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1. INTRODUCTION

Over the last ten years a number of methods have been proposed for predicting
changes in the distribution of gene frequency when sampling and selection are
applied to finite populations. This paper is an attempt to compare two of these
methods—those proposed by Robertson (1960) and Curnow & Baker (1968).

Kimura (1957) treated changes in gene frequency as stochastic processes, and
described these processes by equations similar to Fokker-Planck diffusion equa-
tions. In this approach Kimura assumed completely overlapping generations and a
continuous distribution of gene frequency. Robertson (1960) used Kimura's ap-
proach to derive a theory of limits in artificial selection. Robertson's paper also
used probability transition matrices in this field for the first time. These matrices
had elements which were the probabilities of changing from one gene frequency to
another in a single generation of sampling and selection. Multiplication of a tran-
sition matrix by the probability distribution vector of the gene frequency in one
generation gives the vector for the next generation. Allan & Robertson (1964),
Hill & Robertson (1966) and Ewens (1963) have used the concept of transition
matrices to investigate a number of selection problems.

Kojima (1961) derived formulae for the expected gain—to the first order in single-
locus genetic effects—from a cycle of sampling and selection applied to a population
of finite size. This involved deriving approximate formulae for the mean and vari-
ance of the change of gene frequency. Curnow & Baker (1968) avoided the use of
transition matrices by assuming at each generation a beta distribution for the gene
frequency. This is a distribution lying strictly between 0 and 1, with discrete
probabilities added at the end-points to represent the fixation probabilities of
the two alleles. Using this distribution together with Kojima's equations, Curnow
& Baker's method provides a means of calculating the genetic mean and variance,
the expected gene frequency and the fixation probabilities after each generation of
selection. The parameters of the beta distribution at each generation are chosen to
make its mean and variance equal to the mean and variance of the gene frequency
distribution. The particular beta distribution used will therefore change from
generation to generation.

Although Robertson's approach is analytically more exact than that of Curnow
& Baker, it tends to be more demanding of the computer, both in store required and
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time taken, especially when a large number of individuals are selected. The time
consuming computations are the calculation of the transition matrix, and its multi-
plication by vectors of gene frequency. The Curnow-Baker approach avoids these
computations, resulting in a reduction of computer time. Furthermore, transition
matrices cannot be utilized in situations where there are unequal numbers of males
and females. Special difficulties are encountered when there is an infinite number of
one sex and selection is practised on the other sex—as in Baker & Curnow (1968).
In this paper Baker & Curnow consider an infinite population of males which at
each generation is produced from the selected parents of the previous generation.
In this situation the transition matrix process is not directly applicable. Also it
would appear that transition matrix methods are difficult to apply in the more
general situation of selection of unequal numbers of males and females.

This paper is an attempt to compare the genetic values obtained by the two
methods for a range of selection intensities, population sizes and initial gene
frequencies; and thereby to assess the range of validity of the Curnow-Baker
method. Essentially Curnow & Baker are attempting to fit a particular form of
continuous distribution to a set of discrete probability values. The number of these
values is dependent solely upon the number of individuals selected at each stage.
Consequently we should expect that if more individuals are selected the beta dis-
tribution will provide a better approximation to the discrete probabilities. Now we
must decide how many must be selected before we are prepared to accept the degree
of approximation inherent in the Curnow-Baker method.

2. THEORY
The theory underlying the two methods is more or less exactly as given in Kojima

(1961), Robertson (1960) and Curnow & Baker (1968). An outline of the theory is
given here together with a proof of the validity of a substitution made by Kojima.

For the transition matrix approach we construct a transition probability matrix,
T, with elements corresponding to changes in gene frequency from generation to
generation. We have a finite population consisting of N dipoid individuals sampled
from an infinite population. From these we select n individuals. The elements
(ti:j);i,j = 0,1, 2,..., 22V; of the transition matrix are assumed to be time indepen-
dent and represent the probability that there are j A alleles among the n selected
individuals in one generation, conditional upon there having been i in the previous
generation. The model used to determine the transition probabilities is a diploid one
with the probability of selecting any particular combination of genotypes being
multinomial. Of the n selected individuals % are AA, n2 are Aa and n3 are aa. Thus
in the case of complete dominance

where s is the selective value of the A allele, q = i/2n and the summation is carried
out over nv n%, and n3 conditional upon 1nx + n2 = j and nx + n2 + n3 = n.
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Hill (1968) provides a more exact transition matrix approach to the study of
selection in finite populations. He states that if in a finite population of size N there
are Nx of type AA, N2 of type Aa, and N3 of type aa, then the probability of selecting
n individuals with nx of type A A, n2 of type Aa and n3 of type aa is not multinomial
but hypergeometric. He then computes a transition probability matrix, in a similar
way to that shown above, and carries out the calculations using this matrix. This
approach is not used here since there are certain numerical integration problems
connected with it and it does not produce appreciably different results from more
approximate methods, as Hill shows.

