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Abstract
In this paper, we investigate the pricing of vulnerable European options in a market where the underlying stocks
are not perfectly liquid. A liquidity discount factor is used to model the effect of liquidity risk in the market, and
the default risk of the option issuer is incorporated into the model using a reduced-form model, where the default
intensity process is correlated with the liquidity risk. We obtain a semiclosed-form pricing formula of vulnerable
options through the inverse Fourier transform. Finally, we illustrate the effects of default risk and liquidity risk on
option prices numerically.

1. Introduction

Option pricing has been a focus of mathematical research in finance since the publication of the
Black–Scholes formula [4]. It is often considered a kind of financial derivative with the underlying stock
transacting in a perfectly liquid market. However, it is widely acknowledged that not all securities are
perfectly liquid. Many prior studies have provided evidence that investors ask for illiquidity premiums
due to liquidity risk (see, e.g., [1,2,26]). Brunetti and Caldarera [6] built a theoretical model that
studied the effects of aggregate liquidity/illiquidity on asset return volatility and correlations. Cetin
et al. [7] considered option pricing in an extended Black–Scholes economy in which the underlying
asset was not perfectly liquid. In Feng et al. [10], the specification of Brunetti and Caldarera [6] was
extended to develop a new option pricing model with stochastic market liquidity. Leippold and Schärer
[19] extended the discrete-time constant liquidity model of Madan [22], and their model successfully
replicated the term and skew structures of bid-ask spreads observed in option markets. Referring to
Feng et al. [10], Pasricha et al. [25] considered all the possible correlations among the process of stock
price, the mean-reversion process of liquidity risk and the process of the liquidity discount factor.

In recent decades, concerns about financial derivatives subject to default risk in the over-the-counter
(OTC) markets have grown rapidly since the mid-2007, when the financial crisis erupted. Because
there is no trading mechanism to guarantee the promised payment, the option holders are vulnerable to
default risk, and these options with default risk are called vulnerable options. Johnson and Stulz [15]
was the first to study vulnerable options by incorporating default risk into the option pricing model.
In Hull and White [13], both the probability of default and the size of the proportional recovery from
the default were set to be random and the authors showed that model parameters could be informed
by data on bonds issued by the counterparty. Jarrow and Turnbull [14] considered two types of credit
risks induced from the underlying assets and the writers of these derivatives. Klein [16] then moved
forward to price vulnerable options with correlated default risk in the classical Black–Scholes model
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and extended the focus on stochastic default barriers in Klein and Inglis [17]. Additionally, many
other studies have modified the classical Black–Scholes model and worked under stochastic volatility
models [18,30,32]. The pricing of vulnerable options was also investigated in the jump-diffusion model
and/or stochastic interest rate environment [20,21,24,28]. Wang et al. [31] presented a model with risky
collateral under the assumption that holders of vulnerable options could recover a proportion of the
option value using the collateral account when default occurred. Additionally, because most of the assets
of financial institutions are financial assets, there exists a certain relationship between liquidity risk and
default risk (see, e.g., [29]). He and Xiong [11] found that deterioration of debt market liquidity leads
to not only an increase in the liquidity premium of corporate bonds but also credit risk. Brogaard et al.
[5] focused on U.S. firms and found a negative effect of stock liquidity on default risk, suggesting that
the informational efficiency of stock prices and corporate governance should be improved to enhance
market liquidity and, thus, to control the level of default risk. Nadarajah et al. [23] further confirmed this
negative effect between market liquidity and default risk on a larger scale by using a sample of 46,949
firm-year observations for 4,043 nonfinancial firms across 46 countries during the 2004–2018 period.

Motivated by the empirical results mentioned above, in this paper, we mainly focus on the pricing
of vulnerable European options with market liquidity risk. To model the dynamics of the imperfectly
liquid underlying asset, we extend the specification in Brunetti and Caldarera [6] and Feng et al. [10].
More specifically, in our model, the stock price, the market liquidity and the liquidity discount factor
are all correlated with each other and this assumption is closer to reality. Furthermore, we take the
dynamic relationship between liquidity and credit risk into consideration. Default risk is described by
a reduced-form model where the default intensity process is affected by the market liquidity measure.
Then by utilizing the characteristic function approach and the Feynman–Kac theorem, we obtain a semi-
closed form for the prices of vulnerable European options with market liquidity risk. Finally, numerical
examples are presented to illustrate the effects of both liquidity risk and default risk on option prices.

The remainder of this paper is organized as follows. In Section 2, the theoretical framework is
introduced. In Section 3, after providing the construction of a suitable martingale measure, we price
vanilla European options in the first subsection, and value vulnerable European options in the second
subsection. Section 4 is devoted to numerical analysis. Finally, we draw the conclusion of the paper in
Section 5. The detailed proofs are presented in the Appendix.

2. Model settings

Consider a model with a finite time horizon 𝑇 > 0, and the filtered probability space (Ω, F , (F𝑡 )𝑡≥0, 𝑃)
models the uncertainty in the economy, where 𝑃 is the physical probability measure. Suppose that
there are two types of assets in the market: stocks and money market accounts. Following Brunetti and
Caldarera [6], Feng et al. [10] and Wang [29], we assume that the stocks are not perfectly liquid, and
account for liquidity risk using the liquidity discount factor. The imperfectly liquid stock price is the
price that makes the demand for the stock clear its supply, and the liquidity discount factor is introduced
in the demand function. Specifically, the demand for the stock depends on three factors: the stock-
specific information 𝐼𝑡 , the liquidity discount factor 𝛾𝑡 and the stock price 𝑆𝑡 . The demand function,
𝐷 (𝑆𝑡 , 𝛾𝑡 , 𝐼𝑡 ), is given by

𝐷 (𝑆𝑡 , 𝛾𝑡 , 𝐼𝑡 ) = 𝑔

(
𝐼𝜈𝑡
𝛾𝑡𝑆𝑡

)
, (2.1)

where 𝑔(·) is a smooth, strictly increasing function, and 𝜈 is a positive constant.
Brunetti and Caldarera [6] proposed the following form of the liquidity discount factor 𝛾𝑡 ,

𝛾𝑡 = exp
(
−𝛽

(∫ 𝑡

0
𝐿𝑠 d𝑠 +

∫ 𝑡

0
𝐿𝑠 d𝑊𝛾

𝑠

))
, 𝑡 ≥ 0, (2.2)

where {𝑊𝛾
𝑡 }𝑡≥0 is a standard Brownian motion under 𝑃, 𝐿𝑡 is a market liquidity measure and 𝛽 is a

nonnegative constant representing the sensitivity of the stock to market illiquidity.
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Suppose the supply for the stock is fixed and equals 𝑆, and then the market clearing condition yields
the expression of the imperfectly liquid stock price 𝑆𝑡 as follows,

