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Abstract

In this paper we prove that the set {|x1 − x2|, . . . , |xk − xk+1| : xi ∈ E} has non-empty inte-
rior in R

k when E ⊂R
2 is a Cartesian product of thick Cantor sets K1, K2 ⊂R. We also

prove more general results where the distance map |x − y| is replaced by a function φ(x, y)
satisfying mild assumptions on its partial derivatives. In the process, we establish a nonlinear
version of the classic Newhouse Gap Lemma, and show that if K1, K2, φ are as above then
there exists an open set S so that

⋂
x∈S φ(x, K1 × K2) has non-empty interior.

2020 Mathematics Subject Classification: 28a75, 28a80 (Primary); 42B (Secondary)

1. Introduction
1·1. Background

It is a simple consequence of the Lebesgue density theorem that subsets of Rn of positive
Lebesgue measure contain a translated and scaled copy of every finite point set for an inter-
val worth of scalings [24]. Under more general assumptions on E, a problem of great current
interest is that of describing the set of configurations that exists within E. This includes find-
ing conditions on the structure or size of E that guarantee the existence of various patterns
within E, see, for instance, [2, 4, 6, 8, 15, 16, 28], as well as the more quantitative question
of describing the size of the set of similar copies of a given configuration [6, 10–13, 18, 27].
We focus on the latter question. A particularly simple object of study is the set of chains of
distances determined by a set E:{(

|x1 − x2|, . . . , |xk − xk+1|
)

∈R
k : xi ∈ E distinct

}
. (1·1)

Such objects are studied by Bennett, Iosevich, and the second listed author in [1]. They
prove that if the Hausdorff dimension of E is greater than (d + 1)/2, the above set has non-
empty interior in R

k. In the plane, it was shown by Ou and the second author [21] that the
set of distance chains has positive Lebesgue measure when dimH(E) > 5/4. However, when
dimH(E) < 3/2 it is not known whether the set of distance chains has non-empty interior.
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The aim of this paper is to study the interior of sets of distance chains (and more generally
distance trees) in subsets of R

2 under structural assumptions different from having large
Hausdorff dimension. We will consider plane sets of the form K1 × K2, where each Kj is
a sufficiently “thick” Cantor set. The precise definition of thickness is due to Newhouse
([20], also see [22] and [26]) and is given below (Definition 1·2), but can be intuitively
described as follows. Suppose we construct a Cantor set in countably many stages by taking
K0 = [0, 1], K1 = [0, a] ∩ [b, 1], and so on, so that Kn is a union of finitely many closed
intervals and Kn+1 is obtained from Kn by removing an interior open interval from each.
When we consider the sequence of bounded gaps in order of decreasing length, the thickness
measures the size of the open intervals being removed, relative to the closed intervals which
remain.

1·2. Definitions and notation

Definition 1·1 (Cantor sets). A Cantor set is a non-empty subset of Rd which is compact,
perfect, and totally disconnected.

When K ⊂R is a Cantor set, we have the following notion of structure.

Definition 1·2 (Thickness). A gap of a Cantor set K ⊂R is a connected component of the
complement R \ K. If u is the right endpoint of a bounded gap G, for b ∈R∪ {∞}, let (a, b)
be the closest gap to G with the property that u < a and |G|� b − a. The interval (u, a) is
called the bridge at u and is denoted B(u). Analogous definitions are made when u is a left
endpoint. The thickness of K at u is the quantity

τ (K, u) := |B(u)|
|G| .

Finally, the thickness of the Cantor set K is the quantity

τ (K) := inf
u

τ (K, u),

the infimum being taken over all gap endpoints u.

Before moving on, we comment on the relationship between thickness and Hausdorff
dimension. One can easily construct a Cantor set K with arbitrarily small thickness and
Hausdorff dimension arbitrarily close to 1. This is due to the fact that thickness is defined
using an infimum, so one can construct a thin Cantor set by simply ensuring one bridge is
much smaller than the corresponding gap. More precisely, for any δ > 0 and 1 < N < δ−1

we can construct K as a subset of [0, δ] ∪ [Nδ, 1]. It is clear that Cantor sets of this form
can attain any Hausdorff dimension in [0, 1]. Considering the gap (δ, Nδ) and corresponding
bridge [0, δ], we conclude that τ (K) � 1/(N − 1).

On the other hand, large thickness implies large Hausdorff dimension. Specifically, one
can prove the bound (see [22, page 77]):

dimH(K) � log 2

log
(

2 + 1
τ (K)

) . (1·2)

The study of chains of distances is motivated by the Falconer distance problem, which
asks how large the Hausdorff dimension of a set must be to ensure positive measure worth
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of distances; This amounts to the case k = 1 in the chain problem. For more on the Falconer
distance problem, see [7, 14]. To pose questions about more complex patterns, the language
of graph theory is useful. We pause to state some basicdefinitions.

Definition 1·3 (Graphs). A (finite) graph is a pair G = (V , E), where V is a (finite) set
and E is a set of 2-element subsets of V . If {i, j} ∈ E we say i and j are adjacent and write
i ∼ j.

Consider a graph with vertex set {1, . . . , k + 1} and edges i ∼ j if and only if |i − j| = 1;
Such a graph is called a k-chain. Given points x1, . . . xk+1 in the plane, the vector (|x1 −
x2|, . . . , |xk − xk+1|) ∈R

k encodes all pairwise distances |xi − xj| for which i ∼ j. The set
(1·1) contains all such distance vectors obtained from points in the chosen subset E. This
motivates the following general definition.

