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SUMMARY

The water driven crop growth model AquaCrop was evaluated for predicting the yield of kharif maize (i.e. maize
sown in the monsoon season) under future water availability scenarios. Future climatic data were generated using
the climate data generator ClimGen, which was parameterized using 37 years (1972–2008) of historical data
relating to the study area. The climatic data generated were used first in the CROPWAT model to estimate the
irrigation schedule, which was then used in the validated AquaCrop model to predict grain yield for future years.
Rainfall estimates generated by ClimGen for 2012 (739mm) and 2014 (625mm) resulted in yields of 1600 and
5670 kg/ha, respectively, under rainfed situation during these 2 years with full fertilization levels. This variation
may be attributed to the depths of rainfall events and their distribution during the entire growing season in general
and sensitive growth stages in particular pertaining to the same sowing date (22 July) in both years. Nonetheless,
the use of ClimGen, CROPWAT and AquaCrop models can be standardized as a model-linking protocol to
estimate future maize yield and irrigation water requirements for sustainable production and as an adaptation
measure to climate change.

INTRODUCTION

Thoughtful irrigation water management and use of
innovative agricultural technologies could help in
devising long-term strategies for adaptation to climate
change. Use of modern tools in water management
and formulation of agricultural policies should be
oriented towards enhancing water productivity in
agriculture. This will not only save water but will
also maintain food security in developing countries.
Some predictive studies conducted so far and some
hard evidence suggest that the variability in rainfall
intensity and duration, as well as other climatic
parameters due to climate change, are most likely to
have adverse effects on agricultural production (Supit
et al. 2012; Berg et al. 2013; Ju et al. 2013). Therefore,
proper irrigation scheduling vis-à-vis the rainfall
variability will ensure sustainable production of food
grains with judicious water management and saving of

water. To accomplish this objective, the real challenge
lies in reliable prediction of future climate change
and using it for the estimation of crop water require-
ments at different growth stages. Furthermore, water
budgeting will quantify the amount and timing of
irrigation in order to attain sustainability in the
agricultural production of a region. Such linkage of
climate generators with crop yield models could be
useful for prediction of crop yield under changing
climate scenarios in the future. Additionally, it will
help in evaluating different crop management
options to decide upon the best scenario for enhancing
agricultural production under a given set of site-
specific input parameters that affect crop yield.

Several researchers have studied linking climate
predictions obtained from global circulation models
(GCM) with crop models to estimate the future crop
yield under different climate change scenarios (Baron
et al. 2005). Many have analysed historical climate
and crop yield data to generate future scenarios of crop
yield under changing climate conditions for different
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regions (Iglesias et al. 2000; Izaurralde et al. 2003; Tan
& Shibasaki 2003; Parry et al. 2004; Huntingford et al.
2005; Tao et al. 2006; Anwar et al. 2007; Challinor
et al. 2007; Tubiello & Fischer 2007; Egli 2008;
Thomas 2008; Malone et al. 2009). Some researchers
have used a climate generator such as ClimGen to
forecast daily weather data for its subsequent use
as input for a crop model to examine crop yield
variations under changing climate (Stöckle et al.
1997; Zhang & Liu 2005; Kou et al. 2007; Tao et al.
2008). Zhang et al. (2004) used ClimGen to simulate
daily climatic data of several weather stations across
Canada and reported that by choosing appropriate
scaling parameters, the ClimGen generated daily
data were not statistically different from observed
daily data for precipitation, maximum/minimum
temperature and solar radiation. However, Zhang
et al. (2004) also observed that ClimGen generated
data may not be accurate for the transitional periods
between the spring and autumn seasons in Canada.
Castellvi & Stöckle (2001) compared the performance
of weather generator (WGEN) and ClimGen for
generation of long-term weather data at seven different
locations in Italy, representing variable climatic con-
ditions, and observed that neither model was able to
replicate the actual distribution over the entire range of
values for maximum/minimum temperature, solar
radiation and evapotranspiration. However, WGEN
generated the monthly mean temperature more
accurately and ClimGen predictions for daily tem-
perature and solar radiation were better than WGEN.
Stöckle et al. (2003) evaluated weather data for
calculating Penman–Monteith reference crop evapo-
transpiration using the ClimGen model: radiation and
vapour pressure deficit (VPD) were estimated from
temperature data and used to calculate evapotran-
spiration at five locations, representing tropical,
temperate, semi-arid and arid climates. ClimGen was
calibrated for each location using the most recent 2 or
5 years of daily weather records. Actual and estimated
values were compared on a daily and weekly (7-day
running average) basis. Analysis of reference crop
evapotranspiration (ETo) totals for individual years
confirmed that the two temperature-based methods
were adequate to estimate Penman–Monteith ETo
when calibrated for application in arid and semi-arid
locations. Several attempts have been made to study
the impacts of climate change on yield of maize at
different locations around the world (viz. Muchena &
Iglesias (1995) in Zimbabwe, Delécolle et al. (1995) in
France, Tubiello & Fischer (2007) in Italy and Jones

