Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T02:11:11.624Z Has data issue: false hasContentIssue false

Radio Data on Clusters of Galaxies from the Culgoora Circular Array

Published online by Cambridge University Press:  25 April 2016

O. B. Slee
Affiliation:
Division of Radiophysics, CSIRO, Sydney
Betty C. Siegman
Affiliation:
Division of Radiophysics, CSIRO, Sydney

Extract

The Culgoora circular array (CCA) is a 3-km-diameter ring of 96 reflectors operating at 80, 160 and 327 MHz. It has an effective collecting area of ~ 6000 m2 and achieves angular resolutions (full half-power beamwidths) of 3’.70, 1 ‘.85 and 0’.92 at the three operating frequencies. During the interval 1978-1981 we have used the CCA to make 80 and 160 MHz measurements of a comprehensive selection of radio sources which were detected during various complete surveys of clusters of galaxies (see Table 1). We have combined our low-frequency intensity measurements with other available higher-frequency flux data to compute accurate radio spectra. The 160 MHz contour maps for many of the cluster fields were used to find positions and angular sizes for the associated radio sources.

Type
Research Article
Copyright
Copyright © Astronomical Society of Australia 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abell, G. O., Astrophys. J. Suppl, 3, 211 (1958).Google Scholar
Bautz, L. P., Astron. J., 77, 1 (1972).CrossRefGoogle Scholar
Bautz, L. P., and Abell, G. O., Astrophys. J., 184, 709 (1973).CrossRefGoogle Scholar
Bautz, L. P., and Morgan, W. W., Astrophys. J., 162, L140 (1970).Google Scholar
Braid, M.K., and MacGillivray, H.T., Mon. Not. R. Astron. Soc, 182, 241 (1978).Google Scholar
Corwin, H. J., Astron. J., 79, 1356 (1974).CrossRefGoogle Scholar
McHardy, I., Mon. Not. R. Astron. Soc, 169, 527 (1974).Google Scholar
McHardy, I., Mon. Not. R. Astron. Soc, 188, 495 (1979).Google Scholar
Mills, B. Y., and Hoskins, D. G., Aust. J. Phys., 30, 509 (1977).Google Scholar
Owen, F. N., Astron. J., 79, 427 (1974).CrossRefGoogle Scholar
Owen, F. N., Astron. J., 80, 263 (1975).CrossRefGoogle Scholar
Sandage, A., and Hardy, E., Astrophys. J., 183, 743 (1973).Google Scholar
Sandage, A., Kristian, J., and Westphal, J. A., Astrophys. J., 205, 688 (1976).Google Scholar
Slee, O. B., Aust. J. Phys. Astrophys. Suppl. No. 43 (1977).Google Scholar
Slee, O. B., and Quinn, P. J., Proc Astron. Soc. Aust., 3, 332 (1979).Google Scholar
Slee, O. B., Siegman, B. C., and Mulhall, P., Proc. Astron. Soc. Aust., 4, 278 (1982a).Google Scholar
Slee, O. B., Wilson, I. R. G., and Siegman, B. C., Proc. Astron. Soc. Aust., 4 (in press) (1982b).Google Scholar
Slee, O. B., Wilson, I. R. G., and Siegman, B. C., Aust. J. Phys. (submitted) (1982c).Google Scholar
Supplementary material: PDF

Slee and Siegman supplementary material

Supplementary Material

Download Slee and Siegman supplementary material(PDF)
PDF 11.6 MB
Supplementary material: PDF

Slee and Siegman supplementary material

Supplementary Material

Download Slee and Siegman supplementary material(PDF)
PDF 6.8 MB
Supplementary material: PDF

Slee and Siegman supplementary material

Supplementary Material

Download Slee and Siegman supplementary material(PDF)
PDF 5 MB