Definition 1·4 (G-distance sets). Let G be a graph on the vertex set {1, . . . , k + 1} with m
edges, and let ∼ denote the adjacency relation on G. Define the G-distance set of E to be

�G(E) =
{(|xi − xj|)i∼j : x1, ..., xk+1 ∈ E, xi 	= xj

}
,

where (|xi − xj|)i∼j denotes a vector in R
m with coordinates indexed by the edges of G.

The feature of chains that allows us to obtain results is that they can be deconstructed one
vertex at a time. Given a k-chain, we may remove the last vertex and its corresponding edge
and obtain a (k − 1)-chain. This allows us to make inductive arguments, reducing results
about long chains to results about short chains, and ultimately to results about chains with
only one link. This feature is also present in a more general class of graphs, which we define
here.

Definition 1·5 (Trees). A tree is a connected, acyclic graph; equivalently, a tree is a graph
in which any two vertices are connected by exactly one path. If T is a tree, the leaves of T
are the vertices which are adjacent to exactly one other vertex of T .

In particular, a k-chain is a tree. The structural property of trees which enables our
induction argument is recorded below as a proposition.

PROPOSITION 1·6 (Tree structure). If T is a tree with k + 1 vertices, then T has k edges.
Moreover, there is a sequence of trees T1, . . . , Tk+1 such that T1 = T and each Ti+1 is
obtained from Ti by removing one leaf and its corresponding edge.

1·3. Main results

Our first result builds on the work in [23] of Simon and the second listed author, where it is
shown �x(K × K) = {|x − y| : y ∈ K × K} has non-empty interior for each x ∈R

2 provided
that K ⊂R is a Cantor set satisfying τ (K) > 1.

THEOREM 1·7 (Interior of tree distance sets). Let K1, K2 be Cantor sets satisfying τ (K1) ·
τ (K2) > 1 For any finite tree T, the set �T (K1 × K2) has non-empty interior.
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Theorem 1·7 also holds if the Euclidean norm is replaced with more general norms; see
Theorem 1·14 below. Recall that if E ⊂R

2 and dimH(E) > 5/4, then �T (E) has positive
Lebesgue measure. However, when dimH(E) < 3/2 it is not known whether �T (E) has non-
empty interior. In light of (1·2), if τ (Kj) > 1 then dimH(K1 × K2) > 2 · log 2/log 3 ≈ 1.26.
Therefore, based solely on dimension we can conclude �T (K1 × K2) has positive Lebesgue
measure, but not necessarily non-empty interior.

Beyond trees, the existence of patterns in thick subsets of R
d with rigid structure was

investigated in [25] when d = 1, and in [6, 27] when d � 1. In [25], it is shown that, given any
compact set C in R with thickness τ , there is an explicit number N(τ ) such that C contains
a translate of all sufficiently small similar copies of every finite set in R with at most N(τ )
elements. Higher dimensional analogues of these results are subsequently given in [6]. The
only drawback is that the theorems in [6, 25] assume very large thickness; moreover, the
threshold depends on the size of the configuration one wants to find. For instance, in order
to ensure N(τ ) � 3, one needs τ at least on the order of 109. In contrast, our results for trees
apply to any Cantor sets of thickness greater than 1, regardless of how large the tree is.

Another Falconer type problem which has received much attention is obtained by replac-
ing the Euclidean distance with other geometric quantities, notably dot products. We make
the following definition.

Definition 1·8 (Dot product sets). Given E ⊂R
d, the dot product set of E is the set

�(E) = {x · y : x, y ∈ E}.
We also consider the pinned dot product set

�x(E) = {x · y : y ∈ E}.
Finally, given a graph G on vertices {1, ..., k + 1}, define

�G(E) = {(xi · xj)i∼j : x1, ..., xk+1 ∈ E}.

When E ⊂R
d is a set of sufficient Hausdorff dimension, the dot product set is treated

in [5, theorem 1·8]. In particular, it is shown there that if dimH(E) > (d + 1)/2, then �(E)
has positive measure. The related set {x⊥ · y : x, y ∈ E}, where x⊥ = (− x2, x1) when d = 2,
is the set of (signed) areas of parallelograms spanned by points of E. Similar to the above
definition, for any graph G one can consider the vector which encodes all areas determined
by points xi, xj such that i ∼ j. This problem was investigated by the first author in [18] in
the case where G is a complete graph, and the analogous problem in higher dimensions was
studied by the first author and Galo in [9].

In the setting where one is considering sets E with large Hausdorff dimension, the proofs
of distance and dot product results are generally similar in complexity. However, in the
setting where E = K × K, where K is a sufficiently thick Cantor set, the dot product problem
is considerably more straightforward than to the distance problem. We nevertheless record
the result here and provide its proof in Section 3 as a demonstration of how our techniques
vary in these two regimes.

THEOREM 1·9 (Interior of tree dot product sets). Let K be a Cantor set satisfying
τ (K) � 1. For any finite tree T, the set �T (K × K) has non-empty interior.
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Our next main theorem concerns the standard middle thirds Cantor set, which we will
denote C1/3 throughout this paper. Note that Theorem 1·7 does not apply to C1/3, as the
hypothesis of that theorem is τ (K) > 1 and clearly τ (C1/3) = 1. While we do not expect
that Theorem 1·7 can be extended to the τ (K) = 1 case in general, this weaker thickness
condition together with the self similarity of C1/3 allow us to modify the proof in that case.
The result is as follows.