& Thornton (2003) in Africa and Latin America.
Castellvi & Stöckle (2001) generated weather data
using ClimGen with three different generation meth-
ods and showed that the two-parameter Weibull
distribution performed better than other methods in
reproducing temperature and bright sunshine hours.
McKague et al. (2005) evaluated ClimGen for gen-
eration of daily precipitation, air temperature, solar
radiation, wind speed and relative humidity for
Southern Ontario, Canada. The comparison of simu-
lated weather data with 30 years of weather data for six
stations indicated that ClimGen performed with
reasonable accuracy with some limitations in gener-
ating rainfall intensities and solar radiation, particu-
larly for the winter months. M. G. Abraha (personal
communication) reported that long-term weather data
for precipitation, minimum/maximum air temperatures
and solar radiation can be used in ClimGen to generate
the climatic parameters for estimation of crops yield.
Sarangi & Kumar (2009) investigated a trend analysis of
36 years’ rainfall data from the Water Technology
Centre (WTC) observatory of the Indian Agricultural
Research Institute (IARI) and used ClimGen to predict
the climate in future years (2010–2050). Furthermore,
the generated data were used in the CROPWATmodel
to estimate irrigation water requirements for future
years to obtain a sustainable yield of maize. It was
observed that ClimGen was able to predict the climate
data with acceptable accuracy and the linkage of
ClimGen and CROPWAT enabled an estimation of
future irrigation water requirements.

Geerts et al. (2010) used the AquaCrop model to
simulate crop development for a long series of
historical climate data and generated guidelines for
deficit irrigation schedules to enhance crop water
productivity of quinoa in Central Bolivian Altiplano.
They developed a practical chart by combining
AquaCrop in combination with long series of climate
data and frequency analysis, for guiding deficit
irrigation of quinoa after wet, normal or dry weather
conditions during the vegetative growth stages. Erkossa
et al. (2011) used the AquaCrop model to estimate the
yield andwater productivity of wheat under the rainfed
system on vertisols in the Ethiopian Highlands; their
experiment generated data pertaining to suitable
seedbed types and planting dates that were used for
calibration and validation of the AquaCrop model.

Crop simulation models are used widely in the USA
and in Europe by farmers, private agencies and policy
makers for decision-making. Similar approaches for
Indian climatic conditions will be highly beneficial for
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farmers and policy makers because of the dominance
of monsoon rainfall in Indian agriculture (crops sown
in the monsoon season are referred to as kharif crops).
The onset of monsoons in India and the intensity and
distribution of rainfall events during this period has
a tremendous effect on agricultural production and
productivity of different regions. Therefore, linkage of
a climate generator with a crop model will assist in
determining judicious agricultural water management
plans to enhance water productivity. This approach
will address the risk and uncertainty associated with
future climate change through simulation of long-term
weather parameters for different agro-climatic regions
of India. Climate and judicious irrigation water
management play significant roles in enhancing
productivity, besides the use of other inputs such as
different seed varieties and integrated nutrient and pest
management activities. Thus, development of the
protocols for linkage of the climate generator and
crop models to predict the future water management
and crop yield scenarios will minimize the cost
involved in conduction of the long-term field experi-
ments. Besides this, it can answer the strategic and
policy-related issues concerning future aberrations in
weather and depleting ground water resources. With
this in mind, the present study was undertaken to
develop links between a climate generator and the
AquaCropmodel to generate the future irrigationwater
requirement for attaining sustainable yield of maize
under future climate change scenarios in the semi-arid
region of Northern India.

MATERIALS AND METHODS

Study area

Climate data for use in the climate generator and
AquaCrop model was obtained from the observatory
located at the research farm of the IARI, New Delhi,

India. Data on the growth and yield parameters of the
maize crop, soil and irrigation scheduling were
obtained from the field experiments conducted at
the research farm of the WTC, IARI during the kharif
seasons of 2009 and 2010. The primary and secondary
data on climate, soil, water and crop parameters
obtained from the study area were used in the climate
generator CROPWAT and AquaCrop models to
generate future scenarios of maize yield and water
productivity. Initially, the water-driven crop model
AquaCrop was calibrated and validated using the
primary data generated from field experiments during
2009 and 2010. Subsequently, ClimGen was para-
meterized using 37 years of historical climate data
(1972–2008) and the likely future climate was
generated for use in CROPWAT to estimate the
irrigation scheduling for the maize crop. Finally, the
climate and irrigation scheduling data were used in
AquaCrop to estimate futuremaize yield under varying
water availability scenarios. The soil characteristics of
the field experiment are presented in Table 1.

Use of ClimGen to generate future climate scenarios
for the study area

ClimGen is a computer algorithm that uses historical
meteorological records to produce a long series of
estimated daily weather data. The statistical properties
of the generated data are expected to be similar to
those of the actual data for a specified meteorological
station. Unlike historical weather records, which may
have missing data, WGEN output provides a complete
record for anydesiredperiod of time, thus enhancing its
use in continuous hydrologic and crop models.
ClimGen generates precipitation, daily maximum and
minimum temperature, solar radiation, air humidity
and wind speed, and requires daily series of these
variables as input parameters to generate future climate

Table 1. Soil physical properties of experimental field

Soil depth
(cm) Texture

Sand
(% vol.)

Silt
(% vol.)

Clay
(% vol.)