𝑆𝑡 =
1
𝛾𝑡

(
𝐼𝜈𝑡

𝑔−1(𝑆)

)
, 𝑡 ≥ 0. (2.3)

Specially, when the liquidity discount factor 𝛾𝑡 ≡ 1, the stock price (2.3) degenerates to

𝑆𝐿𝑡 =
𝐼𝜈𝑡

𝑔−1(𝑆)
, 𝑡 ≥ 0. (2.4)

Obviously, the price of the underlying stock affected by market liquidity can be formulated by

𝑆𝑡 =
1
𝛾𝑡
𝑆𝐿𝑡 , 𝑡 ≥ 0. (2.5)

As we know, liquidity risk is a financial risk that for a certain period of time a given financial asset,
security or commodity cannot be traded quickly enough in the market without impacting the market
price. Liquidity risk usually arises from situations in which a party interested in trading an asset cannot
do it because nobody in the market wants to trade for that asset. Hence, risk-averse investors naturally
require higher expected return as compensation for liquidity risk. In order to understand the effect of
liquidity risk more clearly, we now consider a special case of (2.5) when 𝐿𝑡 is deterministic and the
liquidity discount factor is independent of 𝑆𝐿𝑡 . In this special case, from (2.2) and (2.5), we have the
following conditional expectation,

𝐸𝑃 [𝑆𝑡 | 𝑆
𝐿
𝑡 ] = 𝐸𝑃

[
exp

(
𝛽

(∫ 𝑡

0
𝐿𝑠 d𝑠 +

∫ 𝑡

0
𝐿𝑠 d𝑊𝛾

𝑠

))
𝑆𝐿𝑡 | 𝑆𝐿𝑡

]
= 𝑆𝐿𝑡 exp

(∫ 𝑡

0

(
𝛽𝐿𝑠 +

1
2
𝛽2𝐿2

𝑠

)
d𝑠

)
. (2.6)

When 𝛽𝐿𝑡 is small, the integral in (2.6) will have the same sign as its first term, and hence, exp(
∫ 𝑡

0 (𝛽𝐿𝑠+
1
2 𝛽

2𝐿2
𝑠) d𝑠) can be interpreted as a convenience yield caused by the illiquidity. Therefore, the value of 𝐿𝑡

can be interpreted as the level of market liquidity at time 𝑡, and 𝐿𝑡 = 0 means that the market liquidity
is at the perfect level. Additionally, 𝐿𝑡 > 0 corresponds to shortages, while 𝐿𝑡 < 0 corresponds to gluts
(see, e.g., [6]).

In what follows, we focus on the dynamics of the market liquidity measure 𝐿𝑡 and the liquidity
discount factor 𝛾𝑡 . Using S&P 500 index data, Feng et al. [10] found that market liquidity tends to
fluctuate around the mean, which means that 𝐿𝑡 has the mean-reverting property, so we model it as

d𝐿𝑡 = 𝜅𝐿 (𝜃𝐿 − 𝐿𝑡 ) d𝑡 + 𝜎𝐿 d𝑊𝐿
𝑡 , 𝑡 ≥ 0, (2.7)

where {𝑊𝐿
𝑡 }𝑡≥0 is also a standard Brownian motion under 𝑃; 𝜅𝐿 is the mean-reversion speed of market

liquidity; 𝜃𝐿 is the mean level and 𝜎𝐿 is the volatility. According to Itô’s lemma, the liquidity discount
factor 𝛾𝑡 in (2.2) can be written in the following form:

d𝛾𝑡
𝛾𝑡

=

(
−𝛽𝐿𝑡 +

1
2
𝛽2𝐿2

𝑡

)
d𝑡 − 𝛽𝐿𝑡 d𝑊𝛾

𝑡 , 𝑡 ≥ 0, 𝛾0 = 1. (2.8)

Next, we turn to the dynamics of 𝑆𝐿𝑡 , and then using (2.5), we can obtain the time-𝑡 price 𝑆𝑡 of the
imperfectly liquid stock. Note that under the assumptions of the fixed supply for the stock and the form
of the specific demand function, Brunetti and Caldarera [6] proved that 𝑆𝐿𝑡 is a geometric Brownian
motion which is consistent with the classical Black–Scholes model. Here, we also adopt the classical
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B-S model,
d𝑆𝐿𝑡
𝑆𝐿𝑡

= 𝜇𝑆 d𝑡 + 𝜎𝑆 d𝑊𝑆
𝑡 , 𝑡 ≥ 0, (2.9)

where 𝜇𝑆 , 𝜎𝑆 are positive constants and {𝑊𝑆
𝑡 }𝑡≥0 is a standard Brownian motion under 𝑃.

In this paper, we work in a more general framework by assuming that𝑊𝑆
𝑡 ,𝑊𝛾

𝑡 and𝑊𝐿
𝑡 are correlated

with each other. Moreover, their correlation structure is listed below:

〈d𝑊𝑆
𝑡 , d𝑊

𝛾
𝑡 〉 = 𝜌1 d𝑡,

〈d𝑊𝑆
𝑡 , d𝑊𝐿

𝑡 〉 = 𝜌2 d𝑡,
〈d𝑊𝐿

𝑡 , d𝑊
𝛾
𝑡 〉 = 𝜌3 d𝑡.

(2.10)

Now from (2.5), (2.8) and (2.9), Itô’s lemma implies that the time-𝑡 price 𝑆𝑡 of the imperfectly liquid
stock is given by the following process:

d𝑆𝑡
𝑆𝑡

=

(
𝜇𝑆 + 𝛽𝐿𝑡 +

1
2
𝛽2𝐿2

𝑡 + 𝜌1𝜎𝑆𝛽𝐿𝑡

)
d𝑡 + 𝜎𝑆 d𝑊𝑆

𝑡 + 𝛽𝐿𝑡 d𝑊𝛾
𝑡 . (2.11)

From the above equation, it is easy to see that market liquidity measure 𝐿𝑡 affects the return and the
volatility of the stock simultaneously under the physical probability measure 𝑃.

3. Options pricing

This section presents the procedures to derive the prices of vanilla European options and vulnerable
European options when the underlying assets are not perfectly liquid.