THEOREM 1·10 (Interior of T distance sets in the middle third Cantor set). For any finite
tree T, the set �T (C1/3 × C1/3) has non-empty interior.

Having established results for the Euclidean distance and dot products, we turn to the
more general setting of (G, φ) distance trees.

Definition 1·11 ((G, φ) distance sets). Let G be a graph on the vertex set {1, . . . , k + 1}
with m edges, and let ∼ denote the adjacency relation on G. Given a function
φ : Rd ×R

d →R, define the (G, φ)-distance set of E to be

�(G,φ)(E) = {(φ(xi, xj))i∼j : x1, ..., xk+1 ∈ E, xi 	= xj}.
We require the following derivative condition on φ.

Definition 1·12 (Derivative condition). Let φ : R2 ×R
2 →R be a C1 function on A × B,

for open sets A, B ⊂R
2. We say that φ satisfies the derivative condition on A × B if for

each x ∈ A, if ϕx(y) = φ(x, y), then the partial derivatives of ϕ are bounded away from zero
on B.

Note 1·13. Note that the derivative condition is satisfied, for instance, by φ(x, y) = |x − y|p,
the p-norm, whenever p � 1, and φ(x, y) = x · y for appropriate choices of A and B.

THEOREM 1·14 (Interior of (T , φ) distance sets). Let K1, K2 ⊂R be Cantor sets satisfy-
ing τ (K1) · τ (K2) > 1. Suppose φ : R2 ×R

2 →R satisfies the derivative condition on A × B,
for open A, B ⊂R

2, each of which intersects K1 × K2. Then, for any finite tree T, the set
�T (K1 × K2) has non-empty interior.

2. Method of proof

We now discuss the strategy for proving our results. The first main ingredient is to estab-
lish what we call pin wiggling lemmas, showing that not only do pinned distance and dot
product sets contain intervals, but that there is a single interval which works for all such sets
obtained by wiggling the pin a small amount. The setup is as follows. Let φ : R2 ×R

2 →R

be any function; for example, to prove Theorem 1·7 we use the function φ(x, y) = |x − y|.
Given a point x and a set E, we use the notation

φ(x, E) := {φ(x, y) : y ∈ E}.
A pin wiggling lemma is a lemma which says, under some assumptions on E, that there is
a single interval I contained in φ(x, E) for a range of x; equivalently, the set⋂

x∈S

φ(x, E)
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has non-empty interior for some neighbourhood S of pins. In Section 3, we will prove pin
wiggling lemmas for each of our main theorems. The proofs are based based on the following
classical result known as the Newhouse gap lemma [22, page 61].

LEMMA 2·1 (Newhouse gap lemma). Let K1, K2 ⊂R be Cantor sets satisfying
τ (K1)τ (K2) � 1. Suppose further that neither of the sets K1, K2 is contained in a single
gap of the other. Then, K1 ∩ K2 	= φ.

In practice, if K2 is contained in the convex hull of K1 it can be difficult to check whether
the endpoints of K2 are contained in a single gap of K1. We will often use a special case of
this condition which is easier to check. To do this we first introduce some terminology.

Definition 2·2 (Linked sets). Two open, bounded intervals I, J ⊂R are said to be linked
if they have non-empty intersection, but neither is contained in the other. Bounded (not
necessarily open) intervals are linked if their interiors are linked. Finally, two bounded sets
K1, K2 ⊂R are linked if their convex hulls are linked.

PROPOSITION 2·3 (Special case of Newhouse gap lemma). Let K1, K2 ⊂R be linked
Cantor sets satisfying τ (K1) · τ (K2) � 1. Then, K1 ∩ K2 	= φ.

Now, given a fixed point x ∈R
2 and distance t ∈R, we have |x − y| = t if y2 = gdist

x,t (y1),
where

gdist
x,t (z) = x2 +

√
t2 − (z − x1)2.

Likewise, we have x · y = t if y2 = gdot
x,t (y1), where

gdot
x,t (z) = t

x2
− x1

x2
z.

We are therefore interested in applying the Newhouse gap lemma to find a point in the
intersection K2 ∩ g(K1) for an appropriate function g. In general, smooth functions do not
necessarily preserve thickness, so we cannot apply Newhouse directly to these sets. In [23]
it is proved that if g is continuously differentiable and I is a sufficiently small interval on
which g′ is bounded away from zero, then the thickness of g(K ∩ I) is not too much smaller
than that of K. This allows us to restrict attention on subsets K̃j ⊂ Kj where Newhouse can
be applied.

The final step is to prove a theorem which gives us a mechanism to convert pin wig-
gling lemmas to our main theorems. Given such a function φ and a tree T on vertices
{1, . . . , k + 1}, define

�(x1, . . . , xk+1) = (φ(xi, xj))i∼j.

Thus, the sets �T (E) and �T (E) are the images of Ek+1 under � for φ(x, y) = |x − y| and
φ(x, y) = x · y, respectively. Our main theorems are therefore giving conditions under which
the sets �(Ek+1) have non-empty interior. With this setup, the conversion mechanism is as
follows.

