
Received 21 February 2017
Revised 14 February 2018
Accepted 5 March 2018

Corresponding author
W. Chen
weichen@northwestern.edu

Published by Cambridge
University Press
c© The Author(s) 2018

Distributed as Open Access under
a CC-BY-NC-SA 4.0 license
(http://creativecommons.org/
licenses/by-nc-sa/4.0/)

Des. Sci., vol. 4, e9
journals.cambridge.org/dsj
DOI: 10.1017/dsj.2018.4

Predicting product co-consideration
and market competitions for
technology-driven product design:
a network-based approach
Mingxian Wang1, Zhenghui Sha2, Yun Huang3, Noshir Contractor3, Yan Fu1
and Wei Chen4

1Global Data, Insight and Analytics, Ford Motor Company, Dearborn, MI, USA
2 System Integration and Design Informatics Laboratory, University of Arkansas,
Fayetteville, AR, USA

3 Science of Networks in Communities, Northwestern University, Evanston, IL, USA
4 Integrated Design Automation Laboratory, Northwestern University, Evanston, IL, USA

Abstract
We propose a data-driven network-based approach to understand the interactions
among technologies, products, and customers. Specifically, the approach enables both a
qualitative understanding and a quantitative assessment of the impact of technological
changes on customers’ co-consideration behaviors (decision of cross-shopping) and as
a consequence the product competitions. The uniqueness of the proposed approach is
its capability of predicting complex co-consideration relations of products as a network
where both descriptive analyses (e.g., network statistics and joint correspondence analysis)
and predictive models (e.g., multiple regressions quadratic assignment procedure) are
employed. The integrated network analysis approach features three advantages: (1) It
provides an effective visual representation of the underlying market structures; (2) It
facilitates the evaluation of the correlation between customers’ consideration preferences
and product attributes as well as customer demographics; (3) It enables the prediction
of market competitions in response to potential technological changes. This paper
demonstrates the proposed network-based approach in a vehicle design context. We
investigate the impacts of the fuel economy-boosting technologies and the turbocharged
engine technology on individual automakers as well as the entire auto industry. The case
study provides vehicle engineers with insights into the change of market competitions
brought by technological developments and thereby supports attribute decision-making in
vehicle design.

Key words: network analysis, data-driven design, consideration preference, customer
preference, correspondence analysis, market competition, technology development

1. Introduction
Forecasting customers’ responses and market impacts brought by the changes
to design attributes/features is essential before launching major technological
changes on future generations of products. To prioritize product attributes and
improve competitive advantages, an in-depth investigation and assessment of
technological opportunities, consumer needs, product positions, and competitive
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Figure 1. A social–technical system for understanding the interactions among
technologies, products, customers and the market.

landscapes are necessary in the phases of product design, strategic planning, and
product development.

This study explores the intersection between traditional engineering design
research and product marketing research, in an attempt to analyze the impact
of introducing new technologies on market competition through a data-driven
consumer preference model. We consider the complex relationship among
technologies, products, and customers as a socio-technical system. As shown in
Figure 1, customer behavior, reflected in their consideration and choice decisions,
are affected by product design, represented by product attributes (such as color
and size), customer demographics (such as income, social status, and education),
and customers’ preferences. Besides incentives and policies, a common way to
promote product market share is to upgrade product attributes (e.g., by utilizing
new technologies) based on new market trends and customer needs. Following
this interacting relationship, this work offers a new network-based customer
preference modeling technique by modeling an interacting system constituted
by technologies, products, customers and the market.

Among different types of customers’ behaviors, we are particularly interested
in understanding customer consideration behavior. Co-consideration describes
the situation where a customer concurrently considers multiple products in
cross-shopping activities. A customer will not purchase a product if the product is
not considered. The consideration behavior involves comparison and evaluation
of product alternatives and thus is a crucial step before making the final choice.
Co-consideration also implies the market competition between products or
brands, which is crucial to companies’ product launching and positioning plans
as well as market strategies. Existing studies (Hauser & Wernerfelt 1990; Shocker
1991; Hauser 2014) have shown that customers’ consideration sets are small,
frequently ranging from two to six options due to humans’ limited capacity in
processing decision-related information. The questions of how to characterize
customers’ co-consideration decisions as well as how to evaluate the influence
of product attributes on those decisions become valuable yet daunting, mainly
due to the unobserved preferences of customers and their heterogeneous decision-
making behaviors. Consideration sets generally describe the market competitions
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from the eyes of customers. Successful modeling of product co-consideration
relations helps understand the embedded market competitions and provides
new opportunities to enterprises to formulate design solutions, address customer
needs, and make strategic moves. Therefore, a quantitative modeling framework
that enables the analysis of interaction among customer consideration decisions,
product configurations, and market complexities is indispensable in product
design research.

Our research objective is twofold: (1) integrating descriptive multivariate
analysis with predictive network models to investigate product co-consideration
relations as well as the potential driving factors related to customer demographics
and product attributes; (2) characterizing how customer consideration preference
and technology development change the competitionmap in amarket. To achieve
the objective, we take a data-driven network-based approach, where we model
products as nodes and the co-consideration relations between any two products
as links. With such a construct, the key idea is to understand and predict co-
consideration relations as a function of explanatory networks derived from the
associations of product design and customer demographical attributes.

The remainder of the paper is structured as follows. Section 2 reviews relevant
studies on technology acceptance modeling, social behavior modeling, consumer
preference modeling, association analysis, and machine learnings. To address
the limitation of existing approaches, we present our data-driven network-based
approach in Section 3 in a step-by-step format to guide and facilitate the
implementation. In Section 4, our approach is applied to understand vehicle’s
co-consideration relations in China market using survey data on new vehicle
buyers. As a case study, we predict how the technological changes, including
fuel economy-boosting techniques and the turbocharged engine, would affect
competitions between vehicle lines, brands, and the whole industry. Section 5
concludes the paper with additional insights and closing thoughts.

2. Literature review
Understanding the impact of new technologies and predicting the preference of
customers have drawn continuous interests in the engineering design community
since the 1980s. The technology acceptance model (TAM) proposed by Fred
Davis (Davis 1986) argues that the use of technology is a system response
that can be explained and predicted by customers’ motivation, which, in turn,
directly influence system’s features. Such inner relationships correspond to the
interactions among products, customers, and the market system as shown in
Figure 1. Davis suggests explaining users’ motivation by three factors: Perceived
Ease of Use, Perceived Usefulness, and Attitudes Toward Using the technology.
Later development of TAMhas evolved tomany versions by substitutingAttitudes
Toward Using with Behavioral Intention (Davis, Bagozzi & Warshaw 1989), by
adding extra variables as antecedents to Perceived Usefulness variable, referred as
TAM2 (Venkatesh & Davis 2000), and by identifying the antecedents to Perceived
Ease of Use variable, referred as TAM3 (Venkatesh & Bala 2008). Later research
has also extended the TAM by including the social influence due to the increasing
popularity of the Internet and social media (Malhotra & Galletta 1999; Venkatesh
&Morris 2000;Hsu&Lu2004). Among extensive studies in this field,mostwork is
empirical and qualitative. Experimental data is primarily used to test hypothesized
causal relationships. From the methodological perspective, the main limitation is
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the employment of self-reported use data (e.g., a subjectivemeasurement of verbal
description) instead of actual use data. This would lead to weak validation and
biased results by respondents (Lee, Kozar and Larsen 2003).

Relating to market competition, existing literature has used game-theoretic
models to understand the impact of technology quantitatively. Thatcher (2004)
developed a two-stage model of duopoly competition to examine the impact of
information technology (IT) investments in product design tools on improving
product quality and price, firm productivity and profits, and consumer welfare.
Thatcher observed that profit-maximizing firms often leverage technology-based
design tools to improve product quality, firm profits, and consumer welfare, but
at the expense of productivity. Other theoretical studies, such as (Thatcher &
Oliver 2001), are similar but the analysis is performed in the monopolist context.
Since the early 1970s, many studies have investigated the impact of technology,
especially in the field of IT on different levels and categories of systems, including
economic, industrial, social, etc. However, most studies do not address the impact
at the level of individual customers. Even though some studies (Brynjolfsson
1996; Hitt & Brynjolfsson 1996; Thatcher 2004) have realized the importance of
individual customers, theymainly provided economic insights, such as the impact
on consumer welfare and surplus, instead of design perspectives.