3.1. Pricing of vanilla European options with liquidity risk

To price options, we need to determine an equivalent martingale measure. Bingham and Kiesel [3]
illustrated that all possible martingale measures could be characterized by their Girsanov identities. Here,
we select a suitable equivalent martingale measure using the following Radon–Nikodym derivative:

d𝑄
d𝑃

����
F𝑡

= exp
{
−

∫ 𝑡

0
𝜆𝑆𝑠 d𝑊𝑆

𝑠 −

∫ 𝑡

0
𝜆𝛾𝑠 d𝑊𝛾

𝑠 −
1
2

∫ 𝑡

0
(𝜆𝑆𝑠 )

2 d𝑠 −
1
2

∫ 𝑡

0
(𝜆𝛾𝑠 )

2 d𝑠 − 𝜌1

∫ 𝑡

0
𝜆𝑆𝑠𝜆

𝛾
𝑠 d𝑠

}
,

(3.1)
where 𝜆𝑆𝑡 and 𝜆𝛾𝑡 satisfy

𝜆𝑆𝑡 (𝜌1𝛽𝐿𝑡 + 𝜎𝑆) + 𝜆
𝛾
𝑡 (𝛽𝐿𝑡 + 𝜌1𝜎𝑆) = 𝜇𝑆 + 𝛽𝐿𝑡 +

1
2 𝛽

2𝐿2
𝑡 + 𝜌1𝜎𝑆𝛽𝐿𝑡 − 𝑟, (3.2)

with 𝑟 being a constant risk-free interest rate. Using Girsanov’s theorem, the three-dimensional process
{𝑊𝑄

𝑡 = (𝑊𝑄,𝐿
𝑡 , 𝑊

𝑄,𝛾
𝑡 , 𝑊𝑄,𝑆

𝑡 ); 0 ≤ 𝑡 < ∞} defined by

d𝑊𝑄,𝐿
𝑡 = d𝑊𝐿

𝑡 + 𝜌2𝜆
𝑆
𝑡 d𝑡 + 𝜌3𝜆

𝛾
𝑡 d𝑡,

d𝑊𝑄,𝛾
𝑡 = d𝑊𝛾

𝑡 + 𝜆
𝛾
𝑡 d𝑡 + 𝜌1𝜆

𝑆
𝑡 d𝑡,

d𝑊𝑄,𝑆
𝑡 = d𝑊𝑆

𝑡 + 𝜆𝑆𝑡 d𝑡 + 𝜌2𝜆
𝛾
𝑡 d𝑡,

(3.3)

is a standard Brownian motion under 𝑄, and it has the same correlation structure as that under the
physical probability measure 𝑃. Furthermore, the stock price dynamics under 𝑄 can be written as

d𝑆𝑡
𝑆𝑡

= 𝑟 d𝑡 + 𝛽𝐿𝑡 d𝑊𝑄,𝛾
𝑡 + 𝜎𝑆 d𝑊𝑄,𝑆

𝑡 , (3.4)
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with
d𝐿𝑡 = (𝜅𝐿𝜃𝐿 − 𝜅𝐿𝐿𝑡 − 𝜎𝐿𝜌2𝜆

𝑆
𝑡 − 𝜎𝐿𝜌3𝜆

𝛾
𝑡 ) d𝑡 + 𝜎𝐿 d𝑊𝑄,𝐿

𝑡 . (3.5)

According to the expression of d𝑊𝑄,𝐿
𝑡 in (3.3), the market liquidity risk premium is 𝜌2𝜆

𝑆
𝑡 + 𝜌3𝜆

𝛾
𝑡 .

Following the idea of Heston [12] as the means of achieving tractability, we assume that the liquidity
risk premium is proportional to the level of market liquidity, that is,

𝜌2𝜆
𝑆
𝑡 + 𝜌3𝜆

𝛾
𝑡 =

𝜉𝐿𝑡
𝜎𝐿

, (3.6)

where 𝜉 is a constant. In other words, the measure change adjusts the drift of the market liquidity
measure 𝐿𝑡 by the term 𝜉𝐿𝑡/𝜎𝐿 (also see [10]). Thus, we can rewrite the dynamics of the market
liquidity measure under 𝑄,

d𝐿𝑡 = 𝜅(𝜃 − 𝐿𝑡 ) d𝑡 + 𝜎𝐿 d𝑊𝑄,𝐿
𝑡 , (3.7)

where 𝜅 := 𝜅𝐿 + 𝜉 and 𝜃 := 𝜅𝐿𝜃𝐿/(𝜅𝐿 + 𝜉).
To facilitate our analysis of the stock price, under the equivalent martingale measure 𝑄, we intend to

rewrite Brownian motion 𝑊𝑄
𝑡 = (𝑊𝑄,𝐿

𝑡 ,𝑊𝑄,𝛾
𝑡 ,𝑊𝑄,𝑆

𝑡 ) as a linear transformation of a three-dimensional
standard Brownian motion. First, denote the correlation matrix of 𝑊𝑄

𝑡 by Λ, which is given by

Λ =
��

1 𝜌3 𝜌2
𝜌3 1 𝜌1
𝜌2 𝜌1 1

��� .
Applying the Cholesky decomposition, we can decompose Λ into the product of a lower triangular
matrix 𝐴 and its conjugate transpose, where

𝐴 =
����

1 0 0
𝜌3

√
1 − 𝜌2

3 0

𝜌2 𝜁
√

1 − 𝜌2
2 − 𝜁2

����� ,
and 𝜁 = (𝜌1 − 𝜌2𝜌3)/

√
1 − 𝜌2

3. Then, one obtains that

𝑊𝑄,𝐿
𝑡 = 𝑊𝑄

1,𝑡 ,

𝑊𝑄,𝛾
𝑡 = 𝜌3𝑊

𝑄
1,𝑡 +

√
1 − 𝜌2

3𝑊
𝑄
2,𝑡 ,

𝑊𝑄,𝑆
𝑡 = 𝜌2𝑊

𝑄
1,𝑡 + 𝜁𝑊𝑄

2,𝑡 +

√
1 − 𝜌2

2 − 𝜁2𝑊𝑄
3,𝑡 ,

(3.8)

and𝑊𝑄
1,𝑡 ,𝑊

𝑄
2,𝑡 and𝑊𝑄

3,𝑡 are independent standard Brownian motions under 𝑄. Therefore, the stock price
can be rewritten as:

d𝑆𝑡
𝑆𝑡

= 𝑟 d𝑡 + (𝜌2𝜎𝑆 + 𝜌3𝛽𝐿𝑡 ) d𝑊𝑄
1,𝑡

+ (𝜁𝜎𝑆 +
√

1 − 𝜌2
3𝛽𝐿𝑡 ) d𝑊𝑄

2,𝑡 +

√
1 − 𝜌2

2 − 𝜁2𝜎𝑆 d𝑊𝑄
3,𝑡 , (3.9)

with the market liquidity measure 𝐿𝑡 given below,

d𝐿𝑡 = 𝜅(𝜃 − 𝐿𝑡 ) d𝑡 + 𝜎𝐿 d𝑊𝑄
1,𝑡 . (3.10)

Obviously, {𝑆𝑡 , 𝑡 ≥ 0} is a martingale after discounted by the risk-free cash account under 𝑄.
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Now, we are ready to derive the price of vanilla European options. At time 𝑡 = 0, the price of a
European call option with maturity 𝑇 and strike price 𝐾 is given by