THEOREM 2·4 (Tree building mechanism). Fix a map φ : R2 ×R
2 →R and a tree T on

vertices {1, . . . , k + 1}, and consider the map � : (R2)k+1 →R
k defined by

�(x1, . . . , xk+1) = (φ(xi, xj))i∼j,
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Fig. 1. Boxes C(xi, ε) around points x1, ..., x5.

where ∼ denotes the adjacency relation of the graph T. Let K1, K2 be Cantor sets satisfying
τ (K1) · τ (K2) > 1, and let x1, . . . , xk+1 ∈ K1 × K2 be distinct points. Suppose that for any
Cantor sets K̃j ⊂ Kj, there exist open neighbourhoods Si of xi such that the set⋂

x∈Si

φ(x, K̃1 × K̃2)

has non-empty interior. Then, �((K1 × K2)k+1) has non-empty interior. Moreover,
�(x1, . . . , xk+1) is in the closure of �((K1 × K2)k+1)◦.

Proof. For the purpose of ensuring non-degeneracy, let 2ε > 0 denote the minimal
distance:

ε = 1

2
min

{|xi − xj| : i 	= j ∈ {1, 2, . . . , k + 1}} > 0,

and, for each i = 1, 2, . . . , k + 1, define the ε-box about xi by

C(xi, ε) = xi + [−ε, ε]2

= [
xi

1 − ε, xi
1 + ε

] × [
xi

2 − ε, xi
2 + ε

]
= C1(xi, ε) × C2(xi, ε),

where C1(xi, ε), C2(xi, ε) are the closed ε-intervals about the coordinates of xi (Figure 1).
Next, choose any leaf of T; without loss of generality we may assume we have labeled the

vertices so that k + 1 is our leaf. Let i denote the unique vertex which satisfies i ∼ k + 1. Let
K̃j = Kj ∩ Cj(xk+1, ε). By assumption, there exists a neighbourhood Si of xi so that the set⋂

x∈Si

φ(x, K̃1 × K̃2) (2·1)

has non-empty interior. Further, we may assume Si ⊂ C(xi, ε), which guarantees that the
points in Si and points in K̃1 × K̃2 ⊂ C(xk+1, ε) are distinct. Moreover, we can choose
ε2 ∈ (0, ε] so that C(xi, ε2) ⊂ Si, and hence (2·1) still holds with C(xi, ε2) in place of Si.
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For simplicity, we replace each of the ε-boxes about x1, . . . , xk+1 by potentially smaller
boxes C(xj, ε2) for each j ∈ {1, . . . , k + 1}.

To conclude, let Ei = C(xi, ε2) ∩ (K1 × K2), let T2 be the tree obtained from T by remov-
ing the vertex k + 1 and its corresponding edge, and let �2 be the function as in the statement
of the theorem, corresponding to the tree T2. We have proved there exists a non-empty open
interval I1 so that

�(E1 × · · · × Ek+1) ⊃ �2(E1 × · · · × Ek) × I1.

Running this argument successively on each of the trees T1, T2, ..., Tk as in Proposition 1·6,
we conclude that �((K1 × K2)k+1) contains a set of the form I1 × · · · × Ik for non-empty
open intervals I1, . . . , Ik. By construction, it is clear that �(x1, ..., xk+1) is in the closure of
I1 × · · · × Ik.

From the statement of Theorem 2·4, we see that we may start with any points
x1, . . . , xk+1 ∈ K1 × K2 and obtain an open box near �

(
x1, . . . , xk+1

)
, provided we can

prove pin wiggling lemmas around those points. We will refer to the starting points
x1, . . . , xk+1 as a skeleton.

Remark 2·5. In light of Theorem 1·7, it would be interesting to demonstrate the existence
of an interval I such that Ik ⊂ �T (K × K), as is done in [1, 17] in the large Hausdorff
dimension context. By Theorem 2·4, this amounts to showing there exists a skeleton
x1, ..., xk+1 ∈ K × K such that the distances |xi − xj| are constant for i ∼ j and such that no
two points of the skeleton share a coordinate. It is not clear how to do this in general.

In the special case where T is a k-chain, it is sufficient (but not necessary) that K contains
a length k + 1 arithmetic progression. Given an arithmetic progression a1, ..., ak+1 ∈ K, we
could then take xi = (ai, ai). Yavicoli [25] shows that long arithmetic progressions exist in
(very) thick Cantor sets. However, the required lower bound on thickness is much larger
then the τ (K) > 1 assumption in our results; to ensure even a 3-term arithmetic progression,
one needs τ (K) at least on the order of 109. Moreover, Broderick, Fishman and Simmons
[3] prove that there is no arithmetic progression in Cε of length greater than 1/ε + 1 for ε

sufficiently small, (where Cε denotes the middle-ε Cantor set, obtained by starting with the
unit interval and at each stage deleting the middle ε proportion from the remaining intervals).
In particular, it follows that there is no (k + 1) progression in the set C2/k.

An alternative approach is to seek a common interval using the 2-dimensionality of K × K
instead of hoping to take a sequence of points along the diagonal, and we address this in the
sequel - see [19].

3. Pin wiggling lemmas in various contexts

The proofs in this section are presented in increasing order of complexity.

3·1. Proof of Theorem 9·9.

We begin by proving our result on dot product trees. As discussed in the introduction,
dot products are much simpler than distances because thickness is preserved under affine
transformations. As a consequence, Theorem 1·9 is the simplest of our results.