In creating analytical customer preference models, discrete choice analysis
(DCA) has been widely adopted to understand how customers make trade-offs on
product attributes (Wassenaar&Chen 2003; Train 2009). Rooted in econometrics,
DCA, in essence, uses utilities to evaluate the best option from a consideration set.
DCAcan predict choice probabilities, e.g., the probability of buying aToyota Prius,
given the consideration set of each customer and the constructed utility function;
however, it cannot capture the complex association relations of alternatives
in customers’ consideration set (Wang et al. 2016). As an extension to DCA,
recent studies proposed heuristics-based models for characterizing consideration
decisions (Gilbride & Allenby 2004; Cantillo & de Dios Ortúzar 2005; Gaskin
et al. 2007; Dieckmann, Dippold & Dietrich 2009; Hauser et al. 2010; Morrow,
Long & MacDonald 2014). However, existing work in engineering design only
explored the suitability of various forms of non-compensatory and compensatory
utility models using synthetic data generated by pre-defined adjunctive rules
(Morrow et al. 2014). These methods do not directly address three critical
questions: (1) what products tend to be in the same consideration set, (2) what
customer and product attributes explain the product co-consideration, and (3)
how the similarity (or dissimilarity) of products and customers affect product
co-consideration and market competition.

Compared to DCA-based econometric models, our network-based approach
has two advantages. First, the proposed co-consideration relations can be
described and depicted with simple graphical structures based on customer
cross-shopping data. Our method focuses more on the relations of data instead
of treating products as separated, individual entities. This feature more closely
resembles the interdependent cross-shopping decisions. Second, decisive factors
associated with product co-considerations and market competitions can be
identified and evaluated through quantitative network modeling. In addition
to the impact of product and customer attributes studied in the traditional
econometric analysis, network analysis can also evaluate the impact of relations
between product attributes (e.g., similarities, differences) on customers’ behaviors.
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Recent years have seen the use of machine learning techniques for predicting
customers’ preferences. One of the related techniques to our study is the market
basket analysis (Mostafa 2015), which uses association rules to discover what
products (e.g., beer and dippers) are bought together. Recent effort has beenmade
to integrate the market basket analysis with network analysis to uncover patterns
beyond relations between two products (Raeder & Chawla 2011; Kim, Kim &
Chen 2012). However, existing analyses disclose the association relations but are
not aimed for explaining why products are associated (e.g., co-considered). In our
research, network modeling approach is used to expand descriptive analyses to
model-based predictive approaches to understand consumer behaviors and assess
quantitatively the impact of underlying product design attributes. Our models are
built from the perspectives of designers with the goal of understanding customers’
preferences in designing consumer-desired products.

Our proposed approach also falls into the broader category of the
recommender systems/engines, which attempt to predict future likes and interests
by mining data on past user activities (Resnick & Varian 1997). Although recent
work on recommender systems has also utilized network representation for
input data (Zhou et al. 2007; Fiasconaro et al. 2015; Yu et al. 2016), many
differences arise in the process of modeling for an explanatory versus a predictive
interest. Most existing recommendation algorithms are inspired and progressed
from the classical physical processes, such as random walk, heat diffusion, and
preferential diffusion (Yu et al. 2016). The focus of these methods is more on
recommendation (prediction) with only a slight and indirect relation to casual
explanation. Our proposed network models, in comparison, possess explanatory
power. The inference capabilities inherited in our model offer the conveniences
to describe statistically the impact of product attributes on the market behaviors.
Again while traditional recommender systems offer suggestions for customers’
decision-making in product purchase, our models are used to assist designers’
decision-making for improving product attributes.

In addition, our work has benefited from the system thinking by treating the
complex socio-technical system as a single entity. Network models are devised
to fill the gap between separate domains of technology innovations, market
competitions, and customer preference. This system’s view answers how the
separate domains link and affect each other, for example, how technology-driven
changes affect product co-considerations, how customers’ consideration decisions
impact product competitions, and how to use market competition structures to
guide the product design and development. In a market with diverse products,
the lack of such knowledge would impede enterprises’ strategic moves in adopting
emerging technologies.

3. Proposed network-based approach
3.1. Background and related works
A novel network-based framework has recently been developed to understand
the complex relations between customers and products (Wang et al. 2016).
This network-based approach applies network analysis and graph modeling
to study relational patterns, structural features, and evolving relationships
among system components. Advantages of network analysis have been widely
recognized by social science researchers. The problems involving interdependent
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behaviors and complex patterns are explained by combining multiple generative
mechanisms such as self-interest, collective action, social exchange, balance,
homophily, contagion, and co-evolution (Monge & Contractor 2003). As an
effort to promote network analysis for design problems, our previous research
introduced product networks based on co-consideration data and proposed a
heuristic algorithm to predict missing choice sets in supporting choice modeling
(Wang & Chen 2015). Later, the unidimensional product network is extended
to a multidimensional customer–product network (MCPN) (Wang et al. 2016).
The structure is developed to model multiple types of relations, including
co-consideration decisions, choice decisions, social interactions, and product
interdependence. Built upon the MCPN framework presented in our earlier
work (Wang et al. 2016), for the first time, this paper presents the use of both
descriptive (graphical) network analysis approach and a quantitative inferential
modeling approach to examine the customer preferences through the product
co-consideration network. Besides, we demonstrate how the two methods are
integrated, complementing each other to inform design decisions. This paper also
contributes to developing use cases of network approaches in design research,
with examples of studying the market impact of technological innovations.

3.2. Overview of the network-based approach
As shown in Figure 2, our data-driven, network-based approach models a
market as a single network entity, which captures the interdependence among
product relations driven by customer preferences. The two central elements of
the approach are the qualitative exploration tool (Step 3) and the quantitative
analytical model (Step 4). The two elements together provide the statistical
modeling of co-consideration behaviors with respect to the various potential
drivers, such as product design attributes, customer demographic attributes, and
customer perceived product characteristics, as well as the similarity or difference
of product profiles and market positions. For example, the homophily effect
(McPherson, Smith-Lovin & Cook 2001) represents the extent to which products
form links with similar versus dissimilar alternatives. Examining this effect can
uncover why products are co-considered and compared against each other. As
to the forecast of technological impacts, the topological structures of predicted
networks under new technological scenarios are analyzed, from which insights
on market competitions and product association can be obtained accordingly.

This work considers market competition from both the perspective of a single
product and the perspective of producers (i.e., a group of products within the
same brand). From the next section onwards, we present each step of the proposed
approach following the flow diagram in Figure 2.

3.3. Step 1 – Data collection
The first step involves data collection and preparation. The proposed approach
requires data to cover at least two aspects: (1) competing alternatives that
customers considered, and (2) design attributes on alternatives. For the former,
various formats of data such as surveys, web-browsing logs, data from comparison
engines can be used to identify consideration decisions made by individual
customers. For the latter, product specifications or customer-stated product
configurations could be used for the description of product profiles. Beyond the
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Figure 2. Overview of the proposed approach.

two requirements, additional information on customer demographics and their
preferences could improve model performance.

3.4. Step 2 – Characterizing product association as a co-
consideration network

The network construction starts in Step 2 with the data collected in the previous
step. The goal is to characterize customers’ consideration preferences. We define
each node as a representation of a product. A link exists between two nodes
if products are co-considered and compared by the majority of customers. In
other words, the links between products reflect the proximity or similarity of two
products in customers’ considerations. For example, given that many customers
consider ‘Ford Edge’, ‘Ford Changan Kuga’, and ‘Honda Dongfeng CR-V’ together,
we may extract the three vehicle models and establish links between each pair of
them (see Figure 3). The strength of the links can be evaluated by standardmetrics
of association rules, showing how likely the two products are co-considered by
customers. In Figure 3, the link strength between Edge and CR-V (1.2) is smaller
than the strength betweenKuga andCR-V (2.4), implying that CR-V ismore likely
to be considered with Kuga together than with Edge.

