
BULL. AUSTRAL. MATH. SOC. 16N80

VOL. 53 (1996) [261-266]

ESSENTIAL COVERS AND COMPLEMENTS OF RADICALS

GARY F. BIRKENMEIER AND RICHARD WIEGANDT

We show that a radical has a semisimple essential cover if and only if it is hereditary
and has a complement in the lattice of hereditary radicals. In 1971 Snider gave
a full description of supernilpotent radicals which have a complement. Recently
Beidar, Fong, Ke, and Shum have determined radicals with semisimple essential
covers. Using their results, we are able to provide a lower radical representation
of complemented subidempotent radicals. This completes Snider's description of
hereditary complemented radicals.

In the context of radical theory the usefulness of the essential cover operator £
has been known from Armendariz [2] and Rjabuhin [8], who showed that a semisimple
class is closed under essential extension if and only if the corresponding radical class is
hereditary. In 1970, Stewart [10] characterised semisimple radical classes in terms of
subdirect sums of a finite set of finite fields. In 1983, Loi [7] showed that a radical class
is semisimple if and only if it is closed under essential extensions (also see Gardner [6]).
The last two results naturally lead one to consider the classification of the essential
covers of radicals in terms of semisimplicity. In 1994, Birkenmeier [4] showed that
the essential cover £p of a supernilpotent radical p is nearly a semisimple class: it
is hereditary, closed under extensions, finite subdirect sums, arbitrary direct sums and
products. Hence Ep only lacks the requirement of being closed under arbitrary subdirect
sums to become a semisimple class. Thus the question arises in [4]: which supernilpotent
classes have semisimple essential covers? Imposing this seemingly mild extra condition
on the essential cover Sp has turned out to be very restrictive: none of the classical
radicals have semisimple essential covers [5]. Recently, Beidar, Fong, Ke, and Shum [3]
have fully described radicals having semisimple essential covers. Their description is
reminiscent of Stewart's characterisation of radical semisimple classes [10].

Working on the same problem we found an alternative solution: radicals whose
essential covers are semisimple classes, are exactly the hereditary radicals which have
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a complement in the lattice of hereditary radicals, and the latter ones have been de-
termined by Snider [9]. However, Snider described explicitly only the complemented
supernilpotent radicals. Thus by our result the lower radical representation of [3]
for subidempotent radicals with semisimple essential cover applies to complemented
subidempotent radicals, supplementing the description of Snider [9].

Rings will be always associative, not necessarily possessing a unity element. A
radical will always mean a Kurosh-Amitsur radical. When the context is clear, we shall
use the words "radical" and "radical class" interchangeably and denote the radical
assignment and the radical class by the same symbol.

As usual, the lower, the upper and the semi-simple operators will be denoted by
C, U, and S, respectively. The essential cover operator E acting on a class C, of rings
is defined by

EC, = {all rings A \ A has an essential ideal I in £}.

The class EC, is called the essential cover of the class C,. If EC, = (,, then the class C, is
said to be closed under essential extensions. If / is an essential ideal in a ring A, then
we shall write I <\ -A.

For the notions and fundamental results of the radical theory the reader is referred
to [11]. However, we list some well-known notions and results we shall frequently use
in the sequel.

ADS-Theorem: For any radical 7, if / <1 A and A is any ring, then 7 (/) <3 A.

A radical class 7 is hereditary (that is, I <\ A £ 7 implies I £ 7) if and only if the
corresponding semisimple class S7 is closed under essential extensions, [2, 8].

Every semisimple class is hereditary.

For hereditary radicals 7 and 6, 7 I") 6 = {0} is equivalent to the condition

f (A) PI 6 (A) = 0 for all rings

For a given radical 7 the radical 7 is said to be the radical supplementing 7, if

7 (A) D 7 (A) = 0 for all rings A and 7 is the largest such radical.

For a hereditary radical 7 the supplementing radical 7 is the largest homomorphi-

cally closed subclass, hS-f, of the semisimple class 57:

hS-y = {A 6 Sj I every homomorphic image of A is in 57} .

(See [1].)

If the radical 7 is supernilpotent (that is, 7 is hereditary and contains all nilpotent
rings) or subidempotent (that is, 7 is hereditary and consists of idempotent rings), then
its supplementing radical 7 is subidempotent or supernilpotent, respectively, and thus
hereditary.
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7 is a dual radical, if 7 = 7 , and in this case (7 ,7) is called a dual pair of radicals

(7 = 7 is always true).

It is customary to talk about the lattice of all (or all hereditary) radicals, although

they do not form a set. In the lattice of radicals the meet A is defined by

•y AS = -yC\S

and the join by
7 V 8 = C (7 U S) = U (S-y n SS).

In particular,
7 V 8 = {all rings} if and only if S-yHSS = {0} .

PROPOSITION 1 . ([5, Lemma 2.1]) Let 7 and 6 he radicals. S-y - S8 if and

only if £8 = S~f. If either one of these conditions are satisfied, then 7 and 6 are
hereditary.

PROPOSITION 2 . ([3, Lemma 0.10]) If 7 is a radical such that £7 is a semisim-

ple class, then 7 is either supernilpotent or subidempotent.

