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On the zero helicity condition for quantum
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In this note we provide an analytical proof of the zero helicity condition for systems
governed by the Gross–Pitaevskii equation (GPE). The proof is based on the hydrodynamic
interpretation of the GPE, and the direct use of Noether’s theorem by applying Kleinert’s
multi-valued gauge theory. As a by-product we also demonstrate the conservation and
quantization of the circulation for the GPE.
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1. Multi-valued gauge theory for vortex defects in condensates

In this paper we show that the conservation of circulation and the conservation of
helicity of a system of quantum defects governed by the Gross–Pitaevskii equation (GPE)
emerge as Noether’s charges, and by applying Kleinert’s multi-valued gauge theory we
demonstrate the quantization of the circulation for the GPE, and we prove the zero helicity
condition for such a system. This is done by relying on the hydrodynamic form of the GPE,
revealing the analytical subtleties associated with the phase multi-valuedness, when vortex
defects are present.

The quantization of vortex circulation has long been known in superfluids and
condensates since Onsager’s original prediction of 1949 (Donnelly 1993, 1996). As for
helicity, various adaptations of the original definition have appeared in the quantum fluids
literature. A ‘regularized’ form of helicity that relies on the explicit calculation of second
derivatives of the wavefunction has been introduced to deal with line defects (Clark di
Leoni, Mininni & Brachet 2016); this essentially coincides with the so-called ‘centreline’
helicity (Kedia et al. 2018), that takes into account the contributions from mutual linking
and geometric writhe of vortex lines. These two forms of helicity miss the contribution
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from twist (Moffatt & Ricca 1992; Salman 2017), thus they are not conserved quantities
under dynamical evolution. Another quantity that has recently been introduced in the
superfluid literature is the ‘mesoscale’ helicity (Galantucci et al. 2021); this quantity
measures the helicity contribution due to a bundle of vortex lines on the length scale
of an extended vortex tangle, but it misses the localized induction effects of each vortex
line; hence, it is also non-conserved during the evolution. If one insists to define the GPE
helicity as a limiting form of the classical helicity, then the helicity remains conserved,
but it is trivially zero (Zuccher & Ricca 2015). This has puzzled researchers for a while,
especially because in a turbulent regime the non-conserved, regularized centreline helicity
of quantum defects behaves very much like the classical helicity of the corresponding
Navier–Stokes helical flows (Clark di Leoni, Mininni & Brachet 2017). In recent years
some progress has been done by extending the definition of helicity in terms of currents
algebra (Salman 2017; Foresti & Ricca 2020; Foresti & Ricca 2022a), thus making
possible the correction of some evident inconsistencies (such as the vanishing curl of the
velocity in the presence of circulation), while providing a topological argument for the zero
helicity condition in condensates (Sumners, Cruz-White & Ricca 2021). Here we show that
these recent results can be proven rigorously, and directly, from the hydrodynamic setting
of the GPE.

Let’s recall that the GPE is a mean-field approximation for a system of particles (bosons)
brought to low density and ultra-low temperature, that is described by a complex-valued
wavefunction Ψ = Ψ (x, t), where x denotes the vector position of a particle, and t time.
In the absence of an external potential, this equation is given by (Gross 1961; Pitaevskii
1961)

i�∂tΨ = − �2

2m
∇2Ψ + g|Ψ |2Ψ, (1.1)

where i = √−1, � is Planck’s constant divided by 2π, m is the mass of the boson and g is
the coupling constant for particle interaction. In particular we have Ψ = √

ρ/m exp (iθ/�),
where ρ = ρ(x, t) is the mass density and θ is the phase of Ψ . The associated Lagrangian
(Rogel-Salazar 2013) is given by

L = −i�Ψ ∗∂tΨ + �2

2m
|∇Ψ |2 + g

2
|Ψ |4, (1.2)

where Ψ ∗ denotes the complex conjugate. Let’s take g > 1 (particles’ repulsive
interaction), so that after an appropriate re-scaling we can reduce (1.1) to its
non-dimensional form, given by

∂tΨ = i
2
∇2Ψ + i

2
|Ψ |2Ψ. (1.3)