In the network shown in Figure 3, the size of a node is proportional to the
degree centrality of the node (i.e., the number of links), which can be used to study
the range of consideration on a product and its impact on market share (Wang
et al. 2015). The node colors highlight the clusters of nodes (Clauset, Newman &
Moore 2004), which represent the groups of vehicle models frequently considered
together by many customers. Details of network constructions, link strength
calculations, and community detections are discussed in Raeder & Chawla (2011)
and Wang et al. (2016). Based on the constructed network, in the next step, we
introduce a tool for exploratory analysis.

3.5. Step 3 – Understanding key influencing factors to co-
consideration decisions

In Step 3, we use correspondence analysis, and in particular, joint correspondence
analysis (JCA) (Benzécri 1973; Greenacre 2007) as a descriptive analysis tool to
identify the underlying key drivers among product and customer attributes to
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Figure 3. Illustrative network of vehicle co-considerations.

the formation of a product co-consideration network. The multivariate nature of
such an approach facilitates the detection of relationships among the attribute
categories (i.e., attribute levels of customers and products) and objects (i.e.,
products and customers). The correspondence analysis technique maximizes the
interrelationships between the rows and columns of a multiway data table for
dimensional reduction. Orthogonal components and factor scores created on
the levels of categorical attributes allow the construction of visual plots whose
structures can be easily interpreted (Greenacre 2007). In this work, the generated
visual plots embed the community structures of a product co-consideration
network as well as the relations among customer and product attributes of
interests.

We use conventional notations (Greenacre & Blasius 2006) to demonstrate
the JCA approach. Assume there are N customers and v1, . . . , vq categorical
attributes such as vehicle models and income levels. Each v j has L j levels
1, . . . , L j , and a binary indicator matrix Z( j) with N × L j dimensions indicates
the associations between customers and attribute v j . Z( j)

il = 1 if and only if
v
(i)
j = l , i.e., the attribute j of customer i has the level l . All Z( j) can then be

horizontally concatenated to form a large indicator matrix Z of N × J , where
J = L1+· · ·+Lq is the total number of categorical levels for all input variables x .

For example, Table 1 shows an indicator matrix Z with five customers as row
entries and two categorical attributes as column entries: vehicle model v1 lists
all vehicle alternatives customers could consider, and income level v2 divides all
customers based on three levels of incomes. Because the indicator matrix Z can
take up considerable memory space when the number of rows (i.e., customers)
is large, JCA typically operates on a condensed Burt matrix B = Z′Z, which
equals the cross-tabulation of all categorical levels. Given the Burt matrix B,
the coordinates of columns with respect to the principal axes can be computed
by singular value decomposition (SVD) (Greenacre & Blasius 2006), and the
inertia can be obtained by iteratively updating the solution (Greenacre 2007). The
Appendix includes more technical details about the approach.
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Figure 4. Demonstrative perceptual map generated by JCA. Vehicle models are
shown in dots and income levels in triangles. Two vehicles are close to each other
if they are considered by the same customers; two income levels are close to each
other if they are tied to the same vehicle buyer; a vehicle model and an income level
are placed close to each other if customers considering the vehicle often have such an
income level.

Table 1. Demonstrative indicator matrix in joint correspondence analysis, with
customers as row entries, and vehicle models and income levels as column entries.

Being a descriptive technique, JCA emphasizes on the graphical representation
of relational data. The visual output of JCA draws the first two dimensions of
the principal coordinates of columns jointly in a Euclidean 2D space. As noted in
Figure 4, the demonstrative output simultaneously displays the examined vehicle
models in dots and the income levels in triangles. The distances between two
points in the space represent the strengths of correlations between a pair of
variables. For example, according to Figure 4, BMW attracts more high-income
customers given the closeness of the two entities; while Jetta is more attainable for
low-income customers. The axes represent the principal factors that differentiate
vehicle models from one to another as the analysis result of defined relations
in Table 1. A more concrete example can be found in Section 4.3. By analyzing
the visual plot, designers can identify the major factors and factor levels that
drive certain vehicle models to be co-considered, and further, eliminate irrelevant
or redundant attributes before constructing more advanced predictive network
models.
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Figure 5. Illustration of MRQAP Model. Co-consideration decisions (Y at top) are predicted using
engineering-driven associations and customer-driven associations created by attribute data (Xs at bottom).

3.6. Step 4 – A network analysis model to predict co-
consideration decisions

Built on the descriptive analysis, the goal of Step 4 is to develop a predictive
model and further analyze the network patterns. This paper utilizes the multiple
regression quadratic assignment procedure (MRQAP) (Krackhardt 1988), which
is designed to predict the presence of a relation by explanatory networks formed
along various dimensions (Krackhardt 1988), such as product design attributes
and customer demographics.

As illustrated in Figure 5, the idea of the MRQAP approach is to decompose
the complex co-consideration relations (i.e., market-driven associations)
into a function of networks that represent similarities or differences of
product configurations (i.e., engineering-driven associations) and customer
demographics (i.e., customer-driven associations). The coefficients identified
in an MRQAP model indicate the impacts of individual effect networks on
forming co-consideration relations. The response Y is an adjacency matrix of
the co-consideration network, where each weighted link indicates how much
dependence two products have. At the bottom, product attributes are vectorized
as effect networks, represented by X(k). Each of them captures the associations
between pairs of products based on various arithmetic operations of attributes,
for example, the sum of peak powers, the difference in prices, and the match
of fuel type shown in Figure 5. The unique aspect of MRQAP is to use simple
product networks X (created using attribute data) to predict the structure of
the observed complex decision network Y (created using co-consideration
data). Let Yij be the dependent co-consideration link between vehicles i and
j , and X (k)ij be the kth covariate (attribute) for the same link observation. The
MRQAP model is analogous to the standard logistic regression element-wise
on network connections, where the systematic component is given in Eqn. (1).
In estimating the p-values, permutation techniques are often used to handle
correlated observations in network data. Examples include DSP and FLSP
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approaches documented in (Dekker, Krackhardt & Snijders 2007).

Pr(Yij = 1) = E(Yij) =
exp(β0 + β1 X (1)ij + · · · + βn X (n)ij )

1+ exp(β0 + β1 X (1)ij + · · · + βn X (n)ij )
. (1)

As shown in Table 2, the explanatory effect networks in our MRQAP model
allow the modeling of two types of effects: the attribute-based main effects
and the homophily effects. The attribute-based main effects examine whether
products with a specific attribute (or with a high-valued attribute) are more
likely to have consideration links than products without the attribute (or with a
low-valued attribute). An example is the peak power sum. A positive parameter
β associated with this effect network indicates that vehicles with a higher sum
of powers are more likely to be co-considered compared to vehicles with a lower
sum of powers. Thus, a vehicle with a high peak power tends to express more
co-consideration links. The homophily effects, originated from the social network
literature, represent the tendency of entities to associate and bond with similar
others. In the context of the product co-consideration network, the homophily
effects examine whether products with similar attributes are more likely to have
consideration links with each other. One example is the price difference. A
negative parameter β suggests that vehicles with a smaller difference in price are
more likely to be considered together. In the literature, it is often desirable to have
bothmain effects andhomophily effects included in onenetworkmodel. Themain
effects control the direct impacts associated with the levels of attributes, whereas
the homophily effects explain the co-consideration decisions by the similarities or
differences of products in terms of their attributes. Table 2 presents the guidelines
for creating explanatory networks in MRQAP for different types of attributes
such as binary, categorical, and continuous. For the product attributes under
(a)–(c), the strength of the tie X ij in an explanatory network is determined by the
corresponding attributes xi and x j associated with the linked products. Beyond
product attributes, we may also introduce non-product related attributes (d).
For example, the customer demographics can be included in the model to allow
the prediction of technological impacts in a completely new market following
different customer profiles. Themultivariable association techniques, such as JCA
coordinates generated from Step 3, can be used to express the similarities of the
non-product related attributes as the distances of product points (xi and x j ) in a
geometric space.