Bd
(gm/cc) Fc (%)

PWP
(%)

Ks
(cm/d)

θs
(%)

0–15 Loam 48 21 30 1·41 18·3 6·8 380 41
15–30 Sandy loam 53 19 28 1·43 19·1 6·9 460 40
30–45 Loam 44 23 33 1·39 20·7 8·7 364 44
45–75 Loam 39 25 36 1·37 21·6 9·8 250 47
75–105 Clay loam 38 27 34 1·36 23·0 10·9 180 49

Bd, Bulk density; Ks, saturated hydraulic conductivity; θs, soil water content at saturation; Fc, field capacity; PWP, permanent
wilting point.
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parameters. It was developed at the Department of
Biological Systems Engineering in Washington State
University, USA and written in the C++ programming
language using borland C++ builder. ClimGen uses
quadratic spline functions to ensure that the averages of
the daily values are continuous across month bound-
aries, and that the first derivative of the function is also
continuous across month boundaries (Stöckle et al.
1997). ClimGen preserves the interdependence among
generated weather variables as well as the seasonal
characteristics of each variable. Generated daily maxi-
mum/minimum temperatures and solar radiation va-
lues result from a continuous multivariate stochastic
process with the daily means and standard deviations
conditioned by the dry or wet spell analysis. A first-
order Markov chain is used to generate wet and dry
days. Rainfall depths are generated from the Weibull
distribution,which can be simplified for applications to
conditions with minimum data. Daily vapour pressure
deficit is generated based on the temperature. In ad-
dition, alternative approaches allow users to estimate
solar radiation from temperature in areas with inad-
equate lengths of climatic records. Wind speed is also
generated fromWeibull distribution, but this variable is
generated independently of other climatic variables.
Because all generation parameters are calculated for
each site of interest, ClimGen can be applied to any
location in the world with enough information to
parameterize the program and generate data for future
years (Safeeq&Fares 2011). ClimGenwas selecteddue
to its strengths in comparison to other weather gen-
erators: it has the capability to automate the task of
parameterizing historical weather data. Linking future
climate predictions to a crop yieldmodel can provide a
useful tool for predicting cropproductivity for the future
years.
In the present study, the ClimGen model was

parameterized using 37 years (1972–2008) of daily
weather records comprising rainfall, minimum and
maximum air temperatures, relative humidity, wind
speed, rainfall and sunshine time for the IARI farm (28°
32′N, 78°17′E, altitude 167·5 m). Screenshots from
ClimGen during the data parameterization and gener-
ation process are shown in Fig. 1.

Use of CROPWAT to estimate irrigation scheduling

Computer programs dealing with computations of crop
water requirements are mainly based on a reference
evapotranspiration. These programs have either a
single purpose, to estimate crop water requirement,

or are embedded as a module of CROPWAT 8.0 (FAO
2009). CROPWAT is used widely by researchers
for estimation of evapotranspiration, crop water
requirements and irrigation scheduling of different
crops. CROPWAT ver 8.0 employs the Modified
Penman–Monteith (PENMON) approach in estimating
evapotranspiration. It is tested extensively, widely
accepted and also recommended by the FAO
(Lenselink & Jurriens 1993). The model also calculates
the percentage reduction in crop yield due to water
stress during the cropping period. The program
algorithm allows development of irrigation schedules
for different management conditions and calculation
of water supply under varying cropping patterns.

AquaCrop model description

In this context, the recently developed FAO AquaCrop
model (Raes et al. 2009; Steduto et al. 2009) is a user-
friendly and practitioner-oriented model because it
maintains an optimal balance between accuracy,
robustness and simplicity, and requires a relatively
small number of model input parameters. AquaCrop
has been parameterized and tested on maize by using
experimental data from six cropping seasons at the
University of California, Davis, USA (Hsiao et al.
2009). Hsiao et al. (2009) observed that AquaCropwas
able to simulate the canopy cover, biomass develop-
ment and grain yield of four maize cultivars over six
different cropping seasons that differed in plant
density, planting date and evaporative demands.
Araya et al. (2010) evaluated the AquaCrop model
for simulating biomass and yield of water deficient and
irrigated barley in Northern Ethiopia and reported that
the AquaCrop model performed well, with model
efficiency ranging from 0·5 to 0·95 for grain yield
under various planting dates. Stricevic et al. (2011)
evaluated the AquaCrop model in Serbia for maize,
sugar beet and sunflower under rainfed conditions or
provided with supplementary irrigation: they reported
that the maximum prediction error for maize was 3·6%
and for sugar beet 12·2%. However, they concluded
that the AquaCrop model can be used in impartial
decision-making and in the selection of crops to be
given irrigation priority in areas where water resources
are limited.

Input data requirement of AquaCrop model

Operation of the AquaCrop model requires input data
consisting of climatic parameters and management
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data for the crop, soil, field and irrigation. However,
the model contains a complete set of input parameters
that can be selected and adjusted for different soil or
crop types.

Climate data

The weather data required by AquaCrop are daily
values of minimum and maximum air temperature,
ETo, rainfall and mean annual carbon dioxide (CO2)
concentration. The ETo was estimated with an ETo
calculator using the daily maximum and minimum
temperature, wind speed at 2 m above ground surface,
solar radiation and mean relative humidity.

The weather parameters were collected from an
automatic weather station located at a distance of
150 m from theWTC-01 experimental farm. Rainfall of
502 and 713mm during the growing season were
recorded in 2009 and 2010, respectively. The tem-
perature variations, ETo and rainfall during the crop-
growing period of 2009 and 2010 are shown in Figs 2
and 3, respectively.