As is well-known, using the transformation (Madelung 1927),

Ψ = √
ρeiθ , (1.4)

(1.3) admits a hydrodynamic description in terms of a continuity and a momentum
equation of a fluid gas (Barenghi & Parker 2016). A velocity field u can thus be defined by

u = i
2

Ψ ∇Ψ ∗ − Ψ ∗∇Ψ

|Ψ |2 , (1.5)

that by (1.4) (and up to physical constants) can be written as

u = ∇θ. (1.6)
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Figure 1. Distinguished isophase surfaces (shades of cyan) S0, S1, S2, . . . associated with (a) a straight
vortex, and (b) a vortex ring. The induced velocity field u is represented by red arrows.

The hydrodynamic treatment of the GPE lends itself to adopt the conventional approach
of classical fluid mechanics, with notable exceptions. In the absence of vortex defects
(i.e. nodal lines of the wavefunction), the phase is single-valued everywhere in the fluid
domain D ⊆ R3, and the velocity field is evidently irrotational, because the vorticity ω =
∇ × u = ∇ × ∇θ = 0.

The situation changes when a vortex defect is present. Geometrically a nodal line L is
a simple, closed curve in R3, locus of intersection of a fan of isophase surfaces S hinged
on L, that foliate the entire fluid domain D (see figure 1). In this situation the vorticity ω
is localised on L, and it can be described by a Dirac delta distribution. Since higher-order
charge defects are known to be unstable and decay to a multiplet of unit charge vortex lines
(Kuopanportti & Möttönen 2010), we shall restrict our attention to defects of unit strength,
taking the vortex circulation ΓGPE = 2π. We have

ω(x) =
∮
L

δ(3)(x − s(σ ))
∂s
∂σ

dσ = δL(x)t̂ = δL(x), (1.7)

where δ(3)(x) is Dirac’s delta function in R3, s = s(σ ) the instantaneous configuration
of L (parametrized by σ ) and t̂ the unit tangent to L. The vortex circulation defined in
terms of ∇θ will be quantized because (as we shall see below) the phase is multi-valued,
regaining the original value after a whole number of turns around L. Since vortices
correspond to nodal lines where the density vanishes, the fluid domain is no longer
simply-connected, and the phase becomes multi-valued. The phase single-valuedness is
restored by the insertion of Riemann’s cuts, which leads to a correction of the velocity
field. By applying Kleinert’s (2008) theory of currents (seen as Schwartz distributions on
the space of differential forms), we can demonstrate (see Ricca & Foresti 2022) that up to
constants we have

u(x) = ∇θ(x) + δΣ(x), (1.8)

where Σ represents a (virtual) cut isophase surface, and δΣ(x) = ∫
Σ

δ(3)(x − x′) ν̂ d2x′
(ν̂ unit normal to Σ). Evidently the velocity does not depend on the choice of Σ , so that

ω(x) = ∇ × u(x) = ∇ × δΣ(x) = δL(x) /= 0, (1.9)

as expected.
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2. Helicity as a Noether charge in Euler fluids and superfluids

Consider the class of diffeomorphisms ϕt ∈ Diff(D) of the fluid domain D ⊆ R3 such
that ϕt : D → D, with time t ∈ [0, T] ⊂ R. Under the action of the Lagrangian flow map
ϕ fluid particles at the initial position a will be transported to the final position x. For any
smooth function, conservation of circulation and helicity (as a result of the topological
invariance of the velocity field) can be proven by Noether’s theorem by standard particle
relabelling symmetry techniques (Bretherton 1970; Lynden-Bell & Katz 1981; Salmon
1988; Yahalom 1995; Fukumoto 2008). Here we show that the same derivation can be
equally applied to the GPE case by using distributional techniques. To do this let us briefly
recall this derivation for Euler’s fluid first. The Euler action is given by

SE =
∫

T
dt

∫
D

ρ

(
1
2
|u|2 − e(ρ)

)
d3x =

∫
T

dt
∫
D


E(u, ρ) d3x, (2.1)

where u = u(x, t) = Dtx = ∂tx + (u · ∇)x denotes the velocity field (with Dt the
Lagrangian derivative), ρ = ρ(x, t) the fluid density, e(ρ) the specific internal energy and