Theorem 1·9 is an immediate consequence of Theorem 2·4 and the following lemma.

LEMMA 3·1 (Pin wiggling for dot products). Let K1, K2 be Cantor sets satisfying τ (K1) ·
τ (K2) � 1. Let 
j denote the length of the convex hull of Kj.
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(i) For any x = (x1, x2) ∈R
2 with both coordinates nonzero, the set �x(K1 × K2) con-

tains an interval of length at least · min(
1|x1|, 
2|x2|).
(ii) Let x0 = (x0

1, x0
2) ∈R

2 be a point with both coordinates nonzero. Let Q be the square
centered at x0 with side length 2δ, and assume δ < 1

3 min (|x0
1|, |x0

2|). The set⋂
x∈Q

�x(K1 × K2)

contains an interval of length at least

min{
2|x0
2| − (
2 + 2
1)δ, 
1|x0

1| − (
1 + 2
2)δ}.

Proof. For any x = (x1, x2) ∈R
2, we have t ∈ �x(K1 × K2) if and only if (t − x1K1) ∩

(x2K2) 	= φ. Since τ (t − x1K1) · τ (x2K2) = τ (K1) · τ (K2) � 1, by the Newhouse gap lemma,
this intersection will be non-empty for any x and t such that the sets (t − x1K1) and x2K2

are linked. Denote the convex hull of xjKj by [aj, aj + 
|xj|], and without loss of generality
assume 
1|x1|� 
2|x2|. The sets t − x1K and x2K are linked whenever

a1 + a2 + 
1|x1| < t < a1 + a2 + 
1|x1| + 
2|x2|. (∗)

The set of t satisfying (∗) is an interval of length 
2|x2|, and so (i) follows immediately. To
prove (ii), assume (x1, x2) ∈ Q and therefore |xj − x0

j | < δ for each j. The value t satisfies (∗)
for all such x1, x2 provided

a1 + a2 + 
1|x0
1| + 
1δ < t < a1 + a2 + 
1|x0

1| + 
2|x0
2| − 
1δ − 
2δ.

This inequality determines an interval of length 
2|x0
2| − (
2 + 2
1)δ.

Note that when we apply Theorem 2·4, we can start with any skeleton x1, . . . , xk+1 ∈
K × K such that none of the points xi are on the axes.

3·2. Proof of Theorem 1·7.

As in the previous section, the proof will rely on the mechanism established in Theorem
2·4 coupled with a pin wiggling lemma. The difference is that the lemma of this section will
not follow directly from the linear theory and some preliminary set up is required.

First, observe that given a pin x ∈R
2 and distance t ∈R, we have t ∈ �x(K × K) whenever

y2 = gx,t(y1) for some y = (y1, y2) ∈ K × K, where

gx,t(z) = x2 +
√

t2 − (z − x1)2.

We would like to apply the Newhouse gap lemma to K and gx,t(K) to prove a pin wiggling
lemma for distance sets (Lemma 3·5 below), then conclude that Theorem 1·7 follows (by
Theorem 2·4). However, there is no thickness assumption on K which would guarantee
τ (gx,t(K)) � 1, so we cannot apply Newhouse directly. However, if I is a sufficiently small
interval about a non-singular point of gx,t, then the thickness of gx,t(K ∩ I) is not too much
smaller than that of K. This can be proved using a generalization of thickness which was
introduced in [23], which we describe here.

Definition 3·2 (ε-thickness). Let K ⊂R be a Cantor set, let u be a right endpoint of a
bounded gap, G, and let ε > 0. Let (a, b) be the closest gap to G with the property that a > u
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and (b − a) > (1 − ε)|G|. The ε-bridge of u, denoted Bε(u), is the interval (u, a). We make
analogous definitions for left endpoints. The ε-thickness of K at u is the quantity

τε(K, u) := |Bε(u)|
|G| .

Finally, the ε-thickness of the Cantor set K is the quantity

τε(K) := inf
u

τε(K, u),

where the infimum is taken over all gap endpoints u.

We record some easily verifiable properties of ε-thickness in the following proposition.

PROPOSITION 3·3 (ε-thickness converges to regular thickness). Let K ⊂R be a Cantor
set.

(i) If ε1 < ε2 then τε1 (K) � τε2 (K).

(ii) τε(K) → τ (K) as ε → 0.

With these definitions in place, we can prove that the image of a thick Cantor set must
at least contain a thick Cantor set. More precisely, we have the following lemma, which is
essentially [23, lemma 3·8]. We include a proof here for completeness.

LEMMA 3·4 (Thickness of the image is nearly preserved). Let K ⊂R be a Cantor set,
let u be a right endpoint of some gap of K, and let g be a function which is continuously
differentiable on a neighbourhood of u and satisfies g′(u) 	= 0. For every ε > 0, there exists
δ > 0 such that

τ (g(K ∩ [u, u + δ])) > τε(K)(1 − ε).

Proof. Fix ε > 0. By continuity of g′, we may choose δ such that for all x1, x2 ∈ [u, u + δ]
we have ∣∣∣∣g′(x1)

g′(x2)
− 1

∣∣∣∣ < ε.