Crop parameters

Canopy development was measured once in every
2weeks by removing two plants per plot and recording
growth stage, leaf area, root length and above-ground

Parameterization: Generation:

(1) Geo-location (4) Generate data

(2) Analysis (5) Output

(3) Monthly summary (6) Main window of ClimGen

Fig. 1. Captured window of ClimGen model for different activities of data parameterization and generation.
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biomass. Date of emergence, maximum canopy cover,
duration of flowering, start of senescence and maturity
were also recorded. At each crop growth stage, green
leaves were separated and the leaf area of each plant
measured using a leaf area meter (LI-3100C by LI-COR

Inc., USA) to obtain the leaf area index (LAI), which
was converted to crop canopy cover for use as input
data for AquaCrop model simulation. Dry weight of
above-ground biomass at each growth stage was
obtained after oven drying for 48 h at 65 °C.
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Other measurements were taken from Hsiao et al.
(2009): the canopy decline coefficient, crop co-
efficient for transpiration at full canopy cover, soil
water depletion thresholds for inhibition of leaf growth
and stomatal conductance and acceleration of canopy
senescence. These parameters were presumed to be
applicable to a wide range of conditions and not
specific to a given crop cultivar. The full range of crop
parameters used as input to AquaCrop is presented in
Table 2. The relationship between LAI and canopy
cover used for maize cropwas calculated using Eqn (1)
(Hsiao et al. 2009):

Canopy cover = 1·005 [1− exp(−0·6× LAI)]1·2 (1)

The upper and lower thresholds and the shape of the
response curve are the parameters for each type of
stress that define the sensitivity and severity of a
depleted soil profile. The upper threshold determines
when the stress begins, whereas the lower threshold is
the point at which the physiological process ceases
completely. The shape factor used in AquaCrop
describes the amplitude of the stresses, which affect
crop yield. A shape factor of zero indicates the highest
sensitivity of a crop to water stress while values >0
are indicative of a lower sensitivity to water stress.

The water stress is divided into expansion stress,
stomatal closure stress and senescence stress coeffi-
cients. These coefficients were calibrated using the
experimental data to obtain a better match between
AquaCrop simulated and observed data.

Soil parameters

Data pertaining to the soil at the experimental site,
required as input parameters for AquaCrop, are:
number of soil horizons, soil texture, field capacity,
permanent wilting point, saturated hydraulic conduc-
tivity and volumetric water content at saturation. The
experimental site did not contain any impervious or
restrictive soil layer to obstruct the expansion of root
growth. The curve number of the site was used to
estimate surface runoff from rainfall that occurred
during the experiment.

Irrigation and field management parameters

Irrigation and fieldmanagement during the experiment
are two important components considered in the
AquaCrop model. Irrigation management comprised
data pertaining to both rainfed (no irrigation)
and irrigation conditions. In the full irrigation

Table 2. Input data of crop parameters used in AquaCrop model

Description Value Unit

Base temperature 8·0 °C
Cut-off temperature 30·0 °C
Canopy growth coefficient (CGC) 19·9 %/day
Canopy decline coefficient (CDC) at senescence 1·06 %/day
Leaf growth threshold (Pupper) 0·14 % of TAW
Leaf growth threshold (Plower) 0·72 % of TAW
Leaf growth stress coefficient curve shape 2·9 Unitless (moderately convex curve)
Expansion stress coefficient (Pupper) 0 % of TAW
Expansion stress coefficient (PLower) 0·3 % of TAW
Expansion stress coefficient curve shape 1·3 % of TAW
Stomatal conductance threshold (Pupper) 0·5 Unitless
Stomatal stress coefficient curve shape 1·8 Unitless (high convex curve)
Senescence stress coefficient curve shape 1·3 Unitless (moderately convex curve)
Senescence stress coefficient (Pupper) 0·19 Unitless (initiation of canopy senescence)
Coefficient, inhibition of leaf growth on HI 7·0 Unitless (HI increased by inhibition of leaf growth at anthesis)
Coefficient, inhibition of stomata on HI 3·0 Unitless (HI increased by inhibition of stomata at anthesis)
Maximum basal crop coefficient (Kcb) 1·15 Unitless
Time from sowing to emergence 6 days
Time from sowing to start flowering 52 days
Time from sowing to start senescence 72 days
Time from sowing to maturity 97 days
Length of the flowering stage 10 days

TAW: total available water.
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treatment (W4), water was applied up to field capacity
when soil moisture in the root zone approached 50%
of total available water. In the deficit irrigation
treatments (i.e. 50 and 75% of full irrigation, desig-
natedW2 andW3, respectively), water was applied on
the same day as the fully irrigated plot, but the
irrigation depths were reduced to 50 and 75% of the
full irrigation. There was no irrigation (W1) in the
rainfed plots. The field management components were
fertility levels (i.e. no nitrogen (N1), 75 kg N/ha (N2)
and recommended or full fertilization of 150 kg N/ha
(N3)), mulching to reduce evaporation from the soil
and furrow end bunds to eliminate surface runoff. In
the present study, the AquaCrop model was evaluated
through calibration and validation to estimate yield,
biomass and canopy cover under the different water
and nitrogen levels detailed above.

