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LIMITING CROSSING
PROBABILITIES
OF RANDOM FIELDS
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Abstract

Random fields on Z
2+, with long-range weak dependence for each coordinate individually,

usually present clustering of high values. For each one of the eight directions in Z
2+, we

formulate restriction conditions on local occurrence of two or more crossings of high
levels. These smooth oscillation conditions enable computation of the extremal index
as a clustering measure from the limiting mean number of crossings. In fact, only four
directions must be inspected since for opposite directions we find the same local path
crossing behaviour and the same limiting mean number of crossings. The general theory
is illustrated with several 1-dependent nonstationary random fields.
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1. Introduction

Let X = {Xn}n≥1 be a random field on Z
d+, where Z+ is the set of all positive integers and

d ≥ 2. We shall consider the conditions and results for d = 2 since it is notationally simpler
and the proofs for higher dimensions follow by analogous arguments. The inequality i ≤ n

means ik ≤ nk , k = 1, 2.
For a family of real levels {un,i : i ≤ n}n≥1 and a subset I of the rectangle of points

Rn = {1, . . . , n1} × {1, . . . , n2}, we will denote the event {⋂i∈I Xi ≤ un,i} by {Mn(I ) ≤ u},
or more simply by {Mn ≤ u} when I = Rn.

For each i = 1, 2, we say that the pair I ⊂ Z
2+ and J ⊂ Z

2+ is in Si (l) if the distance
between �i(I) and �i(J ) is greater than or equal to l, where �i , i = 1, 2, denotes the
cartesian projection. The distance d(I, J ) between sets I and J of Z

d+, d ≥ 1, is the minimum
of the distances d(i, j) = max{|is − js |, s = 1, . . . , d}, i ∈ I and j ∈ J .

Suppose that X satisfies a coordinatewise-mixing-type condition, such as the �(un)-con-
dition introduced in [9] which exploits the past and future separation one coordinate at a time.
Let F be a family of index sets in Rn. We shall assume that there are sequences of integer-valued
constants {kni

} and {lni
}, i = 1, 2, such that, as n = (n1, n2) → ∞,

(kn1 , kn2) → ∞,

(
kn1 ln1

n1
,
kn2 ln2

n2

)
→ 0, (1.1)
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Limiting crossing probabilities of random fields 885

and (kn1�1, kn1kn2�2) → 0. Here, �i are the components of the mixing coefficient defined
by

�1 = sup | P(Mn(I1) ≤ u, Mn(I2) ≤ u) − P(Mn(I1) ≤ u) P(Mn(I2) ≤ u)|,
where the supremum is taken over pairs I1 and I2 in S1(ln1) ∩ F , and

�2 = sup | P(Mn(I1) ≤ u, Mn(I2) ≤ u) − P(Mn(I1) ≤ u) P(Mn(I2) ≤ u)|,
where the supremum is taken over pairs I1 and I2 in S2(ln2) ∩ F . We then say that X satisfies
the D(un,i)-condition over F . In fact, we could consider a slightly weaker condition, as in [9],
if we were concerned only with stationary random fields.

In Section 2, we prove that the maxima over disjoint rectangles behave asymptotically as
independent maxima.

Restrictions on clustering of high values for stationary and nonstationary time series have
been considered in the form of the D′-condition introduced in [7]; see also [5]. In [11],
the authors introduced a D′-condition tailored for random fields which are not necessarily
stationary. That condition and the coordinatewise long-range dependence lead to a Poisson
approximation for the probability of no exceedances over Rn; this result can be applied to
nonstationary Gaussian random fields.

In Section 3, we discuss the behaviour of the maxima when clustering of high values of X

is allowed, but we restrict the local occurrence of two or more crossings of the high levels un,i .
For each one of the eight directions in Z

2+, we can restrict the local occurrence of two or more
crossings. These smooth oscillation conditions enable us to compute a clustering measure,
called the extremal index, from the limiting mean number of crossings. We prove that, in fact,
only four directions must be inspected since for opposite directions we find the same local path
crossing behaviour and the same limiting mean number of crossings.

We illustrate these results with several 1-dependent nonstationary random fields, which
satisfy different local crossing conditions.