𝐶0 = 𝑒−𝑟𝑇 𝐸𝑄 [max(𝑆𝑇 − 𝐾, 0)]
= 𝑒−𝑟𝑇 𝐸𝑄 [(𝑆𝑇 − 𝐾)𝐼{𝑆𝑇 >𝐾 }]

= 𝑒−𝑟𝑇 𝐸𝑄 [𝑆𝑇 𝐼{ln 𝑆𝑇 >ln𝐾 }] − 𝐾𝑒−𝑟𝑇𝑄(ln 𝑆𝑇 > ln𝐾), (3.11)

where 𝐼{·} is the indicator function. To calculate𝐶0, we use the characteristic function of ln(𝑆𝑇 ) defined
by 𝑓1(𝜙) := 𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 ] for any complex number 𝜙. Using the Fourier inversion formula and following
[27], we can obtain the explicit expressions of the two components in (3.11) as follows:

𝐼1 := 𝐸𝑄 [𝑆𝑇 𝐼{ln 𝑆𝑇 >ln𝐾 }]

=
1
2
𝑓1(1) +

1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓1(𝑖𝜙 + 1)

𝑖𝜙

]
d𝜙, (3.12)

and

𝐼2 := 𝑄(ln 𝑆𝑇 > ln𝐾)

=
1
2
+

1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓1(𝑖𝜙)

𝑖𝜙

]
d𝜙. (3.13)

Additionally, the explicit expression of the characteristic function 𝑓1(𝜙) := 𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 ] will be given
as a special case in the following subsection.

3.2. Pricing of vulnerable European options with liquidity risk

In this subsection, we incorporate default risk of option issuers into the pricing model. Here, we describe
default risk in a reduced-form model, and work under the equivalent martingale measure 𝑄 directly for
valuation purposes.1 Assume that the underlying asset price is driven by (3.9), and let 𝜏 be the default
time modeled by the first jump time of a doubly stochastic Poisson process with the following intensity
process:

𝜆𝑡 = 𝜂0 + 𝜂1𝐿𝑡 + 𝜂2𝐿
2
𝑡 + 𝑋𝑡 . (3.14)

And 𝑋𝑡 is captured by a mean-reverting square root process,

d𝑋𝑡 = (𝛾𝑋 − 𝛼𝑋𝑋𝑡 ) d𝑡 + 𝜎𝑋
√
𝑋𝑡 d𝐵𝑄𝑡 , (3.15)

with 𝑋0 > 0 and 𝐵𝑄𝑡 being a standard Brownian motion under 𝑄, independent of 𝑊𝑄
1,𝑡 , 𝑊

𝑄
2,𝑡 and 𝑊𝑄

3,𝑡 .
To ensure that 𝜆𝑡 is nonnegative, we need to pose the assumptions on the parameters that 𝜂2 > 0
and 4𝜂0𝜂2 ≥ 𝜂2

1. There are two remarks on the assumption of the intensity process. First, the default
intensity (3.14) consists of two parts: market liquidity 𝐿𝑡 and idiosyncratic risk 𝑋𝑡 , and market liquidity
is a common factor to default intensity processes and all stocks in the market. Second, we propose a
general form of the intensity process, which could also allow us to achieve tractability. Specially, with
𝜂1 = 0, the model could capture negative effects between market liquidity (|𝐿𝑡 |) and default risk (𝜆𝑡 ).
We refer interested readers to Brogaard et al. [5] and Nadarajah et al. [23] for this negative effect.

Now we are ready to price vulnerable European options. Let �̄� be the recovery rate, and then the
vulnerable option price is given by

𝐷0 = 𝑒−𝑟𝑇 𝐸𝑄 [𝐼{𝜏>𝑇 } (𝑆𝑇 − 𝐾)+] + �̄�𝑒−𝑟𝑇 𝐸𝑄 [𝐼{0<𝜏≤𝑇 } (𝑆𝑇 − 𝐾)+] . (3.16)

1Alternatively, we can first assume the intensity process under physical measure P and then follow Duffie [9] and Wang et al. [31] to find one
martingale measure by assuming a risk premium for uncertainty associated with the timing of the default (see [9] or Section 2.1 in [31]).
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In the proposed pricing model, we can derive the semi-closed form of the vulnerable option price 𝐷0.
To this end, we define the Fourier transform of (ln(𝑆𝑇 ),

∫ 𝑇
0 𝜆𝑠 d𝑠), denoted by 𝑓 (𝜙, 𝜓),

𝑓 (𝜙, 𝜓) = 𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 +𝜓
∫ 𝑇

0 𝜆𝑠 d𝑠], (3.17)

where 𝜙 and 𝜓 are complex numbers. Because {𝑋𝑡 , 𝑡 ≥ 0} is independent of the other processes, we
obtain that

𝑓 (𝜙, 𝜓) = 𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 +𝜓
∫ 𝑇

0 (𝜂0+𝜂1𝐿𝑠+𝜂2𝐿
2
𝑠) d𝑠] × 𝐸𝑄 [𝑒𝜓

∫ 𝑇

0 𝑋𝑠 d𝑠]

:= 𝑓𝑆𝐿 (𝜙, 𝜓) × 𝑓𝑋 (𝜓), (3.18)

where 𝑓𝑆𝐿 (𝜙, 𝜓) = 𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 +𝜓
∫ 𝑇

0 (𝜂0+𝜂1𝐿𝑠+𝜂2𝐿
2
𝑠) d𝑠] and 𝑓𝑋 (𝜓) = 𝐸𝑄 [𝑒𝜓

∫ 𝑇

0 𝑋𝑠 d𝑠]. In addition, the
closed-form expressions of 𝑓𝑋 (𝜓) and 𝑓𝑆𝐿 (𝜙, 𝜓) are shown in the following proposition.