It is noted that the logistic form of MRQAP model implicitly binarizes the
co-consideration networkY. Our dichotomization is equivalent to the one-vs-rest
strategy in the binary transformation. We put the not-co-considered links (more
than 91% cases) in one class and the rest in another class. Therefore, we try to
reveal the underlying mechanisms of customers identifying product alternatives.
It is true that modeling a binary network, while computationally simpler, is not
as rich as the weighted network. We choose the binarization setting, because
our underlying lift samples are non-randomly selected. To correct the sampling
bias, a two-stage estimation method is often needed (Heckman 1976). This work
fits into the first stage model of the two-stage correction, where the focus is on
predicting whether two products are co-considered or not. The extent of how
often two products are co-considered (reflecting the intensity of competition) can
be observed by modeling networks with increased cutoff values or through the
construction of more complicated models.
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Table 2. Constructing explanatory networks of attributes.

Configuration Statistic Network effect

(a) Binary product attributes
Sum network X ij = xi + x j (2) Attribute-based main effect
Match network X ij = I {xi = x j } (3) Homophily effect
(b) Categorical product attributes
Match network Same as (3) Homophily effect
(c) Continuous product attributes (standardized)
Sum network Same as (2) Attribute-based main effect
Difference network X ij = |xi − x j | (4) Homophily effect
(d) Non- product related attributes
Distance network X ij = ‖xi − x j‖2 (5) Homophily effect

Note:
• I {·} represents the indicator function.
• | · | represents the absolute-value norm on the 1-dim space.
• || · ||2 represents the L2-norm on the n-dim Euclidean space.

3.7. Step 5 – Network prediction under technological change
scenarios

In Step 5, the MRQAP model obtained from Step 4 is used to predict
the co-consideration relations between products under specific scenarios of
technological changes. The influence induced by new technologies on market
competition structures (measured by the topology of a co-consideration network)
can then be studied by mapping the technological changes to the change of
corresponding product design attributes. Specifically, with the change of the effect
networks X, co-consideration relations in the form of product co-consideration
network Y can be predicted by (1).

3.8. Step 6 – Evaluation of network structure metrics
Finally, in Step 6, the change of the network topology is characterized and
quantified by various network metrics to provide insights for marketing strategies
and design decisions. In this paper, a set of network metrics, as shown in Table 3,
are developed exclusively for the co-consideration network. Using vehicle as an
example, a set of metrics are used to characterize the global network (market-wide
competition) such as d̄ , cG , c̄; while the remainingmetrics Nc, d , d̄ , d ′, d̄ ′, c, c̄ and
b are used to characterize the local network centered around a product node or a
set of product nodes that belong to the same brand. This set of metrics represents
our pilot effort toward guiding and inspiringmodel practitioners in design-related
activities. There may be other network structural features that worth looking into.
However, given the scope of this paper, our discussion is limited to the below
selected metrics.
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Table 3. Examples of network metrics used to quantify the properties of a co-consideration network.

Network
metrics

Definition Interpretation in vehicle co-considerations and market
competitions

Degree (d) The number of links of a node. The
average degree of a node or a set of
nodes is noted as (d̄).

It reflects the number of competitions a vehicle has in the
network. The average degree indicates the average number of
co-consideration relations for a vehicle model or brand. As
shown in the following example, there are two Ford vehicles – one
has degree d1= 2, and the other has d2 = 4. Ford band has an
average degree d̄ f ord =

6
2 .

Number of
neighboring
nodes (n)

The number of nodes directly
connected to a node or a set of nodes
in the same group. The average
number of neighboring nodes is
noted as (n̄).

It measures the size of a vehicle co-consideration set for a vehicle
or a vehicle brand, which implies the total number of competitors
of a vehicle or a vehicle brand. As shown in the following example,
the Ford vehicle 1 has two co-considered vehicles, n1 = 2. The
Ford brand has four co-considered vehicles, n f ord = 4.

External
degree (d ′)

The number of links that connect a
node to nodes in different groups.
The average external degree of a set
of nodes in the same group is noted
as (d̄ ′).

The external degree reflects the competition between brands. In
the example, the Ford vehicle 1 only connects 1 non-Ford vehicle,
thus d ′1 = 1. Similarly, d ′2= 3. As there are two Ford vehicles, the
average external degree of Ford brand is therefore d̄ ′ f ord = 4/2.

Global
clustering
coefficient
(cG)

The proportion of closed triplets
over all possible triplets (both open
and closed) in a network. It is an
indicator of the level of three-way
competitions in a network.

cG measures the cohesion or segmentation of the vehicle market.
A low cG network could have many open triplets (stars), e.g., a
vehicle co-considered with many other unconnected vehicles;
while a high cG network has many closed triplets (triangles), e.g.,
any group of three vehicles are co-considered with each other.
The following example shows three closed triplets and 13 open
triplets, thus cG is low.

Local
clustering
coefficient
(c)

The likelihood that two neighbors of
a node are also neighbors with each
other. In other words, the percentage
of all 2-stars that are closed 3-cycles.
The average local clustering
coefficient of a given set of nodes is
noted as (c̄).

A vehicle with a high c is usually embedded in one cohesive
vehicle segment where its competitors are also frequently being
co-considered (structures of triangles/cycles); a vehicle with a low
c may have dissimilar competitors in many different vehicle
segments (structure of stars), e.g., family sedans have higher c
than that of crossover SUVs. In the example below, Ford
Chang’an Ecosport is not involved in any triangular relationships
with other vehicles, so c1= 0.

Betweenness
centrality
(b)

The number of times a node acts as a
bridge along the shortest path
between two other nodes.

Vehicles with high betweenness centralities are most likely at the
boundary between different market segments, e.g., a crossover
SUV typically has higher betweenness than a classic sedan. In the
example, to reach the other five vehicles, GM Buick Encore has to
pass Ford Chang’an Ecosport five times, so b1= 5. Similarly
b2 = 9.5 indicates that Ford Chang’an Focus is likely at the
boundary of a cluster.

Example of vehicle co-consideration network Network metrics
d1 = 2, d2 = 4

n1 = 2, n f ord = 4

d̄ f ord =
6
2 , d̄all =

16
7

d ′1 = 1, d ′2 = 3, d̄ ′ f ord =
4
2

cG =
3
13

c1 = 0, c2 =
1
6

c̄ f ord =
1

12 , c̄all =
3

14

b1 = 5, b2 = 9.5
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4. Case study – vehicle co-consideration predictions
under fuel economy-boosting technologies in the
China market

This section illustrates how the proposed approach forecasts the impact of new
technologies on customers’ co-consideration of vehicles andmarket competitions.
This case study uses the China auto market as an example to analyze the impact
of new technologies. In recent years, various fuel economy-boosting technologies
have emerged, including new combustion strategies, lighter weighting materials,
series–parallel hybrid, etc. In this paper, we first evaluate the market response to
the reduction of fuel consumptions, a direct outcome of various fuel economy-
boosting technologies. We then pick a specific fuel economy technology – the
downsized turbo engine – that has an impact on attributes including engine
power, fuel consumption, turbo, and engine size, to predict themarket response of
turbocharged vehicles relative to traditional gas-powered vehicles. The obtained
results are useful in three aspects: (a) for understanding the underlying product
attributes that determine customers’ co-consideration decisions, (b) for analyzing
the competitions between different vehiclemodels and brands, and (c) for guiding
auto companies to create marketing plans and product design strategies in
preparation for new technology scenarios.

4.1. Step 1 – Data collection
The data, from a market survey for new car owners in 2013, consists of 49,921
respondents and 389 unique vehicle models in China. For each respondent,
the survey lists the purchased vehicle, the main alternative vehicle, and other
vehicles considered by the individual. Due to the restrictions on survey design,
respondents could only list up to three vehicles in their consideration sets
(including the final purchase), even though the actual number of consideration
might be higher. In addition, the information about the attributes of vehicles
(e.g., engine power and fuel consumption), customer demographics (e.g., age and
income), and perceived vehicle characteristics (e.g., youthful, sophisticated, and
business oriented) is also collected in the survey data.