Operation of ClimGen, CROPWAT and AquaCrop
to generate future maize yield

The data obtained from ClimGen were used in the
CROPWAT model to determine irrigation scheduling
for a maize crop in the kharif season of years 2011,
2012, 2013 and 2014. Schematic architecture of
linking different models to generate future yield of
maize under variable water availability scenarios is
presented in Fig. 4. The CROPWAT was used to
estimate the date and depth of irrigation, a facility that

is not available in AquaCrop. The generated climate
data of these 4 years and the irrigation scheduling
information was used in the validated AquaCrop
model to predict maize grain yield, biomass and
water productivity (the ratio of grain yield to the
amount of total water used (i.e. sum of irrigation and
the effective rainfall during the crop growth period)). In
addition, the best sowing date to obtain maximum
yield was also generated by simulation using the
AquaCrop model. The validated AquaCropmodel was
used for generation of future scenarios. The yield
variations under different irrigation water and nitrogen
levels were also obtained by simulation through the
AquaCropmodel (Table 3). The inputs to the model for
different years were the climatic data, date and depth
of irrigation and varying nitrogen levels. The soil and
crop parameters were kept the same as that used in the
model validation for the year 2010. A similar approach
could be replicated to other future years using the
generated climate data and the model linking proto-
cols to obtain the future maize yield.

RESULTS AND DISCUSSION

AquaCrop model calibration results

The AquaCrop model was calibrated using the
experimental data from 2009 to predict canopy
cover, grain yield and biomass under different water

ClimGen weather 
generator

Parameterized with 37 
years of historical data 
of study area

CROPWAT 8.0

Validated

AquaCrop 3.1

Generate 
climatic 
parameters 
for future
years

Data of maize crop 

Generate 
Irrigation 
scheduling 
information

Maize yield and WP

Fig. 4. Schematic architecture of linking different models to generate future yield of maize under variable water availability
scenarios.
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and fertilizer application levels in the experiment. The
calibrated and observed data for biomass, grain yield
and water productivity in all treatment combinations
are presented in Table 3 and the results of grain yield
are plotted in Fig. 5.

The results of model performance pertaining to grain
yield are shown in Fig. 5. The maximum andminimum
errors in grain yield prediction were observed in the
W2N2 and W4N3 treatments, amounting to 16 and
0·84%, respectively (Table 3). The model was cali-
brated for grain yield with the Nash-Sutcliffe model
efficiency E (Nash & Sutcliffe 1970) and R2 of 0·99,
respectively. The prediction error in biomass for W1N1

and W4N3 treatments were 30·6 and 1·82%, respect-
ively (Table 3). The best calibrated AquaCrop model
was obtained with prediction error ranging from a
minimum of 0·07% for the full irrigation treatment
(W4) to a maximum of 4·1% in W2 (50% FC) for all
nitrogen levels. Similarly, the highest (13·4%) and
the lowest prediction error (2·5%) for biomass were
in rainfed crops and in the W3 treatment (i.e. 75% FC),
respectively, at all the nitrogen levels. The best
calibrated AquaCrop model for water productivity
was obtained with prediction error ranging from the
maximum of 27·5% in the W1N3 treatment to the
minimum of 2·35% in the W4N3 treatment, respect-
ively (Table 3). The prediction error statistics of the
calibrated model are presented in Table 4. The model

was calibrated for simulation of yield and biomass for
all treatment levels with the prediction error statistics of
model efficiency (E) (0·95<E<0·99) root-mean-square
error (RMSE) (0·29<RMSE<0·42) and mean absolute
error (MAE) (0·17<MAE<0·51 t/ha). AquaCrop model
predictions for grain yield and biomass were in line
with the observed data which were corroborated with
E and R2 values approaching one. However, the water
productivity during calibration was with E of 0·66 and
R2 of 0·8 (Table 4). The model calibration results
and the observed values of grain yield, for all treatment
combinations are plotted in Fig. 5.

Table 3. Calibration results of biomass, grain yield and water productivity (WP) of maize under different
irrigation water and fertilizer regimes

Treatments

Yield (t/ha)

Pe (±%)

Biomass (t/ha)

Pe (±%)

WP (kg/ha.mm)

Pe (±%)Obs. Sim. Obs. Sim. Obs. Sim.

Non-limiting or recommended fertilizer level (N3)

Rainfed 2·36 2·22 5·93 10·24 10·82 5·66 10·5 7·8 25·7
W2 (50% FC) 3·62 3·96 9·39 14·01 13·45 3·99 10·2 11·4 11·8
W3 (75% FC) 4·25 4·6 8·23 14·67 14·36 2·1 10·4 12·1 16·3
W4 (100% FC) 5·93 5·88 0·84 18·14 17·81 1·82 12·9 13·2 2·35

Moderate-limiting fertilizer level (N2)

Rainfed 1·95 2·19 12·31 7·95 10·6 25·28 7·8 8·2 5·1
W2 (50% FC) 3·19 3·70 16·0 10·54 12·48 18·41 9·0 10·1 12·2
W3 (75% FC) 4·15 4·27 2·9 12·39 13·23 6·78 10·2 11·1 8·8
W4 (100% FC) 5·12 4·92 3·9 14·9 13·84 7·11 11·0 12·1 10·0

Poor fertilizer level (N1)