E = 
E(u, ρ) the standard Lagrangian density for Euler’s flow. The Noether charge is
given by the variation of the action SE due to the particle relabelling ãi = ai + εηi (ε
being the perturbation parameter and ηi the displacement component). We have

δSE =
∫

T
dt

∫
D

(
∂
E

∂ui
δui + ∂
E

∂ρ
δρ

)
d3x, (2.2)

since δxi = 0 implies (∂
E/∂xi)δxi = 0. Let J ij = ∂xi/∂aj be the Jacobian of the
transformation from the initial to the final position, with determinant J = det(J ). Evidently
we have ρ/ρ0 = ρ(x, t)/ρ(a, 0) = J−1. Without loss of generality let us take ρ0 = 1;
following Fukumoto (2008), from Dta = 0 we have

ui = −(J )ij
∂aj

∂t
, (2.3)

so that under the variation δaj = εηj, we can write

δui = −(J )ij
D
Dt

(
εηj

) ; (2.4)

moreover, since ρ0 = 1, we also have

δρ = ρ
∂

∂aj

(
εηj

)
, (2.5)

with boundary conditions η = 0 at t = 0 and t = T for all x ∈ D, and normal condition
η · ν̂ = 0 on ∂D. Now, notice that Dtηj = 0 implies that variations in relabelling
leaves the velocity field unchanged (δui = 0), while ∂ajηj = 0 implies that density is
invariant (δρ = 0). Hence, from δSE = 0 and mass conservation ρ d3x = d3a, using
(2.4)–(2.5) together with the boundary conditions, we obtain

D
Dt

(
ui

∂xi

∂aj
ηj

)
− ∂

∂xj

(
∂


∂ρ
ηj

)
= 0, (2.6)

which gives the conservation of the Noether charge

QE =
∫
D

ui
∂xi

∂aj
ηj d3a. (2.7)
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2.1. Circulation Γ

By applying a transformation that transports particles along a loop C defined by the vector
position a(s) (s arclength), we have

ηj =
∮
C

δ3(a − a(s))
∂aj(s)

∂s
ds; (2.8)

in this case the conservation of QE gives Kelvin’s circulation theorem:

QE =
∫
D

ui
∂xi

∂aj
ηj d3a =

∮
C

u ·
(

J
∂a(s)
∂s

)
ds =

∮
C

u · ∂x(s)
∂s

ds = Γ. (2.9)

2.2. Helicity H
Consider the transformation that transports particles around a vortex line in D; from
Fukumoto (2008), we have

ηj = εjlk
∂uh

∂al

∂xh

∂ak
, (2.10)

where εjlk is the Levi–Civita tensor. By Euler’s equations, and the anti-symmetry property
of the tensor ε, we can verify that the transformation (2.10) satisfies the relabelling
symmetry condition. Moreover, by using the identity εjlk det(A) = εirhaijarlahk and (2.10),
the QE density becomes

ui
∂xi

∂aj
ηj = ui

∂xi

∂aj
εjlk

∂uh

∂al

∂xh

∂ak
= uiJεirh

∂uh

∂al

∂al

∂xr
= uiJ(∇ × u)i = uiJωi (2.11)

so that

QE =
∫
D

ui
∂xi

∂aj
ηj d3a =

∫
D

uiωiJ d3a =
∫
D

u · ω d3x = H. (2.12)

2.3. The GPE case
Now let us consider the action of the GPE; from the non-dimensional form of (1.2), and
by using (1.4) and (1.8), the action associated with (1.3) can be written as

SGPE = −
∫

T
dt

∫
D

ρ

(
∂θ

∂t
+ 1

2
(∇θ + δΣ)2 − h(ρ)

)
d3x, (2.13)

where h(ρ) (that plays the role of a quantum internal energy) is a given function of the
density ρ and its gradients. We can prove the following result.