4.2. Step 2 – Co-consideration network construction
Using the survey data, a product co-consideration network is constructed based
on the vehicle consideration information. The existence of a link between two
nodes (vehicles) in the network is determined by the lift metric, which normalizes
the co-occurrence frequency of products by the mere frequency of each product
in the dataset. The lift between vehicle models i and j is calculated by (6).

lift(i, j) =
Pr{coconsider i and j}

Pr{consider i} · Pr{consider j}
. (6)

Pr is the probability of (co)occurrence. The lift value indicates how likely two
products are co-considered by customers, normalized by the product popularity
in themarket. The lift is a value between 0 and infinity. By the statistical definition,
a lift value close to 1 indicates that the two products appear in customers’
consideration sets almost as often as expected at random. A lift value greater
than 1 indicates that the two products are more likely to be co-considered than
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Figure 6. Visualization of vehicle co-consideration network. Link weights are lift
values and only links with weights larger than 1 are included. Network communities
are depicted using different colors.

expected by random. We have examined the lift distribution1 and conducted
sensitivity analysis on network robustness against the lift values2. The results
revealed that the selection of lift = 1 provides a reasonable separation of
the significantly, positively correlated co-considerations from others. Assuming
symmetric and reciprocal of co-consideration relations, a weighted, undirected
vehicle co-consideration network is produced.

Figure 6 displays the vehicle co-consideration network involving all 389
vehicles in the survey data, visualized by the Fruchterman–Reingold force-
directed algorithm (Fruchterman & Reingold 1991). The colored communities
are detected using the modularity maximization algorithm which optimizes
the modularity score (a measure of division quality) with the greedy heuristic
(Newman 2006). The algorithm is chosen because it generates non-overlapping
groups, helps better visualize the market segments, and provides insights into
the competition structures. The identified network communities are highly
associatedwith themarket segments. For example, the yellow community includes
many domestic entry-level sedans (e.g., BYD F6 and Chery QQ), while the
green community includes premium SUVs by foreign manufacturers (e.g., Jeep
Grand Cherokee and Volvo XC60). However, the vehicle segment is not the
only factor contributing to the formation of network communities. Product
designers, for example, may ask about the shared design attributes for vehicles
in the yellow community, and the common characteristics of consumers who
consider these vehicles. The following step explores multiple factors together,
including vehicle attributes, customer demographics, and customer perceived
vehicle characteristics, to describe the emergence of vehicle communities.

1 The lift value has a power law distribution, which means that most connections have values below 1
and around 1. Selecting a higher cutoff will aggressively omit many potential positive associations.
2 We have tested our models using cutoff at 1, 3, 5, and 7, respectively, and no significant changes in
the network characteristics or the trends of the model results are observed.
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Figure 7. JCA plot of vehicles (in dots) and customer demographics (in triangles).
The colors of the dots highlight the network communities of vehicles (representing
aggregated consideration sets). As observed, the customer demographics can
somewhat explain particular patterns of vehicle communities.

4.3. Step 3 – Joint correspondence analysis for understanding
key influencing factors

In this step, we use JCA to explain the formation of network communities
(aggregated consideration sets) by exploring its underlying driving factors
associated with customer demographics, product attributes, and customer
perceived product characteristics. The three types of attributes and their impacts
on vehicle co-considerations are evaluated first separately and then together.
Product attributes of vehicle models are the physical properties or specifications
determined by the manufacturer or designer (e.g., brand and performance).
Perceived product characteristics are collected by the subjective opinions of
customers (e.g., comfortable and cool), which can be emotional and strongly
influenced by the society and social media. The two types of information provide
different viewpoints from designers and customers but have strong connections
and interactions in between.

First, we choose the vehiclemodels and customer demographics as the column
variables of interests. Performing JCA on the Burt matrix explains 67.3% of
the total inertia using the first two dimensions. Figure 7 shows the generated
joint plot. As noted, the output plot simultaneously displays all levels of the two
sets of variables – the vehicle models in dots and the demographical attributes
of customers in triangles. As observed from the upper left region in Figure 7,
customers who have High Income and who acquired Additional Car are close to
each other, and both of them are closely associated with blue dots representing
luxury sedans (community #5). Also noted from the upper right of Figure 7,
customers from Village/Rural and Town are also characterized by low education
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Figure 8. JCAplot of vehicles (in dots) and customer perceived vehicle characteristics
(in triangles). The colors of the dots highlight the network communities of vehicles
(aggregated consideration sets). The perceived vehicle characteristics have relatively
weaker power in explaining the emergence of vehicle communities.

(High School and Below) and associated with lower-end vehicles (community
#2). A majority of customer attribute levels, however, are clustered around the
principal origin, e.g., Lower Middle Income, Technical College, Young, 0 Children,
1 Child, etc., meaning that those demographic levels cannot distinguish vehicle
considerations from one to another very well.

In addition to studying the relationships between variables, JCA could also
help answer the question of the formation of consideration sets. More specifically,
we can observe whether two vehicles within the same community form clusters
and what attributes explain the formation of the vehicle communities. Figure 7
colors the vehicle points to highlight the community membership. Some
communities show clear boundaries being separated from others (e.g., #2),
while some communities are less clustered (e.g., #6 and #7), and even somewhat
dispersed (e.g., #1, #4, and #5). The domestic, low-end sedan community (#2,
in yellow) is associated with the demographics including Village/Rural, Low
Income, and High School and Below. In contrast, the import SUV community
(#4, in green) is characterized by a different set of demographics, including High
Income, Additional Car, and Replace Old Car. Both observations are consistent
with our prior understanding. For this case study, the demographical attributes
can somewhat explain particular patterns of considerations, but the correlation
is not strong. Such insights can stimulate the development of rigorous predictive
models in the next step as well as offer opportunities for data reduction.

Second, we use vehicle models and customer perceived vehicle characteristics
based on customers’ subjective expressions as explanatory variables to study their
impacts on vehicle co-considerations. The JCA explains 77.4% of the total inertia
using the first two dimensions. Figure 8 shows the generated joint plot.
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Figure 8 allows us to explore the relationships between the perceived vehicle
characteristics as described by customers and the aggregated consideration sets as
network communities. This effort also reveals how customers evaluate vehicles
differently based on the subjective feelings and the characteristics they care
most for each vehicle community. In Figure 8, the horizontal axis represents the
Expensive–Cheap dimension running from the left to the right and the vertical
axis represents the Conservative–Fashion dimension moving from the top to the
bottom. For example, the domestic, low-end sedan community (#2, in yellow)
is associated with characteristics like Economical and Family Oriented; while the
import SUV community (#4, in green) is associated with characteristics like
Business Oriented and Prestigious.

The JCA plot also provides design engineers with additional insights into
bundling vehicle features that are compatible for a specific market niche. For
example, according to the distance of triangles, environmental-friendly cars
could be designed with bundling of innovative features, sophisticated look,
reliable components, and safety equipment; while family-oriented cars may be
designed by combining traditional exterior designs, lower prices, and fuel-efficient
technologies. JCA-based qualitative analysis enables us to gain such design
insights.

Next, we use vehicle models and vehicle attributes as explanatory variables
to study their impact on vehicle co-considerations. In Figure 9, the relationships
among the two sets of variables are much clearer to see in an inverted double
V-shaped pattern, where vehicle attributes are widely distributed in the space and
vehicle models are positioned close to the vehicle attributes nearby. As noted,
vehicle points in the figure are clustered by network communities, meaning that
vehicle models in the same community mostly share the same set of vehicle
attributes. Even though the community boundary is clear, these results using all
vehicle attributes in the data seem over-fit the consideration relations. As shown,
the yellow community (#2) is cut apart into three blocks, and the green community
(#4) is divided into two sections. Some of the links within a community are broken
by the detailed description of the product attributes. The principal inertia for the
first two dimensions is low in this case – only 14.9% of the total observed variance
is explained because there are so many dimensions of product attributes and the
first two principal axes cannot efficiently capture the full relational patterns. This
result indicates that an examination on individual product attribute is needed as
what we will perform in Step 4.