The theory of the Curnow-Baker method will now be summarized. Using Kojima's
notation we assume an initial infinite population of diploid individuals and that
the character, Y, on which selection is to be based is normally distributed over this
population with frequency function <fi( Y). In this population the three genotypes
AA, Aa, aa have mean values a, d, —a and occur with frequencies Ult U2, U3. We
shall assume a random mating population. The values of the character for each of
the three genotypes is assumed to be normally distributed—AA with frequency
function ^x( Y), Aa with frequency function <p2{ Y), and aa with frequency function
(j>3{Y). The overall distribution, <j>{Y), can also be assumed approximately normal
because the three constitutent genotypic distributions are assumed normal and are
nearly coincident; and the mixture of three nearly coincident normal distributions is
also approximately normal. The origin and scale have been chosen so that (f>{ Y) has
zero mean and unit variance. The quantities dJ1; d2, d3 are the deviations of the means
of the distribution of A A, Aa, aa from the overall mean, given in standard devia-
tion units.

If a random sample of N observations from <p( Y) is ranked, the frequency func-
tion of the (n + l)th highest value, Yo, is

where

= r^>(Y)dY = <D(-70).

Writing Pr for the 'the probability that',

Pr [bestn are nxAAx, n2Aa, n3aa\(n+ l)th = Yo]

is multinomial, with parameters n and pt where

Pi=^ and Pt=f%t(Y)dY.
Following Kojima we can show that

where

l f00 4>{Y9) f- N\

x p"-i (1 - PJW-—102(7O) dY0.
8-2
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Kojima substitutes for k the mean of the top n order statistics in a sample of size
N from a standardized normal distribution. The validity of this substitution can be
proved as follows. The mean of the top n order statistics in a sample of size JV is

i N f00

= - S
AH

-l)\(N-r)\
To prove Kojima's statement we must show that if <f>( Y) is the frequency function of
a standard normal variate, then k = /i. The proof is as follows. Consider the following
summation in the expression for /i:

N A/I
2

N-l /A7_l\

^ s r )PMI--P)'-1.

From Kendall & Stuart (1963, §5.7), the above expression is the remainder after
the first N — n — 1 terms of the binomial expansion, and this is

Putting ^ = 1 — a;/(l — P) this reduces to

Therefore, on substitution

Integrating by parts, using J 7^( F) <Z 7 = - 0( F), we obtain

1 f
dY)

The first term is zero since 0(oo) = ^( —co) = 0; and —dPjdY = <p(Y). Therefore

and the proof is complete.
Having proved that k = /i when the underlying distribution is normal, it is

interesting to consider what information we can obtain concerning the nature of
0( Y) by assuming k = (i. For example, does it imply normality ? It has been shown
that the additional assumption that <f>(Y) is symmetric implies that <fi(Y) is in
fact normally distributed.

https://doi.org/10.1017/S0016672300002834 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300002834


Repeated selection infinite populations 121

3. COMPUTATIONAL PROCEDURE

Computer programs were written to carry out both the transition matrix and
the Curnow-Baker calculations. The print-out from each program contained the
genetic mean and variance and the expected gene frequency; and also the probabili-
ties of fixation of the a and A alleles at each generation. It was on the basis of these
results that the comparisons were made. In addition, the first two moments of the
gene frequency distribution for the transition matrix method were taken and the
first two standardized cumulants (skewness and kurtosis) were calculated from
them assuming that the distribution was a beta distribution. These cumulants were
then compared with the actual values of skewness and kurtosis obtained from the
transition matrix method. From this we should be able to see how well the assump-
tion of a beta distribution for the distribution of gene frequency fitted the transition
matrix results.

The sets of calculations carried out were as follows:

Number selected, n 4 8

Sample size, N 8, 16, 32, 48 16, 32, 48
Initial gene frequency, q 0-25, 0-50, 0-75 0-25, 0-50, 0-75

All selections were continued for fifteen generations. The genetic effects at the
locus were considered to be either additive or completely dominant. The difference
between the mean values of the two homozygotes in phenotypic standard deviation
units was taken as 0-13 as in Baker & Curnow. Selection of two individuals was
not carried out as it required the Curnow-Baker method to fit a beta distribution
to three discrete values and so was almost bound to give inaccurate results. Selection
of more than eight individuals was contemplated, but this work was carried out on
an Elliott 803 computer and considerable time would have been required to con-
sider selection of more than ten or fifteen individuals.

4. RESULTS AND DISCUSSION

Tables 1-8 show the genetic means and variances calculated by the two methods.
Before attempting a comparison between the transition matrix and the Curnow-
Baker results, a brief general picture of them is given. Graphs drawn from the re-
sults for the two methods showed little difference in general trend.