THEOREM 2.1. A system governed by the GPE given by (1.3) has circulation ΓGPE and
helicity HGPE given by

ΓGPE =
∮
C

u · dx = 2πn, HGPE =
∫
D

u · ω d3x = 0. (2.14a,b)
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Proof . In order to establish the relation between SGPE and SE, let us first re-write
∂θ

∂t
= Dθ

Dt
− (u · ∇)θ = Dθ

Dt
− [(∇θ + δΣ) · ∇]θ = Dθ

Dt
− |∇θ |2 − δΣ · ∇θ. (2.15)

From (1.8), we have that |u|2 = |∇θ |2 + 2δΣ · ∇θ + |δΣ |2; (2.15) can thus be re-written
as ∂tθ = Dtθ − |u|2 + δΣ · ∇θ + |δΣ |2. Substituting this last expression into (2.13), we
have

SGPE = −
∫

T
dt

∫
D

ρ

(
Dθ

Dt
− 1

2
|u|2 + δΣ · ∇θ + |δΣ |2 − h(ρ)

)
d3x. (2.16)

By using the divergence theorem, the third contribution above becomes∫
D

δΣ · ∇θ d3x =
∫
D

∇ · (δΣθ) d3x =
∫

Σ

θ(δΣ · ν̂) d2x = θΣ

∫
Σ

δΣ · ν̂ d2x, (2.17)

where θΣ is the value of θ restricted to Σ , and it is constant and independent of time.
Moreover |δΣ | is also constant and independent of time: from Kleinert (2008, p. 201,
(6.33)), we have

d
dt

|δΣ |2 = 2[δΣ · (u × (∇ × δΣ))] = [(∇ × δΣ) · (δΣ × u)], (2.18)

but ∫
D

(δΣ × u) d3x =
∫

Σ

(ν̂ × u) d2x = 0, (2.19)

because ν̂ and u are everywhere pointwise parallel on Σ ; hence d|δΣ |2/dt = 0. By
absorbing these two constants into h(ρ), we have

SGPE =
∫

T
dt

∫
D

ρ

(
1
2
|u|2 − h(ρ) − Dθ

Dt

)
d3x =

∫
T

dt
∫
D


GPE(u, ρ, θ) d3x; (2.20)

we can regard 
GPE as the sum of the densities 
E and 
θ associated with an Euler action
and a phase contribution, so that

SGPE =
∫

T
dt

∫
D

[
E(u, ρ) + 
θ (θ)] d3x = SE + Sθ . (2.21)

Now, let’s apply Noether’s theorem following the same procedure as for the Euler context.
Considering the variation of SGPE, and using the results above, we have the conservation
of the GPE charge QGPE, where

QGPE = QE + Qθ =
∫
D

ui
∂xi

∂aj
ηj d3a −

∫
D

∂θ

∂aj
ηj d3a. (2.22)

In the presence of a defect, the velocity must take into account the multi-valuedness of the
phase; by direct substitution of (1.8) into (2.22), we have

QGPE =
∫
D

[δΣ(x)]i
∂xi

∂aj
ηj d3a /= 0. (2.23)

By considering a loop C ⊂ R3 encircling a defect, and using (2.8), we have the
conservation of the GPE circulation, i.e.

QGPE =
∫
D

[δΣ(x)]i
∂xi

∂aj
ηj d3a =

∮
C

δΣ(x) · ∂x(s)
∂s

ds = ΓGPE = 2πn, (2.24)

which proves (2.14a). Here n ∈ N is associated with the multi-valuedness of θ , and it
represents the topological charge of the defect; n is the winding number, and it is given by
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the number of intersections of the loop C with an isophase surface S spanning the nodal
line L.

Furthermore, by using (2.11) we also have

QGPE =
∫
D

[δΣ(x)]i
∂xi

∂aj
ηj d3a =

∫
D

δΣ(x) · ω d3x. (2.25)

In the presence of a defect, the condensate ambient space is entirely foliated by infinitely
many, smooth, isophase surfaces, all bounded by, and hinged upon the same defect. Let
S1 and S2 be two of such surfaces (see, for instance, figure 1b), and S̄ := S1 ∪ S2 the
union of S1 and S2; since S̄ is a closed surface in R3, let Ω be the volume enclosed by
S̄ , so that ∂Ω = S̄ . Remembering that ∇θ(x) + δΣ(x) does not depend on any specific
isophase surface, we evidently have