Taken all the three sets of variables into account, we conduct a JCA on vehicle
models, customer demographics, perceived vehicle characteristics, and vehicle
attributes altogether. The resulting joint plot is shown in Figure 10 where the first
two dimensions (x and y axes) together explain 19.0% of the total variance in
the data. It is noted that Figure 9 and Figure 10 have similar graphical patterns,
representing the higher importance of vehicle attributes relative to other attributes
in explaining co-consideration relations. In addition, it is observed that the
customer demographics and perceived vehicle characteristics concentrate around
the origin, while the vehicle attributes are more dispersed in the space. This
suggests that part of the previously observed relations in Figure 7 and Figure 8
can be described using vehicle attributes. One example could be thatHigh Income
attribute of customers and Luxury characteristics are closely related to the High
Price attribute of vehicles.
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Figure 9. JCA plot of vehicles (in dots) and vehicle attributes (in triangles). The colors of the dots highlight
the network communities of vehicles (representing aggregated consideration set). Vehicle brands and origins
are hidden for simplicity. The vehicle attributes have the strongest power among the three sets of variables in
explaining the emergence of vehicle communities.

The JCA plot including all variables may not be the best way to explain
the consideration patterns. However, compared to other traditional methods,
JCA is useful in exploratory data analysis to identify systematic relationships
between various types of attributes and the associations of vehicles when there
is no a priori knowledge as to the nature of those relationships. JCA provides
a useful interpretative tool to understand the relationships between various
sets of connections and attributes. The revealed complex relationships would
not be detected in a series of pairwise comparisons by traditional statistical
approaches. For example, the analyses above clearly illustrate the distinction
between the vehicle attributes and the perceived vehicle characteristics. Vehicle
attributes produce a JCA space which accurately differentiates various vehicle
models. However, it is difficult to explain the community differences (aggregated
consideration set) using one or two latent factors, most likely due to the effect
of information overloading. Regular customers cannot comprehend the complex
product information and make corresponding decisions. In comparison, vehicle
perceived characteristics based on customers’ subjective feelings (probably
influenced by branding and marketing activities) only have a few underlying
dimensions, such as prices and styles discussed above. Although the perceived
vehicle characteristics are weak in segmenting vehicle models, they can explain
more than three-quarters of the variance of the relational data. This suggests that
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Figure 10. JCA plot of vehicles, customer demographics, perceived vehicle
characteristics, and vehicle attributes. Different sets of variables are depicted in
different shapes. The colors of the dots highlight the network communities of vehicles
(representing aggregated consideration sets).

the principal dimensions generated by the perceived vehicle characteristics truly
reveal how people make preference decisions.

As shown in this step, using JCA we generate visual representations
that describe the communities of vehicle models, construct latent factors
using correlated information, and provide a better understanding of what
customer/product attributes impact the structures of vehicle communities or
vehicle consideration sets. Beyond visual descriptions and explorations, in the
next section, our interest is to further quantify the important effect of multiple
factors on the formation of co-consideration relations of products.

4.4. Step 4 – MRQAP modeling
We employ MRQAP to analyze the underlying factors driving product
co-consideration using a set of explanatory effect networks created by vehicle
attributes and customer demographics. In the established model, the explanatory
networks are built from variables of all four different types of effect networks
as shown in Table 2. The two distance networks (characteristics dist. and
demographics dist.) are built using the product coordinates derived from JCA
in Step 3. This unique feature of the proposed method integrates the JCA with the
MRQAP technique.

In data processing, a few high correlations are observed among the vehicle
attributes related to price, power, and engine size. To handle this situation, we
employ Dekker’s double semi-partialing (DSP) method during model estimation.
This method has the capability to generate relatively more robust estimates under
the situation of multicollinearity (Dekker et al. 2007).
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Table 4. Estimation results of MRQAP network model.

From the results shown in Table 4, most attributes (except fuel type
match, power sum, fuel consumption sum, engine size diff, engine size sum, and
characteristics dist.) are statistically significant at a significance level of 0.05. This
indicates that the associations formed by these vehicle attributes are important in
explaining customers’ co-consideration behavior. All coefficients have expected
signs: the positive coefficient for a match network (constructed based on binary
or categorical attributes, e.g., brand match and turbo match) indicates that
vehicles sharing the same attribute categories are more likely to be co-considered
(homophily); the negative coefficient for a difference network (constructed based
on continuous attributes, e.g., price diff and power diff) indicates that the smaller
the difference in attribute values, the more likely are two vehicles co-considered
(homophily); the positive coefficient for a sum network (constructed based on
binary or continuous attributes, e.g., price sum and turbo sum) implies that higher
combined attribute values increase the probability of vehicle co-considerations
(attributed-based main effects); the negative coefficient for a distance network
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Table 5. Prediction accuracy of MRQAP model.

Notes: Evaluated by the mean of 100 simulated networks. The standard deviations are
shown in parentheses.

(constructed based on non-product related attributes, e.g., characteristics dist.
and demographics dist.) shows that the further the two vehicles are away from each
other in the space of JCA, the less similar the non-product related attributes are
shared by the two vehicles, and the less likely those two vehicles are co-considered
by customers. As all the input variables are normalized, their coefficients are
comparable. The magnitude explains the level of importance of an effect network,
indicating how close the structure of the attribute-based effect network relates to
the vehicle co-consideration network. For example, price diff. has the strongest
effect, meaning that the difference of car price is the most influential factor
in customers’ co-consideration decisions. Similar to the traditional logistic
regression, one can also interpret the coefficients in terms of odds ratios. For
instance, the coefficient of brand match informs that there is an 87% increase in
the odds for same-brand vehicles to be co-considered compared to two vehicles
of different brands.

Different from a utility-based DCA model that only captures the main effects
of product attributes, MRQAP compares different products in consideration
by creating relational links through associations of attributes. This capability
is especially critical to understanding product competitions because it allows
answering questions related to the homophily effects, e.g., whether customers are
more likely to co-consider similarly priced products.

To validate the MRQAP model’s in-sample predictability, we regenerate the
vehicle co-consideration network using the predicted probability of links given by
(1). After 100 network simulations, we evaluate the average prediction accuracy
using two measures: (a) sensitivity, the percentage of correctly predicted links
among all actual connections; and (b) specificity, the percentage of missing links
that were correctly predicted as such (Altman et al. 1994). From Table 5, we can
observe the model performance with the specificity at 0.93 and the sensitivity
at 0.253. The relatively low sensitivity is due to the low density of the observed
co-consideration network and this is common for all link prediction applications.
The actual network has 6,449 co-consideration relations out of a total of 75,466
pairs of products. This means, only 8.5% of all prediction cases have positive
outcomes. This low positive rate makes the link identification to be challenging.
The MRQAP method is included to illustrate the step of link prediction. More
advanced methods based on similarity and shortest path (Liben-Nowell &
Kleinberg 2003), hierarchical and community structures (Clauset, Moore &
Newman 2008), and global network structures (Perozzi, Al-Rfou & Skiena 2014)
can be used to improve the prediction performance.
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4.5. Step 5 – Scenario formulation and network prediction
To examine the impact of technological changes on market, we make the
following assumptions: (1) The market response only changes as a result of new
technologies, e.g., fuel consumption variable in the MRQAP model, while the rest
of the variables are unaffected; (2) The target population of customers remains
the same as the profile distribution drawn from the survey data; (3) The new
technology is only introduced for a specific set of vehicles in the market, and
designs of other vehicles do not change. The following ‘what if ’ scenarios are
studied:

• Scenario 1: We study the general effect of fuel economy-boosting
technologies by varying fuel consumption from 100% to 50% of its original
value (at a step of 5%).

• Scenario 2: We study the effect of a downsized engine with a turbocharger
installed. By maintaining the same power output, the turbocharged version
reduces fuel consumption by 20% and engine size by 30% (Turbocharging
2015).

Note that we propose the two hypothetical scenarios for a preliminary,
exploratory study. This means the scenariomay not be realistic, e.g., the reduction
of fuel consumption to 50% of the current capacity is difficult to achieve. Our
goal is to demonstrate the potential extreme impact that the change of product
attributes may bring. Besides these scenarios, we further exemplify the what-if
analysis with two specific auto companies, Toyota and Ford. We are particularly
interested in these two companies because of their prominent differences in the
number of vehicle models available in the China market, which would result
in a contrast of analysis results. For example, our data indicates that Ford has
nine different vehicle models, while Toyota has 17 models. Toyota has been the
leader of the fuel economy for many years, while Ford is an early adopter of the
turbocharged engines across its lineup. Under the above scenarios, we investigate
the impacts from two different perspectives: the full vehicle co-consideration
network from a global perspective, and the networks centered around Toyota
vehicles and Ford vehicles,3 respectively, from a local perspective. The behaviors
of the two local networks (centered around Toyota and Ford) are considered
independently. The supporting evidence for this assumption is that there are no
strong links (measured by lift values) between Toyota and Ford vehicles in the
constructed vehicle co-consideration network.