Proposition 3.1. Let 𝜇1 (𝜓) =
√
𝛼2
𝑋 − 2𝜓𝜎2

𝑋 and 𝜇2(𝜓) = (𝛼𝑋 + 𝜇1(𝜓))/(𝛼𝑋 − 𝜇1(𝜓)). The closed-
form expressions of 𝑓𝑋 (𝜓) and 𝑓𝑆𝐿 (𝜙, 𝜓) are given by

𝑓𝑋 (𝜓) = exp

{
(𝛼𝑋 + 𝜇1(𝜓))(1 − 𝑒𝜇1 (𝜓)𝑇 )

𝜎2
𝑋 (1 − 𝜇2(𝜓)𝑒𝜇1 (𝜓)𝑇 )

𝑋0

+
𝜇1(𝜓)

𝜎2
𝑋

(
(𝛼𝑋 + 𝜇1(𝜓))𝑇 − 2 ln

(
1 − 𝜇2 (𝜓)𝑒

𝜇1 (𝜓)𝑇

1 − 𝜇2(𝜓)

))}
, (3.19)

and
𝑓𝑆𝐿 (𝜙, 𝜓) = exp{𝜙𝑌0 +

1
2 𝐴1(0, 𝑇)𝐿2

0 + 𝐴2(0, 𝑇)𝐿0 + 𝐴3(0, 𝑇)}, (3.20)

where

𝑌0 = ln 𝑆0 +

(
𝑟 −

1
2
𝜎2
𝑆 −

𝜅𝜃𝜌2𝜎𝑆
𝜎𝐿

−
𝜎𝐿𝜌3𝛽

2
+

1
2
𝜙𝜎2

𝑆 (1 − 𝜌2
2) +

𝜓𝜂0

𝜙

)
𝑇 −

𝜌3𝛽

2𝜎𝐿
𝐿2

0 −
𝜌2𝜎𝑆
𝜎𝐿

𝐿0,

and 𝐴1(0, 𝑇), 𝐴2(0, 𝑇) and 𝐴3(0, 𝑇) are given by (A.10)–(A.12) in the Appendix.

Proof. See the Appendix. �

Note that when 𝜓 = 0, 𝑓 (𝜙, 0) is the characteristic function of ln(𝑆𝑇 ), that is, 𝑓 (𝜙, 0) = 𝑓1(𝜙) :=
𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 ]. Using the Fourier inversion formula and the characteristic functions, we can derive the
price of vulnerable options and the results are given in the following proposition.

Proposition 3.2. Under the risk-neutral martingale measure𝑄, the time-𝑡 price of vulnerable European
call options with liquidity risk can be calculated as follows:

𝐷0 = (1 − �̄�)𝑒−𝑟𝑇 (𝐼3 − 𝐾𝐼4) + �̄�𝐶0, (3.21)

where 𝐶0 is given in (3.11), and

𝐼3 =
1
2
𝑓 (1,−1) +

1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 (𝑖𝜙 + 1,−1)

𝑖𝜙

]
d𝜙, (3.22)

𝐼4 =
1
2
𝑓 (0,−1) +

1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 (𝑖𝜙,−1)

𝑖𝜙

]
d𝜙. (3.23)
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Proof. It can be easily seen that 𝐷0 in (3.16) can be rewritten as

𝐷0 = (1 − �̄�)𝑒−𝑟𝑇 (𝐼3 − 𝐾𝐼4) + �̄�𝐶0,

where 𝐶0 is the price of vanilla European options with liquidity risk given in (3.11), and

𝐼3 := 𝐸𝑄 [𝑆𝑇 𝐼{𝜏>𝑇 , 𝑆𝑇 ≥𝐾 }],

𝐼4 := 𝐸𝑄 [𝐼{𝜏>𝑇 , 𝑆𝑇 ≥𝐾 }] .

Employing the inverse Fourier transform, we can obtain the following expressions of 𝐼3 and 𝐼4:

𝐼3 =
1
2
𝑓 (1,−1) +

1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 (𝑖𝜙 + 1,−1)

𝑖𝜙

]
d𝜙,

𝐼4 =
1
2
𝑓 (0,−1) +

1
𝜋

∫ ∞

0
Re

[
𝐾−𝑖𝜙 𝑓 (𝑖𝜙,−1)

𝑖𝜙

]
d𝜙.

This completes the proof of Proposition 3.2. �

4. Numerical analysis

In this section, we illustrate the effect of market liquidity risk on the prices of (vulnerable) European
options. To show the results explicitly, we mainly illustrate prices of call options in three situations: the
proposed framework with both liquidity risk and default risk, the case without liquidity risk (i.e., 𝛽 = 0),
and the case without default risk (i.e., �̄� = 1).

Following Pasricha et al. [25], we use the following parameter values: 𝜎𝑆 = 0.2, 𝜎𝐿 = 0.9, 𝜌1 = 0.25,
𝜌2 = 0.35, 𝜌3 = 0, 𝜅 = 0.3, 𝜃 = 0.2 and 𝛽 = 0.5. Theoretically, the less liquidity the financial market
holds, the more likely option issuers are to default. As a result, the assumption that the parameters in
(3.14) are positive is reasonable. We find that when setting 𝜂0 = 0.02, 𝜂1 = 0.02 and 𝜂2 = 0.02, the
default probability in 2 years is approximately 7.34%. Additionally, �̄� = 0.6 means that 60% of the
loss can be recovered after default, which is a conservative value. Without loss of generality, we set
the interest rate 𝑟 = 0.01, 𝑆0 = 100, 𝐿0 = 0.3, and the option is at the money (𝑆0 = 𝐾 = 100) with a
maturity of 2.0 years.

First, we focus on the effect of stochastic liquidity risk on the prices of both vanilla and vulnerable
call options. From Figure 1, we can intuitively find that call option prices decrease with higher strike
prices. To go further, it can also be found that by comparing the distance between the two lines, both
the liquidity risk and default risk have small effects on in-the-money options. In contrast, with the
augmentation of strike prices, the impact of liquidity risk always remains pronounced, while the impact
of default risk becomes relatively more negligible, and these observations are consistent with Wang
[29]. The large price discrepancies suggest that when pricing options, option issuers should take market
liquidity into consideration. In addition, option buyers should be clear about the credit status of each
issuer with the help of credit rating agencies or other possible channels and only accept reasonable
prices that include default risk premiums.

Figure 2 displays the relationship between call option prices and the values of the sensitivity level
of the stock to market illiquidity. Undoubtedly, option prices in the pricing model without liquidity risk
are not affected by the changes of 𝛽, hence, we obtain a constant number in this case. Regarding the
other two cases, call option prices rise when the stock becomes more sensitive to market illiquidity.
Comparing the distance between two lines, the effect of default risk on the prices becomes relatively
evident with a larger 𝛽. It should be noted that the values of 𝛽 affect the total volatility of the underlying
stock.

Figure 3 illustrates call option prices with different volatilities of the underlying stock. A higher
volatility corresponds to a higher option price. We can observe two different trends from this graph:
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Figure 1. Call option prices against strike prices. The solid, dashed and dotted lines correspond to
prices in the proposed framework, prices without liquidity risk (𝛽 = 0) and prices without default risk
(�̄� = 1), respectively.