Note that our choice of δ guarantees that g is monotone on the interval [u, u + δ], so for
any subinterval I the mean value theorem guarantees the existence of some xI ∈ I such that
|g(I)| = |I| · |g′(xI)|. Let v be the endpoint of some gap G in K ∩ [u, u + δ]. We first observe
g(Bε(v)) ⊂ Bε2(g(v)). To prove this, note that any gap in g(K ∩ [u, u + δ]) is the image of a
gap in K ∩ [u, u + δ]. Therefore, it suffices to prove that any gap H ⊂ Bε(v) satisfies |g(H)| <
(1 − ε2)|g(G)|. To this end, observe that if H is a gap in Bε(v), then |H|� (1 − ε)|G|, and
we have

|g(H)| = |H| · |g′(xH)|
� (1 − ε)|G| · |g′(xH)|

|g′(xG)| · |g′(xG)|
< (1 − ε)|G| · (1 + ε) · |g′(xG)|
= (1 − ε2)|g(G)|.
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Fig. 2. The box containing K̃1 × K̃2.

It follows by definition then that the thickness of the image at the point g(v) satisfies

τε2(g(K ∩ [u, u + δ]), g(v)) � |g(Bε(v))|
|g(G)|

= |Bε(v)|
|G| ·

∣∣∣∣g′(xBε (v))

g′(xG)

∣∣∣∣
> τε(K ∩ [u, u + δ], v) · (1 − ε).

Taking the infimum over v, we have

τ (g(K ∩ [u, u + δ])) � τε2(g(K ∩ [u, u + δ])) > τε(K)(1 − ε).

This completes the proof of the lemma.

We are now prepared to state and prove the key lemma for distances.

LEMMA 3·5 (Pin wiggling for distances). Let K1, K2 be Cantor sets satisfying τ (K1) ·
τ (K2) > 1. For any x0 ∈R

2, there exists an open S about x0 so that⋂
x∈S

�x(K1 × K2)

has non-empty interior.

Proof. For (x, t) ∈R
2 × (0, ∞), define

gx,t(z) = x2 +
√

t2 − (z − x1)2, (3·1)

and observe that t ∈ �x(K1 × K2) provided K2 ∩ gx,t(K1) 	= φ. Let uj be a right endpoint of
a bounded gap of Kj, and without loss of generality assume uj > x0

j , where x0 = (
x0

1, x0
2

)
. We

choose small subsets K̃j ⊂ Kj with left endpoint uj, and focus on the box K̃1 × K̃2 (Figure 2).
Let t0 = |x0 − (u1, u2)|. Let K̃j = Kj ∩ [uj, uj + δj] for some small δ1, δ2. In particular, we
choose δj > 0 small enough that τ (K̃2) · τ (g(K̃1)) > 1 (this is possible by Lemma 3·4),
and so that K̃1 is in the domain of gx,t whenever (x, t) is sufficiently close to (x0, t0). We
will also assume uj + δj ∈ Kj.

https://doi.org/10.1017/S0305004123000130 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000130


296 ALEX MCDONALD AND KRYSTAL TAYLOR

Fig. 3. Graphs of g.

By the Newhouse gap lemma (Proposition 2·3), we will have K̃2 ∩ gx,t(K̃1) 	= φ whenever
the parameters (x, t) are such that K̃2 and gx,t(K̃1) are linked. To this end, consider the set

U = {(x, t) ∈R
2 ×R : gx,t(u1 + δ1) < u2 < gx,t(u1) < u2 + δ2}.

By construction, for any (x, t) ∈ U we have K2 and gx,t(K1) linked (Figure 3) and hence
t ∈ �x(K1 × K2). We claim that U is an open set containing a point of the form (x0, t) for
some t. Lemma 3·5 follows from this claim, as we can then take open neighbourhoods S, T
of x0, t respectively such that

T ⊂
⋂
x∈S

�x(K1 × K2).

To prove the claim, we first observe that U is open, since for fixed z the quantity gx,t(z) is a
continuous function of (x, t). To finish the proof, we must find a t such that (x0, t) ∈ U. By
construction, we have gx0,t0(u1) = u2. Since the quantity gx,t(z) is strictly increasing in t, for
any t > t0 we will have gx0,t(u1) > u2. On the other hand, by continuity in t we will also have
gx0,t(u1 + δ1) < u2 and gx0,t(u1) < u2 + δ2 whenever t is sufficiently close to t0. Therefore,
we can choose t with the property that (x0, t0) ∈ U.

Theorem 1·7 follows from Lemma 3·5 and Theorem 2·4. Note that when we apply
Theorem 2·4, we can start with any skeleton x1, . . . , xk+1 ∈ K1 × K2 provided no two points
xi, xj share a coordinate.

3·3. Proof of Theorem 1·14.

As in the previous two sections, Theorem 1·14 on φ distance trees is an immediate
consequence of Theorem 2·4 and the following lemma.

LEMMA 3·6 (Pin wiggling for φ distance trees). Let K1, K2 be Cantor sets satisfying
τ (K1) · τ (K2) > 1 Suppose φ : R2 ×R

2 →R satisfies the derivative condition of Definition
1·12 on A × B for open A, B ⊂R

2, each of which intersects K1 × K2. For any x0 ∈ A, there
exists an open S about x0 so that ⋂

x∈S

�φ,x(K1 × K2)

has non-empty interior, where �φ,x(K1 × K2) = {φ(x, y) : y ∈ K1 × K2}.
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The strategy for establishing Lemma 3·6 is as follows: given a pin x ∈R
2 and distance

t ∈R, we note that t ∈ �φ,x(K1 × K2) whenever φ(x, y) = t for some y = (y1, y2) ∈ K1 × K2.
We then use the implicit function theorem to solve for y2 in terms of (x, y1, t) and call the
resulting function g. Observing that g behaves like the function gx,t introduced in the proof of
Lemma 3·5 from the previous section, the lemma then follows from the exact proof used for
Euclidean distances. The only real effort of the proof then is setting up the implicit function
theorem.