Since the network generation process with theMRQAPmodel is probabilistic,
before performing detailed scenario analysis, we evaluate the variation of
predicted networks based on some of the network metrics proposed above
(including global clustering coefficient cG , average local clustering coefficient
c̄, average degree d , and external degree d ′). Table 6 lists the corresponding
average and standard deviation (in parentheses) of each metric computed over
100 network simulations. Both the full vehicle co-consideration network and local
networks centered around a brand (Toyota and Ford, respectively) are analyzed.
The small standard deviations in Table 6 imply our model is capable of predicting
the vehicle co-consideration network consistently.
3 We only focus on vehicles with Toyota or Ford brand. This means Lexus, for example, is not in the
scope of analysis even though it belongs to Toyota company.
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Figure 11. The impact of fuel consumption on full network.

Table 6. Predicted metrics averaged by 100 network simulations, the standard deviations are shown in
parentheses.

4.6. Step 6 – Network evaluation under technological impacts
The purpose of this step is to evaluate and interpret the change of network
structures due to the technological impacts. We first apply Scenario 1 where fuel
economy-boosting technologies are adopted by Toyota and Ford, respectively. In
the full network (market-level) analysis, little change has been found for global
clustering coefficient cG when fuel consumption decreases (Figure 11(a)). There
is a slight decrease in the average degree d̄ , from 7.46 to 7.07 when Toyota reduces
fuel consumption to half, and to 7.32 when Ford does the same (Figure 11(b)).

These results suggest that the application of fuel economy-boosting
technologies by a single companymay not affect the overall market segmentation,
but may slightly reduce the competitions in the whole market. A larger impact
on d̄ (with faster decreased curve) is observed on Toyota as the brand offers
more vehicle models. This implies that the market impact from one brand largely
depends on the number of vehicle models that brand has.

When examining the local impact on a specific vehicle brand, we find that
Ford vehicles are more likely to be co-considered with other vehicles on average
(see Figure 12(a)), and especially with non-Ford vehicles (see Figure 12(b)). These
results imply that in the 2013 China market, on average a Ford vehicle may have
more competitors than a Toyota vehicle has.
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Figure 12. The impact of change of fuel consumption on the topology of Toyota and Ford Local Networks.

The declining trend of the two lines in Figure 12(a) shows that the average
number of vehicles being co-considered decreases for both Toyota brand and
Ford brand, respectively. For example, the average number of Ford’s competitors
reduces from above 5 to 1.25 when fuel consumption reduces to 70% of its
original specification and is even 0 when the fuel consumption reaches 50%. This
means, once Ford decides to adopt the fuel reduction technology, its vehicles
would become more distinguishable in the market. For example, at 90% fuel
reduction point, Toyota GAIG Highlander is no longer Ford Edge’s rival; Honda
Guangzhou Accord would not compete against Ford Changan Mondeo anymore.
Please note that our analysis is performed under the assumption that the rivals’
vehicle configurations are unchanged, i.e., no market game effects.
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In Figure 12(b), the average external degree d̄ ′ of Toyota and Ford vehicles both
decline, respectively, implying vehicles from Ford or Toyota would be less likely to
be co-considered with vehicles from other companies when the fuel consumption
decreases. From the similar decreasing trends in Figures 12(a) and (b), one can
infer that when one competing vehicle is removed (in other words, not further
co-considered with Ford or Toyota vehicles), only one link is taken away. This
meansmost of the removed links corresponded to one-on-one competition before
applying the changes. It is observed from Figures 12(a) and (b) that while fuel
consumption decreases, the number of vehicles co-considered for Ford decreases
faster than that of Toyota vehicles. This indicates that the impacts of fuel reduction
technology on Ford vehicles aremore significant than the effect on Toyota vehicles
in the China market.

Moreover, it is observed that the average number of links connected to
Toyota vehicles or Ford vehicles, measured by average degree (d̄), decreases as
fuel economy improves (see Figure 12(c)). The declining curves indicate that
the number of links taken away is bigger than the number of links added.
Together with the observations in Figures 12(a) and (b), it can be inferred that
the co-consideration within Toyota or Ford vehicles does not change significantly.
This observation is confirmed by the data. The reason is due to the fact that
the link structures in the two brand networks are predicted using the MRQAP
model presented in Table 4. When the value of the fuel consumption variable
varies, the effect networks of fuel consumption diff. and fuel consumption sum will
change, accordingly. However, the attribute-based main effect represented by the
fuel consumption sum is not significant, whereas the homophily effect represented
by the fuel consumption diff. dominates the structural changes, as shown by its
model coefficient (−3.925). This means when the fuel consumption for a vehicle
is changed to a level significantly lower than that of the competing vehicles, the
co-consideration link between them will disappear as the effect of homophily.
However, the internal links within a brand largely remain unchanged, because the
vehicles within the same brand are equivalently affected by the new technology
and the difference of fuel consumption between two vehicles does not change
significantly.

In Figure 12(d), the average clustering coefficient c̄ of Toyota vehicles is
higher than that of Ford vehicles before fuel consumption decreases. The high
c̄ implies that the competitors of Toyota vehicles are highly connected, where
three-way competitions (closed triplets) appear frequently. In contrast, Ford
vehicles attract more diverse competitors which are less similar with each other.
Under the change of fuel consumption, c̄ curves of Ford vehicles and Toyota
vehicles decrease, respectively. The c̄ value of Ford vehicles drops to 0 when fuel
consumption reduces to 50%, as no co-considered vehicles present at that point
(see Figure 12(a)), and no three-way competition exists among the Ford vehicles.
The fluctuations in c̄ curves are due to the structural variations of links both
outside of competing vehicles and inside Ford vehicles. For example, a big rise in c̄
at 80% level point can be explained by the new connection between Ecosport and
New Focus. The new link makes the Ford Changan Ecosport, Ford Changan New
Focus, and Classic Focus form a new three-way competition, contributing largely
to the high c̄ of Ford vehicles. The curve falls back at 75% level point, because the
triangular competition formed by Ford Explorer, Toyota FAWLandCruiser Prato,
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Table 7. Prediction of turbo technology impacts on Toyota vehicles and Ford
vehicles

and Jeep Grand Cherokee is broken, resulting in Grand Cherokee being the only
competitor against Explorer.

In Scenario 2, we investigate the impact of the turbo technology on vehicle
co-consideration relationships. The results in Table 7 show the combined effects
due to the change of turbo indicator (from 0 to 1), fuel consumption (decreased by
20%), and engine size (decreased by 30%)4.We find that with the turbo technology
applied, the external degree d ′ decreases for Toyota vehicles from75 to 10 andFord
vehicles from25 to 11, respectively, implying the declines of external competitions.
As shown in Table 7, it is predicted that 40 other vehicle models (i.e., 47–7 = 40)
are no longer co-considered by customers after Toyota applies turbo technology.
Similarly, the co-considered vehicles with Ford vehicles are reduced by half (from
22 to 11).

Although the number of co-considered vehicles decreases for both Toyota and
Ford, respectively, the clustering coefficient c̄ of Ford vehicles increases after Ford
applies the turbo technology. This implies that the adoption of turbo by Ford
may increase the connectivity (competitions) among Ford and its competitors.
However, in the Toyota vehicles, c̄ decreases from 0.55 to 0.2. Such reverse trends
between Toyota and Ford indicate that same technology adopted by different
vehicle brands may have different effects on the market.