Figure 2. Call option prices against the values of the sensitivity level of the stock to the market
illiquidity. The solid, dashed and dotted lines correspond to prices in the proposed framework, prices
without liquidity risk (𝛽 = 0) and prices without default risk (�̄� = 1), respectively.

with an increasing volatility of the underlying stock, the dotted line and the solid line tend to be farther
away from each other, while the solid line and the dashed line get closer to each other, showing the
strengthening effect of default risk and the weakening impact of liquidity risk. This is because the
instantaneous total variance of the underlying stock is 𝜎2

𝑆 + 𝛽
2𝐿2

𝑡 + 2𝜌1𝜎𝑆𝛽𝐿𝑡 , and the effect of liquidity
risk is not so significant with a bigger 𝜎𝑆 . We need to mention that in the real world, the probability of
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Figure 3. Call option prices against volatilities of the underlying stock. The solid, dashed and dotted
lines correspond to prices in the proposed framework, prices without liquidity risk (𝛽 = 0) and prices
without default risk (�̄� = 1), respectively.

Figure 4. Call option prices against volatilities of the stock market liquidity. The solid, dashed and
dotted lines correspond to prices in the proposed framework, prices without liquidity risk (𝛽 = 0) and
prices without default risk (�̄� = 1), respectively.

stock prices fluctuating fiercely in a short period is relatively low. As a result, we shall focus more on
call option prices with smaller 𝜎𝑆 , and pay more attention to the influence of the stochastic liquidity
risk.

Figure 4 depicts call option prices with different volatilities of market liquidity risk itself. Evidently,
we obtain a horizontal line without liquidity risk. In regard to the dotted line and the solid one, a larger
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Figure 5. Call option prices against 𝜌3. The solid and dotted lines correspond to prices in the proposed
framework and prices without default risk (�̄� = 1), respectively.

Figure 6. Call option prices against 𝜂1. The solid and dotted lines correspond to prices in the proposed
framework and prices without default risk (�̄� = 1), respectively.

𝜎𝐿 induces a correspondingly higher option price. Observing the differences between the solid and
dashed lines, we find that the effect of liquidity risk is enhanced as the values of 𝜎𝐿 rise. Based on
the bid-ask spread, market liquidity can be captured even though it is an invisible variable (see, e.g.,
[1,8]). Therefore, investors could easily estimate the value of 𝜎𝐿 and eventually trade options around a
reasonable price using the model developed in this paper.

Figure 5 illustrates call option prices with respect to the correlation coefficients between the liquidity
measure 𝐿𝑡 and the liquidity discount factor 𝛾𝑡 . When 𝜌3 is negative, call option prices increase with
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Figure 7. Call option prices against 𝜂2. The solid and dotted lines correspond to prices in the proposed
framework and prices without default risk (�̄� = 1), respectively.

Figure 8. Default probabilities against 𝜂1. The solid line corresponds to default probabilities in the
proposed framework.

the correlation coefficients approaching to zero. In contrast, in the case of 𝜌3 > 0, the marginal rise of
call option prices decreases and even becomes negative when 𝜌3 is large enough. In addition, the effect
of default risk on option prices is much more pronounced when 𝜌3 takes a larger value.

Figure 6 shows call option prices against 𝜂1, displaying a U-shaped curve in the proposed model. 𝜂1
is the coefficient of the first-order term in the intensity process 𝜆𝑡 . Call option prices first decrease and
then increase as 𝜂1 increases. Comparing the distance between two lines, we can easily find that the
effect of default risk is evident when 𝜂1 is small and the effect reaches the maximum under a certain
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Figure 9. Default probabilities against 𝜂2. The solid line corresponds to default probabilities in the
proposed framework.

𝜂1. This is because the corresponding default probabilities first increase and then decrease as shown in
Figure 8. Figure 7 shows call option prices with respect to 𝜂2. 𝜂2 is the coefficient of the second-order
term in the intensity process 𝜆𝑡 . Since 𝐿2

𝑡 is always positive, default probabilities increase and then
vulnerable call option prices drop with an increase of 𝜂2, which can also be verified in Figure 9.

5. Conclusion

In this paper, we contribute to the literature on vulnerable European options by taking the possibility
of default risk caused by the counterparty and market liquidity risk into consideration. A general
correlation structure among the underlying asset, the liquidity discount factor and the default intensity
process is specified. Utilizing the characteristic function and the Feynman–Kac theorem, we obtain the
semi-closed form pricing formulae of vulnerable European options with market liquidity risk. Finally,
numerical experiments are performed to illustrate the effects of liquidity risk and default risk on the
prices of vulnerable European options.
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Appendix

Here, we derive the expressions of 𝑓𝑋 (𝜓) and 𝑓𝑆𝐿 (𝜙, 𝜓). First, using the dynamics of 𝑋𝑡 in (3.15), we
can derive the expression of 𝑓𝑋 (𝜓) easily,

𝑓𝑋 (𝜓) = 𝐸𝑄 [𝑒𝜓
∫ 𝑇

0 𝑋𝑠d𝑠] = exp

{
(𝛼𝑋 + 𝜇1(𝜓))(1 − 𝑒𝜇1 (𝜓)𝑇 )

𝜎2
𝑋 (1 − 𝜇2(𝜓)𝑒𝜇1 (𝜓)𝑇 )

𝑋0

+
𝜇1(𝜓)

𝜎2
𝑋

(
(𝛼𝑋 + 𝜇1(𝜓))𝑇 − 2 ln

(
1 − 𝜇2 (𝜓)𝑒

𝜇1 (𝜓)𝑇

1 − 𝜇2(𝜓)

))}
, (A.1)

78 Y. Pan et al.

https://doi.org/10.1017/S026996482200050X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482200050X


where 𝜇1 (𝜓) =
√
𝛼2
𝑋 − 2𝜓𝜎2

𝑋 and 𝜇2(𝜓) = (𝛼𝑋 + 𝜇1 (𝜓))/(𝛼𝑋 − 𝜇1 (𝜓)).
Next, we turn to the calculation of 𝑓𝑆𝐿 (𝜙, 𝜓). Note that

ln 𝑆𝑇 = ln 𝑆0 +

(
𝑟 −

1
2
𝜎2
𝑆

)
𝑇 +

∫ 𝑇

0
(𝜌2𝜎𝑆 + 𝜌3𝛽𝐿𝑠) d𝑊𝑄

1,𝑠

+

∫ 𝑇

0
(𝜁𝜎𝑆 + 𝛽

√
1 − 𝜌2

3𝐿𝑠) d𝑊𝑄
2,𝑠

+ 𝜎𝑆

√
1 − 𝜌2

2 − 𝜁2𝑊𝑄
3,𝑇 −

1
2
𝛽2

∫ 𝑇

0
𝐿2
𝑠 d𝑠 − 𝜌1𝛽𝜎𝑆

∫ 𝑇

0
𝐿𝑠 d𝑠. (A.2)