Proof. Let ϕx(y) = φ(x, y) as in Definition 1·12 so that for all (x, y) ∈ A × B,

∂(ϕx)

∂yi
(y) 	= 0 for i = 1, 2. (3·2)

Define F : R2 ×R
2 ×R→R by

F(x, y, t) = φ(x, y) − t. (3·3)

Then F is continuously differentiable on A × B ×R. Moreover, it follows by (3·2) that the
partial derivative of F in y2 is non-vanishing on A × B ×R. Choose x0 ∈ A and u = (u1, u2) ∈
B ∩ (K1 × K2). Set

t0 = φ
(

x0, u
)

so that

F
(

x0, u, t0
)

= 0.

By the implicit function theorem, there exists a real-valued function g and a δ-ball about
the point (x0, u1, t0), denoted by Bδ = Bδ(x0, u1, t0), so that:

(i) g is continuously differentiable on Bδ;

(ii) g(x0, u1, t0) = u2;

(iii) if (x, y1, t) ∈ Bδ , then (x, y) ∈ A × B for all y = (y1, g(x, y1, t));

(iv) φ(x, y) = t for all y = (y1, g(x, y1, t)) when (x, y1, t) ∈ Bδ .

Moreover, if gx,t(y1) = g(x, y1, t), then

g′
x,t(y1) = −

(
∂(ϕx)

∂y1
(y1, g(x, y1, t))

)
/

(
∂(ϕx)

∂y2
(y1, g(x, y1, t))

)
	= 0

for (x, y1, t) ∈ Bδ = Bδ(x0, u1, t0). In other words, there is a neighbourhood of (x0, t0) so that
the derivative of gx,t is non-vanishing in a neighbourhood of u1.

Replacing the function in (3·1) of Lemma 3·5 with this new gx,t, the proof proceeds as in
the proof of Lemma 3·5.

3·4. Distance trees in the middle thirds cantor set.

In this section, we prove Theorem 1·10. The new twist in this context is that the middle
thirds Cantor set has thickness equal to 1, not strictly greater than 1. Our method uses Lemma
3·4 which controls how much smaller the thickness of g(K̃) can be compared to K, where K̃ is
a choosen subset of K. If τ (K) = 1, then we cannot assume τ (g(K̃)) � 1 and therefore cannot
apply the Newhouse gap lemma directly. However, the self similarity of the middle thirds
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Cantor set provides a tool that allows one to adapt the proof of the Newhouse gap lemma in
this special setting. This observation was used in [23] to prove that the pinned distance set
�x(C1/3 × C1/3) has non-empty interior. We use this idea to prove a pin wiggling lemma for
the middle thirds Cantor set.

Before proceeding, we introduce some terminology. Let C1/3 denote the standard middle
thirds Cantor set in the interval [0, 1]. The standard construction of this set is given by
defining C1/3 as the intersection of a family of sets {Cn}, where each Cn is the union of 2n

closed intervals of length 1/3n. Define a section of C1/3 to be the intersection of C1/3 with
any one of the intervals making up any of the sets Cn.

LEMMA 3·7. Let K1, K2 be sections of the standard middle thirds Cantor C, and let g
be a continuously differentiable monotone function which satisfies 1 < g′ < 3 on the convex
hull of K1. If K2 and g(K1) are linked, then K2 ∩ g(K1) 	= φ.

Proof. We begin with a simple observation. Let I1, I2 denote the convex hulls of K1, K2,
respectively. By the mean value theorem, for any interval J there exists xJ ∈ J such that
|g(J)| = |J| · |g′(xJ)|. In particular, if U and V are bounded gaps of K1 and |U| > |V|, we
have |U|� 3|V| and therefore

|g(U)| = |U| · |g′(xU)|
> 3|V| · 1

> |g′(xV )| · |V|
= |g(V)|.

It follows that the bridges of the images are the images of the bridges. More precisely, the
bridge of gap g(U) in g(K1) is g(B), where B is the bridge next to the gap U.

Now, to prove the lemma, we proceed by contradiction and assume K2 ∩ g(K1) = φ. The
strategy of the proof is a variant of the strategy used to prove the original Newhouse gap
lemma. We construct sequences of gaps Un, Vn satisfying the following conditions:

(i) Un is a bounded gap of K2 and g(Vn) is a bounded gap of g(K1);

(ii) Un and g(Vn) are linked for every n;

(iii) for every n, either

(a) Un+1 = Un and |g(Vn+1)| < |g(Vn)|, or
(b) Vn+1 = Vn and |Un+1| < |Un|.

Thus, at each stage we are replacing one of the gaps Un, g(Vn) with a strictly smaller one
and leaving the other unchanged. In particular, this means that one of the two gap sequences
must have a subsequence which is strictly decreasing in length. Since gaps of different sizes
are automatically disjoint and the total length of the gaps is bounded, we must have either
|Un| → 0 or |g(Vn)| → 0 as n → ∞. However, because Un and g(Vn) are linked, the closure
of Un contains points of both K2 and g(K1), and similarly for g(Vn). This implies that the
distance between K2 and g(K1) is zero, which contradicts the assumption K2 ∩ g(K1) = φ.