Rainfed 1·43 1·57 9·79 6·4 8·36 30·6 5·7 6·0 7·1
W2 (50% FC) 2·54 2·78 9·45 8·95 9·63 7·6 7·1 8·1 14·1
W3 (75% FC) 3·01 2·82 6·31 9·36 9·63 2·88 7·4 8·6 16·2
W4 (100% FC) 3·39 3·51 3·54 10·42 9·87 5·28 7·4 8·9 20·3

Obs., observed; Sim., simulated; Pe, prediction error.
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Fig. 5. Model calibration results for grain yield under
different irrigation and nitrogen levels. E, model efficiency;
MAE, mean absolute error.
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AquaCrop model validation results

It was observed that the maximum and minimum
errors of grain yield prediction duringmodel validation
with the data of 2010 were for the W1N1 and W4N3

treatments, amounting to 9·9 and 1·35% respectively
(Table 5). Morever, the maximum and minimum
errors for biomass were obserevd to be in the W1N1

and W4N2 treatments (17·5 and 0·48%, respectively)
(Table 5). The AquaCropmodel was validated with the
prediction error ranging from a minimum of 0·47%
for the full irrigation treatment (W4) to a maximum
of 5·91% in rainfed (W1) under all nitrogen levels.
Similarly, the highest (11·06%) and the lowest
prediction error (4·36%) for biomass were observed
for rainfed conditions and in (W4) treatment (i.e. 100%
FC), respectively (Table 5). The prediction error

statistics of model validation are shown in Table 6. It
can be observed from Table 6 that the model was
validated for yield and biomass with all treatment
combinations for the prediction error statistics
parameters viz. E, RMSE, R2 and MAE varying from
0·95<E<0·98, 0·1<RMSE<0·75, 0·9<R2<0·96
and 0·11<MAE<1·08 t/ha. Moreover, the model was
validated for simulating the water productivity for
all irrigation levels with the prediction error statistics
E and R2 values of 0·74 and 0·77, respectively.
The model validation results and the observed values
of grain yield for all treatment combinations were
plotted (Fig. 6). It can be seen from Fig. 6 that the E
and R2 values for grain yield and biomass predictions
by the AquaCrop model under different irrigation
water and nitrogen regimes were in line with the
observed values.

Table 4. Prediction error statistics of the calibrated AquaCrop model

Model output parameters

Mean

RMSE E MAE R2Measured Simulated

Grain yield (t/ha) 4·11 4·2 0·29 0·99 0·17 0·90
Biomass (t/ha) 14·27 14·31 0·42 0·95 0·51 0·98
WP (kg/ha/mm) 8·97 9·87 1·15 0·66 0·86 0·80

Table 5. Validation results of biomass and grain yield of maize under different irrigation water and
nitrogen regimes

Treatments

Yield (t/ha)

Pe (±%)

Biomass (t/ha)

Pe (±%)

WP (kg/ha/mm)

Pe (±%)Obs. Sim. Obs. Sim. Obs. Sim.

Non-limiting or recommended fertilizer level (N3)

Rainfed 5·52 5·92 7·30 16·43 18·19 10·7 12·4 11·3 8·6
W2 (50%FC) 5·62 5·89 4·94 16·37 18·09 10·5 12·6 11·6 7·4
W3 (75%FC) 5·52 5·86 6·11 17·37 18·01 3·7 11·9 10·8 9·2
W4 (100% FC) 5·77 5·85 1·35 17·60 17·97 2·1 12·0 11·2 6·7

Moderate-limiting fertilizer level (N2)

Rainfed 4·53 4·59 1·43 14·1 14·05 6·74 10·70 12·2 14·01
W2 (50%FC) 4·68 4·55 2·82 14·23 14·87 4·3 10·50 11·8 12·45
W3 (75%FC) 4·80 4·52 5·83 14·62 14·80 1·67 10·40 11·6 11·54
W4 (100% FC) 4·78 4·51 5·65 14·63 14·72 0·84 9·90 10·7 8·08

Poor fertilizer level (N1)

Rainfed 3·16 3·47 9·9 10·17 11·95 17·5 7·50 9·1 21·3
W2 (50%FC) 3·24 3·45 6·35 10·10 11·84 17·2 7·30 8·8 20·5
W3 (75%FC) 3·18 3·44 8·7 10·20 11·84 16·0 6·90 8·2 18·8
W4 (100% FC) 3·31 3·43 3·6 10·39 11·78 13·3 6·90 7·8 13·04
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Linking of models results

ClimGen-generated rainfall depth during the growing
seasons of 2011, 2012, 2013 and 2014 are shown
in Tables 7–10, respectively. The total rainfall was
432mm during the maize-growing season in 2011
(Table 7) and the proportions occurring during four
different maize growth stages, termed here as initial
(corresponding to BBCH code: 9–20; Lancashire et al.
1991), development (BBCH code: 21–49), middle
(BBCH code: 50–9) and late stages (BBCH code:
80–99) were 0·16, 0·25, 0·59 and 0·00 of total rainfall,
respectively (Fig. 7). It can also be seen that, as per the
ClimGen-generated data, there was no rainfall for 58
days after sowing (DAS) the crop on 22 July. Therefore,
irrigationwill be necessary at this sensitive crop growth
stage to reduce the effect of water stress. Under these
scenarios, application of three irrigations of 51 mm
each at 42, 72 and 92 DAS, amounting to a total
irrigation depth of 153 mm, was predicted for 2011
using the CROPWAT model. Furthermore, using
the information generated for climate, irrigation
scheduling, soil and crop data, maize yield as
simulated by AquaCrop varied from 3400 to
5900 kg/ha under different irrigation and nitrogen
levels (Table 7). Also, under the rainfed scenarios

with recommended nitrogen dose (W1N3), the maize
yield was 3490 kg/ha.