From the dynamics of 𝐿𝑡 in (2.7), we apply Itô’s lemma to 𝐿2
𝑡 +(2𝜌2𝜎𝑆/𝜌3𝛽)𝐿𝑡 , and obtain the following

result,

d
(
𝐿2
𝑡 +

2𝜌2𝜎𝑆
𝜌3𝛽

𝐿𝑡

)
= 2

(
𝐿𝑡 +

𝜌2𝜎𝑆
𝜌3𝛽

)
d𝐿𝑡 + 𝜎2

𝐿 d𝑡

=

(
2𝜅(𝜃 − 𝐿𝑡 )

(
𝐿𝑡 +

𝜌2𝜎𝑆
𝜌3𝛽

)
+ 𝜎2

𝐿

)
d𝑡 + 2𝜎𝐿

(
𝐿𝑡 +

𝜌2𝜎𝑆
𝜌3𝛽

)
d𝑊𝑄

1,𝑡 , (A.3)

which in turn implies that∫ 𝑇

0

(
𝐿𝑠 +

𝜌2𝜎𝑆
𝜌3𝛽

)
d𝑊𝑄

1,𝑠 = −
1

2𝜎𝐿
𝐿2

0 −
𝜌2𝜎𝑆
𝜎𝐿𝜌3𝛽

𝐿0 −

(
𝜅𝜃𝜌2𝜎𝑆
𝜎𝐿𝜌3𝛽

+
𝜎𝐿
2

)
𝑇

+
1

2𝜎𝐿
𝐿2
𝑇 +

𝜌2𝜎𝑆
𝜎𝐿𝜌3𝛽

𝐿𝑇 −
𝜅

𝜎𝐿

(
𝜃 −

𝜌2𝜎𝑆
𝜌3𝛽

) ∫ 𝑇

0
𝐿𝑠 d𝑠 +

𝜅

𝜎𝐿

∫ 𝑇

0
𝐿2
𝑠 d𝑠.

(A.4)

Therefore, one can get that

𝑓𝑆𝐿 (𝜙, 𝜓) = 𝐸𝑄 [𝑒𝜙 ln 𝑆𝑇 +𝜓
∫ 𝑇

0 (𝜂0+𝜂1𝐿𝑠+𝜂2𝐿
2
𝑠) d𝑠]

= exp
{
𝜙

(
ln 𝑆0 +

(
𝑟 −

1
2
𝜎2
𝑆

)
𝑇

)}
𝐸𝑄

[
exp

{
𝜙

(∫ 𝑇

0
(𝜌2𝜎𝑆 + 𝜌3𝛽𝐿𝑠) d𝑊𝑄

1,𝑠

+

∫ 𝑇

0
(𝜁𝜎𝑆 + 𝛽

√
1 − 𝜌2

3𝐿𝑠)d𝑊
𝑄
2,𝑠 + 𝜎𝑆

√
1 − 𝜌2

2 − 𝜁2𝑊𝑄
3,𝑇

−
1
2
𝛽2

∫ 𝑇

0
𝐿2
𝑠 d𝑠 − 𝜌1𝛽𝜎𝑆

∫ 𝑇

0
𝐿𝑠 d𝑠

)
+ 𝜓

∫ 𝑇

0
(𝜂0 + 𝜂1𝐿𝑠 + 𝜂2𝐿

2
𝑠) d𝑠

}]
= exp

{
𝜙

(
ln 𝑆0 +

(
𝑟 −

1
2
𝜎2
𝑆 −

𝜅𝜃𝜌2𝜎𝑆
𝜎𝐿

−
𝜎𝐿𝜌3𝛽

2

)
𝑇 −

𝜌3𝛽

2𝜎𝐿
𝐿2

0 −
𝜌2𝜎𝑆
𝜎𝐿

𝐿0

)
+ 𝜓𝜂0𝑇

}
× 𝐸𝑄

[
exp

{
𝜙

(
𝜌3𝛽

2𝜎𝐿
𝐿2
𝑇 +

𝜌2𝜎𝑆
𝜎𝐿

𝐿𝑇 −
𝜅

𝜎𝐿
(𝜃𝜌3𝛽 − 𝜌2𝜎𝑆)

∫ 𝑇

0
𝐿𝑠 d𝑠 +

𝜅𝜌3𝛽

𝜎𝐿

∫ 𝑇

0
𝐿2
𝑠 d𝑠

)
+

1
2
𝜙2𝜁2𝜎2

𝑆𝑇 + 𝜙2𝜁𝜎𝑆𝛽
√

1 − 𝜌2
3

∫ 𝑇

0
𝐿𝑠d𝑠

+
1
2
𝜙2𝛽2(1 − 𝜌2

3)

∫ 𝑇

0
𝐿2
𝑠d𝑠 +

1
2
𝜙2𝜎2

𝑆 (1 − 𝜌2
2 − 𝜁2)𝑇

−
1
2
𝜙𝛽2

∫ 𝑇

0
𝐿2
𝑠 d𝑡 − 𝜙𝜌1𝛽𝜎𝑆

∫ 𝑇

0
𝐿𝑠 d𝑠 + 𝜓𝜂1

∫ 𝑇

0
𝐿𝑠d𝑠 + 𝜓𝜂2

∫ 𝑇

0
𝐿2
𝑠 d𝑠

}]

79Probability in the Engineering and Informational Sciences

https://doi.org/10.1017/S026996482200050X Published online by Cambridge University Press

https://doi.org/10.1017/S026996482200050X


= exp
{
𝜙

(
ln 𝑆0 +

(
𝑟 −

1
2
𝜎2
𝑆 −

𝜅𝜃𝜌2𝜎𝑆
𝜎𝐿

−
𝜎𝐿𝜌3𝛽

2
+

1
2
𝜙𝜎2

𝑆 (1 − 𝜌2
2) +

𝜓𝜂0

𝜙

)
𝑇

−
𝜌3𝛽

2𝜎𝐿
𝐿2

0 −
𝜌2𝜎𝑆
𝜎𝐿

𝐿0

)}
× 𝐸𝑄

[
exp

{
𝜙𝜌3𝛽

2𝜎𝐿
𝐿2
𝑇 +

𝜙𝜌2𝜎𝑆
𝜎𝐿

𝐿𝑇

+

(
𝜙2𝜁𝜎𝑆𝛽

√
1 − 𝜌2

3 −
𝜙𝜅

𝜎𝐿
(𝜃𝜌3𝛽 − 𝜌2𝜎𝑆) − 𝜙𝜌1𝛽𝜎𝑆 + 𝜓𝜂1

) ∫ 𝑇

0
𝐿𝑠 d𝑠

+

(
𝜙𝜅𝜌3𝛽

𝜎𝐿
+

1
2
𝜙2𝛽2(1 − 𝜌2

3) −
1
2
𝜙𝛽2 + 𝜓𝜂2

) ∫ 𝑇

0
𝐿2
𝑠 d𝑠

}]
. (A.5)