We construct our sequences {Un} and {Vn} recursively. First, we construct U1 and V1.
Recall that Ii denotes the convex hull of Ki for i = 1, 2. Since I2 and g(I1) are linked by
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Fig. 4. Construction of gap sequence (gaps are red, bridges are blue).

assumption, there is a bounded gap U1 of K2 which is a subset of I2 ∩ g(I1). Let u be an
endpoint of U1. In particular we have u ∈ K2, and therefore, by our assumption that K2 ∩
g(K1) = φ, it follows that u is in some bounded gap g(V1) of g(K1).

Next, suppose we have constructed Un and Vn satisfying the properties in the first two
bullet points above. We construct Un+1 and Vn+1 satisfying the third bullet point. By con-
struction, Un and g(Vn) are linked. Let BU

n be the bridge corresponding to Un on the same
side as g(Vn) (see Figure 4), and let g

(
BV

n

)
be the bridge of g(Vn) on the same side as Un.

We claim that one of the following two inequalities must hold:

|g(BV
n )| > |Un|

|BU
n | > |g(Vn)|.

This follows because we are working with the middle thirds Cantor set, so bounded gaps and
corresponding bridges have the same length, i.e., we have |BU

n | = |Un| and |BV
n | = |Vn|. The

middle thirds Cantor set also has the property that if U and V are gaps with |U| > |V|, we
automatically have |U|� 3|V|. Finally, by our assumptions on g, we have |J| < |g(J)| < 3|J|
for every interval J ⊂ I1. The claim then follows, as |Un| > |Vn| implies the second inequality
and |Un|� |Vn| implies the first.

Assume the second inequality holds (an analogous argument will apply when the first
holds). This means one endpoint of g(Vn) is in Un and the other is in BU

n (see Figure 4
again). Recall that we are proving the lemma by contradiction, assuming K2 ∩ g(K1) = φ.
This assumption means the endpoint of g(Vn) which is in BU

n must be contained in some
gap Un+1 of K2, and by definition of a bridge we must have |Un+1| < |Un|. We then take
Vn+1 = Vn. This completes the construction.

THEOREM 3·8. Given a point x0 ∈R
2, let Wx0 denote the open wedge

Wx0 =
{

x ∈R
2 :

(
x2 − x0

2

)
<

(
x1 − x0

1

)
< 3

(
x2 − x0

2

)}
.

Let K1, K2 be sections of the middle thirds Cantor set, and suppose K1 × K2 ⊂ Wx0

(Figure 5). Then, there exists an open neighbourhood S of x0 such that⋂
x∈S

�x(K1 × K2)

has non-empty interior.

Proof. For x ∈R
2 and t ∈R, consider the function

gx,t(z) = x2 +
√

t2 − (z − x1)2.
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Fig. 5. The wedge of acceptable boxes.

We have

g′
x,t(z) = − z − x1

gx,t(z) − x2
,

so 1 < |g′
x,t(z)| < 3 whenever (z, gx,t(z)) ∈ Wx. For j = 1, 2, let uj = min Kj, so that u =

(u1, u2) denotes the lower left corner of K1 × K2, and let t0 = |x0 − u| (thus, we have
gx0,t0(u1) = u2). For every δ > 0, define K̃j = Kj ∩ [u1, u1 + δ] and consider the set

Uδ = {(x, t) : K̃2 and gx,t(K̃1) are linked, and (z, gx,t(z)) ∈ Wx for all z ∈ [u1, u1 + δ]}.
By Lemma 3·7, if (x, t) ∈ Uδ then t ∈ �x(K1 × K2). Clearly Uδ is open, so as in the previous
proofs it suffices to show that Uδ contains a point of the form (x0, t). We first observe that if δ

is sufficiently small, the sets K̃2 and gx,t(K̃1) are linked for all t ∈ (t0, t0 + δ). This is because
for any t > t0 we have gx0,t(u1) > u2, and for any t < u1 + δ we will also have gx0,t(u1) >

u2 + δ and gx0,t(u1 + δ) > u2. Finally, since u ∈ Wx0 by assumption, if δ′ is sufficiently small
we will have (z, gx0,t(z)) ∈ Wx0 for all z ∈ [u1, u1 + δ] and all t ∈ (t0, t0 + δ′).

Proof of Theorem 1·10. By Theorem 2·4, it suffices to find a skeleton x1, ..., xk+1 ∈
C1/3 × C1/3 such that whenever i > j we have xj ∈ Wxi . Wedge membership is transitive in
the sense that x3 ∈ Wx2 and x2 ∈ Wx1 implies x3 ∈ Wx1 , so it suffices to construct our skele-
ton so that xi+1 ∈ Wxi for every i. We construct such a sequence recursively as follows.
Let x1 be the origin. One can check that Wx1 contains the box [8/9, 1] × [6/9, 7/9] (refer
again to Figure 5). Let x2 = (8/9, 6/9). Since x2 is the lower left corner of a similar copy of
C1/3 × C1/3, one can run the same argument by symmetry and take x3 to be the lower left
corner of a box contained in Wx2 . This process can be repeated as many times as needed.
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