2. Asymptotic independence of maxima

Under the coordinatewise-mixing D(un,i)-condition, we have asymptotic independence of
maxima over disjoint rectangles of indexes. In the following, F max denotes

max{P(Xi > un,i) : i ≤ n}.
Proposition 2.1. Suppose that the random field X satisfies the D(un,i)-condition over F such
that (I ⊂ J ∧ J ∈ F ) 
⇒ I ∈ F and for {un,i : i ≤ n}n≥1 such that

{n1n2F max}n≥1 is bounded. (2.1)

If Vr,p = Ir × Jr,p, r = 1, . . . , kn1 , p = 1, . . . , kn2 , are disjoint rectangles in F , then, as
n → ∞,

P

(⋂
r,p

Mn(Vr,p) ≤ u

)
−

∏
r,p

P(Mn(Vr,p) ≤ u) → 0.

Proof. From (1.1) and (2.1), for the purpose of the above convergence we can assume that
�1(Vr,p) > ln1 or �2(Vr,p) > ln2 . If all the pairs of rectangles Vr,p are in S1(ln1)∪S2(ln2) then
the result follows inductively from the D(un,i)-condition. On the contrary, we can eliminate
ln1 columns or ln2 rows of indices in Vr,p in order to obtain V ∗

r,p ⊂ Vr,p, r = 1, . . . , kn1 ,
p = 1, . . . , kn2 , to which we can inductively apply the D(un,i)-condition.
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3. Limiting crossing probabilities

We now discuss the limiting distribution of the maximum when, in addition to the coord-
inatewise-mixing condition, we restrict the local path behaviour with respect to the number of
crossings of the high levels un,i .

Since the natural notion of crossing at i = (i1, i2) would take into consideration the values
of the random field over the eight neighbours of i, i.e. over the points j such that d(i, j) = 1,
by taking β({i}) = {j : d(i, j) = 1}, we say that X has a crossing at i if the event

Bi,n =
{
Xi ≤ un,i,

⋃
j∈β({i})

Xj > un,j

}

occurs.
Using the ideas of [8], in combination with [3] and [6], to avoid clustering of crossings by

a nonstationary random field, we could be led to suspect that, for each rectangle I satisfying
∑
i∈I

P(Bi,n) ≤ 1

kn1kn2

∑
i≤n

P(Bi,n),

the following condition holds:

kn1kn2

∑
i,j∈I

P(Bi,n, Bj ,n)
n→∞−→ 0. (3.1)

However, we will show that an independent and identically distributed (i.i.d.) random field does
not satisfy (3.1) for normalized levels {un}n≥1 such that

n1n2 P(X1 > un)
n→∞−→ τ. (3.2)

For each i = (i1, i2) ∈ Z
2+, let bs(i), s = 1, . . . , 8, be the neighbours of i defined as

follows:

b1(i) = (i1 + 1, i2), b2(i) = i + 1,

b3(i) = (i1, i2 + 1), b4(i) = (i1 − 1, i2 + 1),

b5(i) = (i1 − 1, i2), b6(i) = i − 1,

b7(i) = (i1, i2 − 1), b8(i) = (i1 + 1, i2 − 1).

For each s = 1, . . . , 8, we shall denote the s-crossing event {Xi ≤ un,i, Xbs(i) > un,bs (i)} by
Bi,bs (i),n, or more simply by Bi,bs (i), where Xbs(i) = −∞ if bs(i) /∈ Z

2+.
In fact, for an i.i.d. random field X, {un}n≥1 satisfying (3.2), and I = {1, . . . , �n1/kn1�} ×

{1, . . . , �n2/kn2�} (where �·� denotes the integer-part function), we have

∑
i∈I

P(Bi,n) ≤ 1

kn1kn2

∑
i≤n

P(Bi,n)

and

kn1kn2

∑
i,j∈I

P(Bi,n, Bj ,n) ≥ kn1kn2

∑
s �=t

∑
i,j∈I

P(Bi,bs (i), Bj ,bt (j))

≥ kn1kn2

2∏
i=1

(⌊
ni

kni

⌋
− 1

)
P(X1 > un) P2(X1 ≤ un),
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which tends to τ as n → ∞. By analogous reasoning with subsets of β({i}) with more than
one element, we conclude that this kind of restriction on more than one direction is not satisfied
by i.i.d. random fields and normalized levels.