To obtain the expression of the expectation in the above equation, we denote

𝑃(𝐿, 𝑡, 𝑇) = 𝐸𝑄
[
exp

{
−𝜔1

∫ 𝑇

𝑡

𝐿2
𝑠 d𝑠 − 𝜔2

∫ 𝑇

𝑡

𝐿𝑠 d𝑠 + 𝜔3𝐿
2
𝑇 + 𝜔4𝐿𝑇

} ����F𝑡 ] , (A.6)

with terminal conditions 𝑃(𝐿, 𝑇, 𝑇) = 𝑒𝜔3𝐿
2
𝑇 +𝜔4𝐿𝑇 . Then, the expectation in (A.5) equals 𝑃(𝐿, 0, 𝑇)

with 𝜔1 = −𝜙𝜅𝜌3𝛽/𝜎𝐿 − 1
2𝜙

2𝛽2 (1 − 𝜌2
3) +

1
2𝜙𝛽

2 − 𝜓𝜂2, 𝜔2 = −𝜙2𝜁𝜎𝑆𝛽
√

1 − 𝜌2
3 + (𝜙𝜅/𝜎𝐿)(𝜃𝜌3𝛽 −

𝜌2𝜎𝑆) + 𝜙𝜌1𝛽𝜎𝑆 − 𝜓𝜂1, 𝜔3 = 𝜙𝜌3𝛽/2𝜎𝐿 and 𝜔4 = 𝜙𝜌2𝜎𝑆/𝜎𝐿 .
According to the Feynman–Kac theorem, for 0 ≤ 𝑡 < 𝑇 , 𝑃(𝐿, 𝑡, 𝑇) satisfies the following partial

differential equation:

𝜕𝑃

𝜕𝑡
+
𝜕𝑃

𝜕𝐿
𝜅(𝜃 − 𝐿𝑡 ) +

1
2
𝜕2𝑃

𝜕𝐿2 𝜎
2
𝐿 − (𝜔1𝐿

2
𝑡 + 𝜔2𝐿𝑡 )𝑃 = 0. (A.7)

The solution of 𝑃(𝐿, 𝑡, 𝑇) has the following form:

𝑃(𝐿, 𝑡, 𝑇) = exp{ 1
2 𝐴1(𝑡, 𝑇)𝐿

2
𝑡 + 𝐴2(𝑡, 𝑇)𝐿𝑡 + 𝐴3(𝑡, 𝑇)}, (A.8)

with terminal conditions 𝐴1(𝑇,𝑇) = 2𝜔3, 𝐴2(𝑇, 𝑇) = 𝜔4 and 𝐴3(𝑇, 𝑇) = 0. Specifically, the system of
ordinary differential equations is given below:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d𝐴1

d𝑡
+ 𝜎2

𝐿𝐴
2
1 − 2𝜅𝐴1 − 2𝜔1 = 0,

d𝐴2

d𝑡
− (𝜅 − 𝜎2

𝐿𝐴1)𝐴2 + 𝜅𝜃𝐴1 − 𝜔2 = 0,
d𝐴3

d𝑡
+

1
2
𝜎2
𝐿𝐴

2
2 + 𝜅𝜃𝐴2 +

1
2
𝜎2
𝐿𝐴1 = 0.

(A.9)

Additionally, we can obtain the solutions as follows:

𝐴1(𝑡, 𝑇) =
1
𝜎2
𝐿

(
𝜅 − 𝛿1

sinh(𝛿1(𝑇 − 𝑡)) + 𝛿2 cosh(𝛿1(𝑇 − 𝑡))

cosh(𝛿1(𝑇 − 𝑡) + 𝛿2 sinh(𝛿1(𝑇 − 𝑡))

)
, (A.10)

𝐴2(𝑡, 𝑇) =
1

𝜎2
𝐿𝛿1

(
(𝜅𝜃 + 𝜎2

𝐿𝜔4)𝛿1 − 𝛿2𝛿3

cosh(𝛿1(𝑇 − 𝑡)) + sinh(𝛿1 (𝑇 − 𝑡))
− 𝜅𝜃𝛿1

)
+

𝛿3

𝜎2
𝐿𝛿1

(
sinh(𝛿1 (𝑇 − 𝑡)) + 𝛿2 cosh(𝛿1 (𝑇 − 𝑡))

cosh(𝛿1(𝑇 − 𝑡)) + 𝛿2 sinh(𝛿1 (𝑇 − 𝑡))

)
, (A.11)
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and

𝐴3(𝑡, 𝑇) = −
1
2

ln(cosh(𝛿1(𝑇 − 𝑡)) + 𝛿2 sinh(𝛿1(𝑇 − 𝑡))) +

(
1
2
𝜅 +

1
2
𝜎2
𝐿𝜔

2
4 + 𝜅𝜃𝜔4

)
(𝑇 − 𝑡)

+
(𝜅𝜃 + 𝜎2

𝐿𝜔4)
2𝛿2

1 − 𝛿2
3

2𝜎2
𝐿𝛿

3
1

(
sinh(𝛿1 (𝑇 − 𝑡))

cosh(𝛿1 (𝑇 − 𝑡)) + 𝛿2 sinh(𝛿1(𝑇 − 𝑡))
− 𝛿1(𝑇 − 𝑡)

)
+
((𝜅𝜃 + 𝜎2

𝐿𝜔4)𝛿1 − 𝛿2𝛿3)𝛿3

𝜎2
𝐿𝛿

3
1

(
cosh(𝛿1 (𝑇 − 𝑡)) − 1

cosh(𝛿1 (𝑇 − 𝑡)) + 𝛿2 sinh(𝛿1(𝑇 − 𝑡))

)
, (A.12)

where 𝛿1 =
√

2𝜎2
𝐿𝜔1 + 𝜅2, 𝛿2 = (1/𝛿1)(𝜅 − 2𝜎2

𝐿𝜔3) and 𝛿3 = 𝜅(𝜅𝜃 + 𝜎2
𝐿𝜔4) − 𝜎2

𝐿 (𝜔2 + 𝜅𝜔4).
Let 𝑌0 = ln 𝑆0 + (𝑟 − 1

2𝜎
2
𝑆 − 𝜅𝜃𝜌2𝜎𝑆/𝜎𝐿 − 𝜎𝐿𝜌3𝛽/2 + 1

2𝜙𝜎
2
𝑆 (1 − 𝜌2

2) + 𝜓𝜂0/𝜙)𝑇 − (𝜌3𝛽/2𝜎𝐿)𝐿2
0 −

(𝜌2𝜎𝑆/𝜎𝐿)𝐿0, and we obtain the following result,

𝑓𝑆𝐿 (𝜙, 𝜓) = exp{𝜙𝑌0 +
1
2 𝐴1(0, 𝑇)𝐿2

0 + 𝐴2(0, 𝑇)𝐿0 + 𝐴3(0, 𝑇)}.
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