Similarly for the year 2012, the total rainfall depth
predicted by ClimGen was 739mm and the irrigation
scheduling estimated by CROPWAT was 51 DAS and
56mm (Table 8). The proportions of rainfall depth
during the initial (BBCH code: 9–20), development
(BBCH code: 21–49), middle (BBCH code: 50–79) and
late (BBCH code: 80–99) maize growth stages were
0·59, 0·36, 0·05 and 0·00 of total rainfall, respectively
(Fig. 8). Subsequently, the AquaCropmodel prediction
for maize grain yield was 5920 kg/ha under full
irrigation (W4) and 1600 kg/ha under the rainfed
scenario (W1) with recommended nitrogen dose (N3).
The predicted grain yield under rainfed conditions for
2012 was less than that of 2011, which may be
attributed to less rainfall in 2012 during the grain
formation stage.

For 2013, the ClimGen-generated rainfall depth
during the maize growing period was 374mm
(Table 9), with proportions of rain falling during the
four growth stages of 0·42, 0·34, 0·20 and 0·04 of total
rainfall, respectively (Fig. 9). Therefore, three irrigation
requirements of 59, 68 and 64mm at 47, 66, 75 DAS,
amounting to a total irrigation depth of 191mm, was
generated for the year 2013 by the CROPWAT model.
Using these parameters, AquaCrop predicted a maize
grain yield of 5900 kg/ha under full irrigation (W4),
while under the rainfed scenarios (W1) with recom-
mended nitrogen dose (N3), the maize yield was
1400 kg/ha. The highest maize grain yield was
predicted to be 5900 kg/ha in the year 2013 with full
irrigation and recommended dose of N fertilizer (N3),
with rainfall of 374mm during the crop-growing
period coupled with four irrigations totalling 191mm
(Fig. 9). However, the predicted maize yield for 2012
with higher than normal rainfall depth of 739 mm and
with two irrigations of 113 mm was 5920 kg/ha. In
contrast, the higher than normal rainfall depths
generated for 2012 (739mm) and 2014 (625 mm)

Table 6. Prediction error statistics of the validated AquaCrop model

Model output parameters

Mean

RMSE E MAE R2Measured Simulated

Grain yield (t/ha) 4·51 4·63 0·1 0·98 0·11 0·96
Biomass (t/ha) 13·85 14·92 0·75 0·95 1·08 0·90
WP (kg/ha/mm) 9·87 11·22 1·20 0·74 0·71 0·77

5

5·5

4

4·5

3
3

3·5

6
Yield = 0·989x
R2 = 0·96
RMSE = 0·1
E = 0·98
MAE = 0·11

Yield
Linear (yield)

65·554·5

Measured (t/ha)

43·5

Si
m

ul
at

ed
 (

t/h
a)

Fig. 6. Model validation results in simulating grain yield of
maize under different irrigation and nitrogen levels. E,
model efficiency; MAE, mean absolute error.
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Table 7. Predicted rainfall distribution, irrigation scheduling and yield of maize under different treatments during 2011

DAS 1 3 4 5 15 25 30 31 32 38 42 43 44 45 52 53 54 56 57 58 72 92

Rainfall (mm) Initial stage
(BBCH code: 9–20)

(54mm)

Development stage
(BBCH code: 21–49)

(141mm)

Middle stage
(BBCH code: 50–79)

(237mm)

Late stage
(BBCH code
80–99) (0 mm)

Irrigation (mm) 51 51 51
Treatment W1N1 W1N2 W1N3 W2N1 W2N2 W2N3 W3N1 W3N2 W3N3 W4N1 W4N2 W4N3

Yield (t/ha) 2·6 3·4 3·5 3·0 4·8 4·9 3·2 4·5 5·1 3·0 4·9 5·9

Total rainfall (P) during the crop-growing season, 432mm. Total depth of irrigation, 153mm.

Table 8. Predicted rainfall distribution, irrigation scheduling and yield of maize under different treatments during 2012

DAS 1 2 3 7 9 12 13 14 18 19 21 35 36 37 38 42 47 51 55 56 57 62

Rainfall (mm) Initial stage
(BBCH code: 9–20) (437mm)

Development stage
(BBCH code: 21–49) (245mm)

Middle stage
(BBCH code: 50–79) (57mm)

Irrigation (mm) 56
Treatment W1 N1 W1N2 W1N3 W2N1 W2N2 W2N3 W3N1 W3N2 W3N3 W4N1 W4N2 W4N3

Yield (t/ha) 1·4 1·5 1·6 3·3 5·0 5·6 3·5 5·3 5·9 3·4 5·3 5·9

Total rainfall (P) during the crop-growing season, 739mm. Total depth of irrigation, 56mm.

