, γi)
which contains M. Moreover, we have

e⊗kj
ij = (. . . (eij ≺ . . . eij ≺ (eij ≺ eij︸ ︷︷ ︸

kj

) . . . )

= γkj (eij )

We consider the k-linear map φ : TS(M) → F(M) defined on basis elements by

φ
(
e⊗k1

i1 � · · · � e⊗kh
ih

)
: = γk1 (ei1 ) � · · · � γkh (eih )

= e⊗k1
i1 � · · · � e⊗kh

ih

We easily see using the relations of the Definition 2.1 that the k-linear map φ is
actually a divided powers isomorphism. Therefore we obtain that the divided powers
algebras (TS(M),�) and (F(M), �) are isomorphic. �

PROPOSITION 5.2. If M be a free k-module, then we have:

Uz(�̄(M)) = Zinb(M).

Proof. Since M is free as a k-module from Proposition IV.5 in [10] we have
that �(M) � TS(M) as divided powers algebras. Let R be a Zinbiel algebra and
let f : �̄(M) → RdCom be a divided powers algebra homomorphism. We consider
the restriction fM : M → R of f on M. The restriction fM is a k-linear map. Thus,
from the universal property of Zinb(M) there is a unique Zinbiel homomorphism φ :
Zinb(M) → R such that φi = fM , where i denotes the natural map i : M → Zinb(M).
Moreover, from the Theorem 5.1 above the divided powers algebra �̄(M) is the divided
powers sub-algebra of Zinb(M)dCom generated by M. Thus, we have an injection
j : �̄(M) → (Zinb(M))dCom. Finally, we obtain that φj = f and the universal Zinbiel
enveloping algebra �̄(M) is Zinb(M). �

Let (C, C′) ∈ dCom be divided powers algebras and let φ : C → C′ be a divided
powers algebras homomorphism. We denote by σC : C → Uz(C) and σC′ : C′ →
Uz(C′) the natural maps. We easily see that σC′φ : C → Uz(C′)dCom is a divided powers
homomorphism. Therefore there is a Zinbiel homomorphism φ̄ : Uz(C) → Uz(C′) such
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that the following diagram is commutative:

C
φ−−−−→ C′

σC

⏐⏐� σC′
⏐⏐�

Uz(C)
φ̄−−−−→ Uz(C′)

Let C ∈ dCom be a divided powers algebra and let σC : C → Uz(C) be the natural
map. Moreover, let I be a divided ideal of C. We denote by R the Zinbiel ideal of Uz(C)
generated by σC(I).

PROPOSITION 5.3. Let C ∈ dCom be a divided powers algebra and let I be a divided
ideal of C. Then we have a Zinbiel homomorphism Uz(C/I) � Uz(C)/R.

Proof. Following the previous notation we have the commutative diagram below:

I
ι−−−−→ C

π−−−−→ C/I

σI

⏐⏐� σC

⏐⏐� ⏐⏐�σC/I

Uz(I)
ῑ−−−−→ Uz(C)

π̄−−−−→ Uz(C/I)

We can see from the commutative diagram that π̄ (σC(I)) = 0. Therefore there
is a Zinbiel homomorphism ω : Uz(C)/R → Uz(C/I) such that ωψ = π̄ where ψ :
Uz(C) → Uz(C)/R is the canonical homomorphism. Besides, we can easily see that
the map ψσC : C → Uz(C)/R induce a divided powers homomorphism θ ′ : C →
(Uz(C)/R)dCom such that θ ′(I) = 0. Therefore we get a divided powers homomorphism
θ : C/I → (Uz(C)/R)dCom such that θπ = ψσC . From the universal property of the
enveloping Zinbiel algebra, there is a Zinbiel homomorphism φ : Uz(C/I) → Uz(C)/R
such that φσC/I = θ .

Moreover, we have

φωψσC = φπ̄σC

= φσC/Iπ

= θπ

= ψσC .

Thus we easily see that map φω is the identity map on Uz(C)/R. On the other hand,
we have

ωφσC/Iπ = ωθπ

= ωψσC

= σC/Iπ.

Therefore, we obtain that the map ωφ is the identity map on Uz(C/I). In other words,
we get an Zinbiel isomorphism Uz(C)/R � Uz(C/I). �

COROLLARY 5.4. Let M be a free k-module and let I be a divided ideal of �̄(M).
Then we have a Zinbiel isomorphism Uz(�̄(M)/I) � Zinb(M)/I where I is the Zinbiel
ideal of Zinb(M) generated by I.
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Proof. It follows easily from the Propositions 5.2 and 5.3 above. �

6. Standard basis. Let (C, ∗, γi) be a divided powers algebra with an ordered
basis B = {e1, e2, . . . , en}. We suppose that en > en−1 > · · · > e2 > e1 and we endow
Zinb(C) with the lexicographic order >. Moreover, we define a total order � in Zinb(C)
as follows:

w � v =
{

|w| < |v|,
|w| = |v|, and w > v.

where w, v ∈ Zinb(C) and |w| denotes the length of the word w ∈ Zinb(C).

REMARK 6.1. We remark that the total order � has the property that for a given
word w ∈ Zinb(C) we have a finite number of words v ∈ Zinb(C) such that v � w.

DEFINITION 6.2. We call a word w ∈ Zinb(C) standard if w cannot be written as
k-linear combination of smaller words modulo the ideal J. We denote by S the set of
the cosets in Uz(C) of the standard words.

PROPOSITION 6.3. Let C ∈ dCom be finite dimensional divided powers algebra. The
set S is a basis for the enveloping Zinbiel algebra Uz(C).

Proof. Let w ∈ Zinb(C) be a word. If w is not standard then we can write w as a
linear combination of smaller words modulo the ideal J. If one of these words is not
standard the we can write it as a linear combination of smaller words modulo J. From
the Remark 6.1 above this process is finite. Therefore the set S generates Uz(C).

Moreover, we prove by contradiction that the set S is linear independent. Suppose
that there is modulo J a non-trivial linear relation among standard words. Then we
could write modulo J the maximal word as a linear combination of smaller words.
Therefore, the maximal word would not be standard. �

The next proposition shows that the property of a word being standard is not
trivial.

PROPOSITION 6.4. The words w of the form w = ei1 ⊗ ei2 ⊗ · · · ⊗ ein , where i1 < i2 <

· · · < in are not standard.

Proof. We recall that w = (. . . (ei1 ≺ (ei2 ≺ · · · ≺ (ein−1 ≺ ein ) . . . ). Besides, we have

eij � eik = eij ≺ eik + eik ≺ eij

= eij ∗ eik mod J.

Moreover for eij , eik , eih ∈ B we have,

eij � eik � eih = (eij ∗ eik + j) � eih mod J

= (eij ∗ eik ) � eih mod J

= eij ∗ eik ∗ eih mod J,

where j ∈ J. Therefore we get

ei1 � ei2 � · · · � ein = ei1 ∗ ei2 ∗ · · · ∗ ein mod J.
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We now remark that when we develop the quantity ei1 � ei2 � · · · � ein we get

ei1 � ei2 � · · · � ein = w +
∑

v∈Zinb(C)

v, (8)

where the words v ∈ Zinb(C) are such that |v| = |w| and v > w. The left-hand side
of the equation (8) belongs to C modulo the ideal J. On the right-hand side of the
equation (8) the words v appearing in the sum are less than w with respect to the total
order �. Therefore, we see that the word w can be written as a linear combination of
smaller words modulo J. �
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