THEOREM 3 . The essential cover £j of a radical 7 is a semisimple class if and
only if 7 is hereditary and has a complement in the lattice of all hereditary radicals.

PROOF: Suppose that £7 is a semisimple class, the semisimple class SS of a radical
6. Then by Proposition 1, 7 is hereditary and so is 8 as well. Hence for every ring A

we have

•y {A) n 8 {A) £ -y n 6 Q £-( n 6 = S6 n 6 = {0} .

Thus 8 C 7 where 7 denotes the radical supplementing 7 , and so Sj C SS.

Since 7 is hereditary, we know that

7 = hS-y C Sj.

Proposition 2 says that 7 is either supernilpotent or subidempotent, so 7 is
subidempotent or supernilpotent, respectively. Thus 7 is hereditary. If A £ 7 , then

that is, A € S 7 which implies 7 C ^ 7 . Since 7 is hereditary, J>7 is closed under

essential extensions, and so we get

S8 = £-/ C £Sj = Sy

yielding

£7 = SS = Sj and also S = 7.
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Thus 6 = 7 is the radical supplementing 7 , and £7 = S7 .

Next, let us consider the intersection Sj D Sy of the semisimple classes of 7 and
7 , and let us take an arbitrary ring A from Sf n 1S7. Then A £ £ 7 = £7 , and so A

has an essential ideal B £ 7 . On the other hand, A £ S-f and therefore the only ideal
of A which is in 7 , is the ideal 0. Hence B = 0, and by B <1 A it follows 4 = 0.
Thus Sj H S7 = {0}, and so 7 V 7 = { all rings}.

Since 7 is supplementing the radical 7 , also

holds, whence 7 is the complement of 7 in the lattice of hereditary radicals.
Conversely, assume that 7 has a complement 7' in the lattice of hereditary radicals.

Then 7 A 7' = {0} and by the hereditariness of 7 and 7' this is equivalent to

7 (A) f~l 7' (4) = 0 for all rings A.

Since the radical 7 supplementing 7 is the largest radical with the latter property, it
follows that 7' C 7 . Thus

7 V 7 3 7 V 7' = {all rings}

is valid, whence also 7 is a complement of 7. Since the complement (if it exists) is
unique in the lattice of hereditary radicals, we conclude that 7' = 7. Thus we have also

S7 0 S7 = {0} .

Our aim is to show that £"7 is a semisimple class. Suppose that £7 is not a
semisimple class. By definition of the supplementing radical we have 7 C 7 where 7 is
the radical supplementing 7 . Since 7 = 7 ' is hereditary, 7 is given as hSy, and so

7 C 7 = hSy C 57

holds. By the hereditariness of 7 the semisimple class S~f is closed under essential
extensions, and so by 7 C Sy it follows that £7 C Sy. Moreover, by the assumption
£7 y£ Sj, there exists a ring A in the class <ST"\£7 . Hence 7 (A) is not an essential ideal
of A, and so A possesses a nonzero ideal B such that 7 [A) C\B — 0. From B < A £ Sy

we conclude that B £ <ST". Furthermore, the ADS-Theorem yields y(B) <S A, and so

Hence B E Sj. Thus 0 ^ B £ ^7 057 holds, contradicting the already proven relation
Sf D S7 — {0}. Thus £7 must be a semisimple class. D
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SUPPLEMENT TO THEOREM 3 . If £7 is a semisimple class, then £7 is the

semisimple class of the radical 7 supplementing 7 . If 7 has a complement 7 ' in

the lattice of hereditary radicals, then 7 ' is the radical 7 supplementing 7 . If £7

is a semisimple class, then (7 ,7) forms a dual pair of a supernilpotent radical and a

subidempotent radical.

The proof of the first and second statement is included in that of Theorem 3. The
last assertion is obvious by 7 = 7" = 7 and Proposition 1.

Combining Theorem 3 with Snider's [9] description of complemented hereditary
radicals, and taking into account the supplement and Andrunakievich's Theorem 10 in
[1] to determine subidempotent dual radicals, we get

COROLLARY 4 . The essential cover £7 of a radical 7 is a semisimple class if
and only if there exists a finite set

of matrix rings over finite fields Fi,... ,Fk such that either 7 is the upper radical Hip
or 7 is the upper radical Uij) where

•0 = {A is subdirectly irreducible \ A (£ ip} .

The connection established in Theorem 3 enables us to complete Snider's result on
complemented subidempotent radicals by using the description given in [3]. Given a
simple ring M, a ring A will be called an M-ring, if A is semiprime and every prime
homomorphic image of A is isomorphic to M.

COROLLARY 5 . A subidempotent radical j is complemented in the lattice of ail
hereditary radicals if and only if there exist finitely many matrix rings Mni (Fi) , . . . ,
Mnk (Fk)over finite fields JF\, . . . ,Fk such that 7 is the lower radical generated by all
the Mn. (Fi) -rings for i = 1,2,... , k.

Recently, it has come to our attention that Wu Tongsuo [12] has also characterised
the semisimplicity of the essential cover of a supernilpotent radical p by showing that
Sp is semisimple if and only if p (R/p~ (R)) is essential in R/p~(R) for any ring R.
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