Table 9. Predicted rainfall distribution, irrigation scheduling and yield of maize under different treatments during 2013

DAS 2 3 7 8 9 10 22 24 35 39 40 43 47 49 53 54 55 62 66 75 83

Rainfall (mm) Initial stage
(BBCH code: 9–20)

(159mm)

Development stage
(BBCH code: 21–49)

(126mm)

Middle stage
(BBCH code: 50–79)

(73mm)

Late stage
(BBCH code

80–99) (16 mm)
Irrigation (mm) 59 68 64
Treatment W1 N1 W1N2 W1N3 W2N1 W2N2 W2N3 W3N1 W3N2 W3N3 W4N1 W4N2 W4N3

Yield (t/ha) 1·1 1·3 1·4 2·7 2·9 3·0 3·1 4·3 4·8 3·3 5·2 5·9

Total rainfall during the crop-growing season, 374mm. Total depth of irrigation, 191mm.
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resulted in grain yield of 1600 and 5670 kg/ha, res-
pectively, under rainfed conditions with a full dose of
fertilizer (N3). This difference in yieldmay be attributed
to the occurrence of rainfall during the sensitive growth
stages (BBCH codes: 51–71) after the sowing date of
22 July in both these years (Tables 8 and 10).

Similarly for 2014, the total rainfall depth predicted
by ClimGen was 625mm and the irrigation schedule
generated by CROPWAT was 64 DAS and 52mm
(Table 10). The proportions of rainfall during the
initial (BBCH code: 9–20), development (BBCH code:
21–49), middle (BBCH code: 50–79) and late stages
(BBCH code: 80–99) of maize growth were 0·15, 0·25,
0·57 and 0·03 of total rainfall, respectively (Fig. 10).
AquaCrop predicted maize grain yield of 5800 kg/ha
under full irrigation with recommended nitrogen
dose N3. Also, under rainfed conditions with recom-
mended nitrogen dose (W1N3), the maize yield
was 5670 kg/ha. Maize grain yield predictions under
different irrigation and nitrogen levels for 4 years from
2011 to 2014 are shown in Figs 11to13, respectively,
for 150 (N3), 75 (N2) and 0 (N1) kg N/ha nitrogen
levels. It can be observed from these figures that there
was minimal difference in yield for different irrigation
water treatments during the year 2014 and the trend
was the same for all N fertilization levels. This may
be attributed to occurrence of well distributed and
above-normal rainfall depth of 625mm during the
crop-growing period of 2014. Also, there was one
irrigation of 52mm at 64 DAS during the year 2014
(Table 10). Therefore, the model-predicted data
showed that there was no effect of irrigation on crop
yield during the year 2014.

CONCLUSIONS

Judicious selection of models pertaining to climate
generation, irrigation scheduling and crop growth and
their meticulous use plays a vital role in prediction of
crop yield under future water availability scenarios. In
the present study, ClimGen, CROPWAT and validated
AquaCrop models were linked to predict future maize
yield under different irrigation and N-fertilization
levels. It was observed that the sowing date of the
crop would play a significant role in obtaining
maximum yield under the ClimGen generated future
rainfall distributions. The AquaCrop model predicted
data for four future years and revealed significant
yield variations of kharif maize with different water
and nitrogen supply situations under deficit irrigation.
It was also observed that bringing forward theTa
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Total rainfall depth (P) = 432mm

2011
Initial stage (0·16P)
(BBCH code 9–20)

Development stage
(0·3P) (BBCH code:

21–49)
Middle stage (0·54P)
(BBCH code: 50–79)

Fig. 7. Distribution of rainfall (P) during different crop growth stages (sowing date: 22 July 2011).

Development stage (0·36P)
(BBCH code: 21–49)

Middle stage (0·05P)
(BBCH code: 50–79) 2012

Total rainfall depth (P) = 739mm

Initial stage (0·6P)
(BBCH code 9–20)

Fig. 8. Distribution of rainfall (P) during different crop growth stages (sowing date: 22 July 2012).

Middle stage (0·02P)
(BBCH code: 50–79)

Late stage (0·04P) (BBCH code: 80–99)

2013

Total rainfall depth (P) = 374mm

Initial stage (0·42P)
(BBCH code 9–20)

Development stage (0·34P)
(BBCH code: 21–49)

Fig. 9. Distribution of rainfall (P) during different crop growth stages (sowing date: 22 July 2013).
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Middle stage (0·57P)
(BBCH code: 50–79)

Development stage (0·25P)
(BBCH code: 21–49)

Initial stage (0·15P)
(BBCH code 9–20)

Late stage (0·03P) (BBCH code: 80–99)

Total rainfall depth (P) = 625mm

2014

Fig. 10. Distribution of rainfall (P) during different crop growth stages (sowing date: 22 July 2014).
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sowing date, as obtained from model predictions, to
1st July 2012 would result in better yield under
rainfed conditions. Therefore, linkage of ClimGen,
CROPWAT and AquaCrop can assist in prediction of
sowing date, irrigation scheduling and crop growth/
yield parameters under changing climate scenarios.
Moreover, the model-linking protocol developed in
the present study can be replicated over different
locations after successful calibration of the models. In
addition, the predictions of rainfall, irrigation depths
and crop yield need to be ascertained with the
observed data of future years to judge its accuracy
and wide applicability.

The authors wish to acknowledge the financial
assistance provided under a sub-project of National
Agricultural Innovation Project (NAIP), Indian Council
of Agricultural Research (ICAR) to undertake the
research work at Water Technology Centre, IARI,
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