5. Closing insights
5.1. Conclusions
In this paper, a network-based analysis approach is developed to facilitate the
study of consideration behaviors and market competitions. Using vehicle as
an example, we build a product network to establish the relationships of co-
considerations from survey data. The communities emerged from such a network
inform customers’ co-consideration patterns in an aggregated sense. To analyze
these co-consideration links, the JCA is employed to visualize vehicles associations
and potential customer/product drivers. The graphical output simplifies the
complex relationship structures between different sets of variables and generates
an insightful description of the underlying relationships. We then develop a
predictive model using multiple regressions quadratic assignment procedure
(MRQAP) to provide a quantitative assessment of customers’ co-consideration

4 For vehicles already have a turbo installed, no changes in attributes are made.
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relations as a function of various effect networks (match, sum, difference,
and distance) created by associations of attributes. The constructed network
model is capable of predicting the changes of network structures with respect
to the changes of product designs and the target market. By mapping a new
technology to a product attribute, the technological impacts can be forecasted
on customer co-considerations as well as the market competitions. The insights
and implications are crucial to identifying marketing strategies and introducing
product differentiations in engineering design.

The presented network approach provides insights into the factors, e.g., price
and income, which would affect customers’ consideration sets. The integration
of JCA and MRQAP techniques generates three important and consistent
observations for the test case. First, product attributes are the most influential
set of factors in customers’ consideration decisions. Second, the preference
heterogeneity can be partly reflected by demographics. Third, though customer
perceived vehicle characteristics have the weakest explanation power to describe
the co-consideration relationships, the perceived vehicle ‘price’ and ‘style’ are
widely used by customers as the two major bases for decision-making.

Two scenarios of technology applications – the general fuel economy-boosting
technologies and a specific turbo engine technology – are investigated. The
insights drawn from this case study are summarized as follows. First, the adoption
of a new technology by a single brand may not significantly change the structure
of vehicle co-considerations on the whole market. Second, a new technology may
lead to fewer competitors and less competition among a vehicle brand. Third,
applying fuel economy-boosting technologies would reduce the competition that
involves three or more vehicle models. Fourth, the same technology may bring
different impacts if adopted by different brands.

5.2. Contributions and Limitations
The developed network model can handle complex relational data whose
properties cannot be reduced to mere attributes. This capability is crucial when
examining problems like co-consideration decisions where the relationship (such
as similarity) between two products is possiblymore important than the attributes
of single products. The structure of the MRQAP model allows the evaluation
of homophily effects and attribute-based main effects simultaneously. This
feature is important to identifying key product attributes that drive customers’
consideration decisions. This also differentiates network-basedmodels fromDCA
that directly uses attributes of products and/or customers as predictors.

As a general framework, this research is a part of a larger effort to explore
and address various challenges associated with complex customer–product
interactions via network analysis. The major contribution of this paper is to
establish the connections between consumer behavior, market competition,
product design and technological development. Methodologically, this work
contributes to developing a descriptive, explorative tool, and a predictive,
explainable model implemented on relational, interdependent data. Nevertheless,
there are a few simplifications in the model that worth attention. The
co-consideration network is built using a unidimensional network that aggregates
the customer preferences in co-considerations, so the information of individual
heterogeneity may not be well captured. For the ease of model creation and
validation, the MRQAP model and the associated scenario predictions replace
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the weighted co-considerations links with dichotomized relations, i.e., either with
link (1) or no link (0). This abstraction omits the strengths of co-considerations
and thus the degrees of market competitions. In addition, we take consideration
options equally without priorities, while in the collected survey, ordered
preference on product alternatives is given by respondents. Our scenario analysis
provides illustrative examples without including a complete set of explanatory
variables and complex interaction effects. To better formulate the model and the
scenarios, further validations with actual production data collected before and
after the introduction of improved or new designs will be needed.

5.3. Future work
Future work needs to explore complex relational structures (bipartite and
multidimensional) using advanced networkmodeling and prediction approaches,
e.g., exponential random graph models (Wang et al. 2016; Lusher, Koskinen
& Robins 2012) by considering not only the product attributes but also other
underlying factors like preference heterogeneity and social influence. We aim
to further improve the predictability while not sacrificing the interpretability
of the model. Inspired by the work of Clauset et al. (Clauset et al. 2008) using
domain-specific information to adjust the probabilities of edges accordingly,
we have made some effort in this direction. Recently, we have been working on
several different network models using product attributes, and we compared their
predictive power using the same dataset. Please see our recent publication (Sha
et al. 2017) for more details.

Inspection and prediction of weighted network connections (i.e., the degree
of co-consideration) are also needed for a more comprehensive understanding of
the market competitions and applications in practice. The question on the degree
of co-consideration can be answered by linear regression version of MRQAP but
may have different underlying mechanisms. For example, two car models with
a big price difference are less likely to be co-considered. However, if the price
difference is in a certain range, it may not have a significant impact on the degree
of co-consideration. Moreover, a validation framework for a weighted network
should also be investigated to provide performance assurance for non-binary
occurrences.

Efforts will also be devoted to the robustness analysis under a variety of
settings in networkmodels, e.g., various sizes of networks, alternative measures of
similarities besides lift, sensitivity of consideration set size on network links, and
alternative data sources such as comparison engines and recommender systems,
etc. Though our case study focuses on the design of fuel-efficient vehicles, the
methodology can be extended to other technology-driven product design or
product family design. We will also extend the network-based models to analyze
purchase preferences and conduct comparative studies and benchmark testing
between various network models and traditional DCA. Future efforts will also be
made to introduce temporal network analysis models to understand the dynamic
evolution of the network structure. One example of such technique is the temporal
ERGM (Krivitsky & Handcock 2014) that can be used to study the driving factors
that lead to formation or dissolution of network links from one year to another.
Such dynamic network model will be capable of predicating the impact of design
improvement and other real-world scenarios (e.g., launch of electrical vehicles).
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Appendix
A.1. Algorithms of joint correspondence analysis
The MCA and JCA are extensions to simple CA approach. Because applying
MCA on the Burt matrix inflates the chi-squared distances between profiles and
the total inertia (Greenacre & Blasius 2006). Scale adjustments methods, such as
JCA, are often applied after the unadjusted MCA solutions. To illustrate JCA,
the procedures for computing unadjusted MCA solutions are presented first as
follows:

(1) Compute the total of elements in B:

B++ =
J∑

k=1

J∑
l=1

Bkl . (A 1)

(2) Divide the Burt matrix by its total:

P = B/B++. (A 2)

(3) Calculate the matrix of standardized residuals S:

c =
J∑

k=1

Pk− = P+− = P′1 (A 3)

where c is the column mass.

S = D−
1
2c (P− cc′)D−

1
2c (A 4)

whereDc is the diagonal matrix with diagonal c.
(4) Perform the SVD:

S = VΦV′ (A 5)

where φ1 > φ2 > · · · .
(5) Calculate the principal inertia

λt = φ
2
t (A 6)

and the total inertia ∑
t

λt =
∑

t

φ2
t . (A 7)

(6) Calculate the standard coordinates of columns

A = D−1
c V. (A 8)
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(7) Calculate the principal coordinates of columns

G = AD
1
2
Λ. (A 9)

whereDΛ is the diagonal matrix with elements λt on the diagonals.

JCA is an alternative adjustment approach which uses the alternating least-
squares method to correct the inflation of the total inertia. The iterative method
performs repeated MCAs and adjustments until the convergence of the adjusted
Burtmatrix. In each iteration, the algorithm constructs anMCA approximation of
the adjusted Burt matrix by changing the diagonal elements while keeping the off-
diagonal elements unchanged. The detailed algorithm pseudo-code is presented
as follows:

• Set B0 = B

• Repeat for m = 1, 2, . . .

* Compute MCA approximation of B(m−1) by solving

B̂lk = B++clck

(
1+

f∑
t=1

φ2
t Alt Akt

)
(A 10)

where cl and ck are the column masses, φ2
t are the principal inertia, and Alt and

Akt are elements of the standard coordinate matrix A.

• Update the main diagonal elements of Burt matrix B(m) with the
corresponding entries of B̂.

• Stop if the change of B(m) and B(m−1) falls below a tolerance threshold.

The JCA coordinates are computed from the converged solutionB(∞), and the
total inertia is defined as the sum of the inertias of the off-diagonal elements.
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