In the additive case all selections show an increasing genetic mean levelling off
by fifteen generations. In the case of complete dominance, an initial drop in genetic
mean is observed due to the effect of inbreeding depression. On continuing the
selection process, or on performing more intense selection, it is seen that the in-
breeding depression is overcome by the selection causing the genetic mean to begin
to rise again. The genetic variance shows a trend similar to that for the additive
genetic mean. There is a difference between the additive and complete dominance
cases in that for dominance a much wider range of first generation variances is
observed, for the three gene frequencies studied, than in the additive case. By
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the time fifteen generations have been reached, however, the range of values is
comparable for the two cases.

In comparing the results for the transition matrix and Curnow-Baker methods
it is best to consider the results for selection of four individuals and for selection of
eight separately. The only difference between the additive and complete dominance
cases, in terms of comparison, is that there is slightly more discrepancy between the
two methods in the case of complete dominance. The significant point to be made,
however, is the reduction in the discrepancy for selection of eight individuals
compared with the selection of four.

For all the results presented here for selection of four individuals there is very close
agreement between the two methods for selection with an initial gene frequency of
0-50. This is true for both genetic mean and variance. For initial gene frequency of
0-25 the Curnow—Baker method gave low values of the genetic mean and high
values of genetic variance; with sometimes a discrepancy of 10 % or more. For initial
gene frequency of 0-75 it gave high values of the genetic mean and low values of
genetic variance; with discrepancies less than half those for O25. The reason for
this becomes apparent as soon as we look at the probabilities of fixation, for here
we see what is perhaps the only failing of the Curnow-Baker method. Too high
a proportion of the genes is fixed, particularly those near to fixation anyway,
because of the fitting of a continuous distribution to a small number of discrete
points. This means that, when selecting for a good allele at a low frequency, too high
a proportion becomes fixed at the lower end of the gene frequency scale giving rise
to low values of the genetic mean and high values of the genetic variance. By
contrast, with a high initial gene frequency too high a proportion becomes fixed at
the upper end of the gene frequency scale giving rise to high values of the genetic
mean and low values of genetic variance. This problem does not arise with initial
gene frequencies midway between the two fixation points.

The results for the selection of eight individuals show considerable reduction in
discrepancies between the two methods. The fixation problem is still apparent for
low initial gene frequencies but is much less marked. The results for initial gene
frequencies of 0-50 and 0-75 are similar to within about 1 %. Thus it would appear
that, in the selection of eight individuals, the fitting of a beta distribution to fifteen
discrete points provides a very accurate approximation to the results obtained by
using the transition matrix method. The approximation will improve still further
with selection of more than eight individuals.

The other calculations to be discussed concern the skewness and kurtosis calcu-
lated, assuming a beta distribution, from the first two moments of the gene fre-
quency distribution derived by the transition matrix method. Comparison of these
with the skewness and kurtosis actually calculated by the transition matrix method
reinforced the conclusions already drawn. There was quite good agreement between
the values of the kurtosis, but this tells us little more than that the distributions
flatten out in a similar way with continued selection. The values of the skewness
showed the tendency of the beta distribution to overestimate the positive skewness
for a low initial gene frequency and to overestimate the negative skewness for a high
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initial gene frequency. It is this overestimation which in each case leads to fixation
of too high a proportion of the genes in the Curnow-Baker method.

In conclusion, it would appear that the one real fault in the Curnow-Baker
method is its tendency to fix too high a proportion of the genes, particularly when
the initial gene frequency is near to a fixation point. (It should be noted here that
this problem does not invalidate Baker & Curnow's (1968) results for gene fre-
quencies of 0-1, 0-2, and 0-3. This is because they had an infinite population of males
and selection was only practised on females. Therefore there was no fixation. The
beta distribution was used without any additional points corresponding to fixation.)
The problem of overestimating fixation is overcome to a large extent when more
individuals are selected. The results here would lead to a rejection of the Curnow—
Baker method for selection of as few as four individuals or when very small initial
gene frequencies are considered. However, the method is much more accurate for
selection of eight or more individuals. Furthermore, selection of eight individuals
using the Curnow—Baker method requires only a third as much time as the transition
matrix method. Thus with the understanding of the restrictions in its application
we are led to conclude that the Curnow-Baker method provides a very useful tool
for estimating changes in the distribution of gene frequency in selection from finite
populations.

SUMMARY

Robertson (1960) used probability transition matrices to estimate changes in
gene frequency when sampling and selection are applied to a finite population.
Curnow & Baker (1968) used Kojima's (1961) approximate formulae for the mean
and variance of the change in gene frequency from a single cycle of selection applied
to a finite population to develop an iterative procedure for studying the effects of
repeated cycles of selection and regeneration. To do this they assumed a beta dis-
tribution for the unfixed gene frequencies at each generation.