δΣ(x) = 1
2

[
δS1(x) + δS2(x)

]
. (2.26)

Hence, by applying the divergence theorem to (2.25), we have

QGPE =
∫
D

δΣ(x) · ω d3x =
∫
S̄

ω · ν̂ d2x =
∫

Ω

∇ · ω d3x = 0, (2.27)

since δΣ(x) is normal to any isophase surface, and ω is a solenoidal field. Since the
irrotational part of the velocity does not contribute to the kinetic helicity, by using (1.8)
and (2.27), we have

QGPE =
∫
D

δΣ(x) · ω d3x =
∫
D

u · ω d3x = HGPE = 0, (2.28)

which proves (2.14b). �

We should emphasize that the result above can only be proven by using distributional
techniques; indeed, by relying on smooth functions Kedia et al. (2018) simply show that
the helicity is zero because the Noether charge is always zero under any transformation,
a result that cannot hold true for circulation (which is generally non-zero), and hence that
cannot be taken as a proof for the conservation of the vanishing helicity.

The results of Theorem 2.1 are independent from the number of defects present in
the system, and their geometric and topological configuration. The particular case of a
vortex ring threaded by a co-axial, straight defect where an additional localised vorticity
field is present on the central nodal line, for instance, has been investigated by numerical
simulations (Zuccher & Ricca 2018), and studied extensively by Foresti & Ricca (2019,
2020, 2022a,b). As demonstrated there, the existence of a localised field on the intersection
of the isophase foliation is just the natural consequence of the emergence of a new
topological phase, in agreement with the simultaneous presence of distributional currents
(Onural 2006), and the zero helicity condition.

3. The zero helicity condition from a topological viewpoint

As shown by Salman (2017), the topological decomposition of the kinetic helicity of
quantum defects in terms of linking numbers, derived by Moffatt (1969) and Moffatt &
Ricca (1992), holds true also for the GPE case. Since any isophase of a defect is an
orientable surface bounded by the defect (i.e. it is a Seifert surface), we can use this surface
to compute linking numbers, and show (Salman 2017) that for a suitably defined frame of
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reference (i.e. a Seifert framing) total helicity (that is independent of the reference frame)
is always zero. For a system of N defects of unit strength (ΓGPE = 2π), one can prove
(Sumners et al. 2021) that

HGPE =
∑

i

Sli +
∑
i /= j

Lkij = 0 (i, j = 1, . . . , N), (3.1)

where Sli and Lkij are respectively the self-linking and the linking number of the defects.
This means that a system of defects can only exist if the topological requirement of zero
total linking is satisfied; a network of defects can thus form only if the amount of mutual
linking is balanced by the total writhe and twist of the individual vortex lines. For instance,
as discussed in relation to the example mentioned in the previous section, the superposition
of a twist phase on a single defect in isolation induces the creation of a new, secondary
defect that threads the former to keep the total linking number zero (Foresti & Ricca
2022b).

Since Lkij = Lkji, the linking coefficients can be arranged in a matrix form, given by

M =

⎡
⎢⎣

Sl1 Lk12 . . . Lk1N
Lk12 Sl2 . . . Lk2N
. . . . . . . . . . . .

Lk1N Lk2N . . . SlN

⎤
⎥⎦ , (3.2)

where M is real symmetric; for a given entry i ∈ [1, N], (3.1) prescribes that the
corresponding row/column elements of M must sum up to zero, a condition very little
explored in matrix theory. Moreover, since any real symmetric matrix can be reduced to
a diagonal form D, assuming that the inverse D−1 exists, we can discover the self-linking
conditions for N co-existing, unlinked defects. This applies also for the existence of a
single knot (say a trefoil) in isolation, for which writhe and total twist must always balance
to zero in order to satisfy the requirement Sl = 0. This information is useful to understand
the long-term behaviour of a system of defects, because defects with twist different from
zero are in general highly unstable, developing reconnections, and undergoing a rapid
energy decay, with production of small vortex rings. Hence, taking advantage of the
topological constraint (3.1) proves not only useful to create complex structural networks
of defects, but it may well provide useful information for experimental and technological
applications.
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