These two methods are discussed and a result used in Kojima's paper is proved.
A number of sets of calculations are carried out using both methods and the results
are compared to assess the accuracy of Curnow & Baker's method in relation to
Robertson's approach.

It is found that the one real fault in the Curnow-Baker method is its tendency to
fix too high a proportion of the genes, particularly when the initial gene frequency is
near to a fixation point. This fault is largely overcome when more individuals are
selected. For selection of eight or more individuals the Curnow-Baker method
is very accurate and appreciably faster than the transition matrix method.

I am grateful to Professor R. N. Curnow and Dr W. G. Hill for much helpful advice and
to the Science Research Council under whose financial assistance this work was carried out.
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Table 1. Selection of four individuals—additive case. Genetic mean x 103

Generation number

Sample
size

8

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

0-25
0-50
0-75

CB

- 6 0
6 1

70

- 5 7
10
73

- 5 4
15
76

1

TM

-60
6-1

70

-57
10
73

-54
15
76

CB

- 4 7
23
82

- 3 5
38
92

- 2 0
55

102

5

TM

- 4 6
23
82

- 3 3
39
91

- 1 5
56

101

CB

- 3 5
41
95

- 1 5
65

109

10
90

121

15

TM

- 3 0
41
93

-6-2
65

106

22
89

118

CB = Curnow-Baker Method. TM = Transition Matrix Method.

Table 2. Selection of four individuals—additive case. Genetic variance x 10*

Generation number

Sample
size

8

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

0-25
0-50
0-75

CB

20
23
14

21
24
14

23
24
13

1

TM

17
21
15

17
21
14

17
21
14

CB

87
80
40

95
75
31

103
65
22

5

TM

75
79
47

82
74
38

88
65
28

CB

142
131
62

152
108
36

156
74
14

15

TM

141
131
70

151
109
46

150
78
25
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Table 3. Selection of eight individuals—additive case. Genetic mean x 103

Generation number

125

Sample
size

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

t

CB

-60
6-4
70

-56
12
74

1
A

TM

-60
6-4
70

-56
12
74

CB

-42
28
84

-20
52
99

5

TM

-42
28
84

-19
52
99

CB

-14
60
104

37
101
122

15
A

TM

-11
60
103

41
99
121

Table 4. Selection of eight individuals—additive case. Genetic variance x 10*

Generation number

Sample
size

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

1

CB

90
11
8-0

9-7
11
7-9

TM

8-3
11
7-5

8-6
10
71

CB

49
45
24

56
38
15

5

TM

44
44
24

50
37
16

15
A

CB

117
78
30

109
32
6-9

TM

112
80
34

105
38
10

Table 5. Selection of four individuals—complete dominance case.
Genetic mean x 103

Generation number

Sample
size

8

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

0-25
0-50
0-75

1

CB

-14
63
110

-8-2
66
111

-1-2
70
112

TM

-12
63
109

-6-0
67
110

1-7
72
111

5

CB

-17
58
104

1-0
72
109

22
87
114

TM

-8.7
58
100

12
73
106

36
87
112

15
A

CB

-20
53
99

7-3
79
112

41
105
122

TM

-12
53
96

20
78
108

56
101
118
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Table 6. Selection of four individuals—complete dominance case.
Genetic variance x 104

Generation number

Sample
size

8

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

0-25
0-50
0-75

1
A

CB

40
21
3-7

41
21

3-4

41
20
3-2

TM

32
19
50

32
18
4-5

30
15
4-0

5

CB

114
69
19

114
54
13

107
36

7-5

TM

100
69
29

97
54
21

87
37
14

15

CB

150
121
54

153
86
28

136
40

7-9

TM

149
121
65

146
90
42

121
53
21

Table 7. Selection of eight individuals—complete dominance case.
Genetic mean x 103

Generation number

Sample
size

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

1
A

CB

- 9 1
67

112

1-4
73

113

TM

-8-8
67

112

10
73

113

5

CB

8-2
74

110

43
92

115

TM

11
74

109

46
93

115

CB

25
85

112

86
115
123

15

TM

30
84

110

86
113
122

Table 8. Selection of eight individuals—complete dominance case.
Genetic variance x 104

Generation number

Sample
size

16

48

Initial
gene

frequency

0-25
0-50
0-75

0-25
0-50
0-75

1
A

CB

18
10
2-3

18
9 1
2-2

TM

16
9-4
21

16
81
1-8

5

CB

69
32

8-3

52
18
4-7

TM

62
31
10

48
18
5-8

15

CB

116
50
16

55
9 1
4-0

TM

110
55
22

58
15
6-5
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