Since the only direction that uses the notion of past and future along both coordinate axes
simultaneously is the diagonal direction from i to i + 1, the authors considered in [11] a
condition which restricts the local occurrence of two or more of these diagonal crossings, i.e. a
condition that restricts the local occurrence of two or more events {Xi ≤ un,i, Xi+1 > un,i+1}.

Here we shall consider a more general approach to crossing events of random fields using
a family of eight local conditions. Different examples can verify different conditions of this
family, as we shall illustrate in Section 4.

Let C(Bi,bs (i),n) denote the family of index sets I ⊂ Rn such that

∑
i∈I

P(Bi,bs (i),n) ≤ 1

kn1kn2

∑
i≤n

P(Bi,bs (i),n).

Definition 3.1. Let s ∈ {1, . . . , 8}. The D′′(Bi,bs (i),n)-condition holds for X if, for each
I ∈ C(Bi,bs (i),n), we have

kn1kn2

∑
i,j∈I

P(Bi,bs (i),n, Bj ,bs (j),n)
n→∞−→ 0.

We show in Proposition 3.2, below, that each one of these eight local D′′(Bi,bs (i),n)-
conditions is a sufficient condition to compute the limit of P(Mn ≤ u) from the limiting
mean number of s-crossings. In order to apply Proposition 3.2, we only need to inspect one of
four directions, as the next result shows.

Proposition 3.1. Suppose that the random field X satisfies (2.1) and let s ∈ {1, . . . , 8}. Then

(i) X satisfies the D′′(Bi,bs (i),n)-condition if and only if it satisfies the D′′(Bi,bs (i),n
)-

condition, where bs = bs+4,

(ii)
∑

i≤n P(Bi,bs (i),n)
n→∞−→ ν > 0 if and only if

∑
i≤n P(Bi,bs (i),n

)
n→∞−→ ν > 0.

Proof. To obtain part (i) we first note that

∑
i,j∈I

P(Bi,bs (i), Bj ,bs (j))

=
∑
i,j∈I

P(Bi,bs (i), Xbs(j) > un,bs(j)) −
∑
i,j∈I

P(Bi,bs (i), Xj > un,j )

+
∑
i,j∈I

P(Bi,bs (i), Xj > un,j , Xbs(j) ≤ un,bs(j)).

By applying the same decomposition to Bi,bs (i) in each of the above terms, we obtain

∑
i,j∈I

P(Bi,bs (i), Bj ,bs (j)) =
∑
i,j∈I

P(Bi,bs (i)
, Bj ,bs (j)) + o(kn1kn2).

Part (ii) follows by an analogous argument.
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Under the conditions (1.1) and (2.1), in the proof of Proposition 3.2, below, we can suppose
that, for each rectangle Vr,p in the partitions that arise for Rn, the variables Xi with indices
in the boundary of Vr,p exhibit values below the corresponding levels un,i . Asymptotically,
the probability of the complement of that event is negligible. So, for each fixed s, some event
Bi,bs (i) with i ∈ Vr,p occurs if and only if we have some exceedance over Vr,p.

Proposition 3.2. Suppose that the random field X satisfies (2.1), the D′′(Bi,bs (i),n)-condition
holds for some s ∈ {1, . . . , 8}, and the D(un,i)-condition holds over C(Bi,bs (i),n). Then, as
n → ∞,

P

(⋂
i≤n

Xi ≤ un,i

)
→ e−ν, ν > 0,

if and only if ∑
i≤n

P(Bi,bs (i),n) → ν > 0.

Proof. Let {kni
}, i = 1, 2, as in (1.1). We will build kn1kn2 rectangles in C(Bi,bs (i),n) as

follows. First split Rn into kn1 quasi-rectangles

I ′
r = ({sr−1 + 1} × {t∗r−1 + 1, . . . , n2}) ∪ ({sr−1 + 2, . . . , sr} × {1, . . . , n2})

∪ ({sr + 1} × {1, . . . , t∗r ≤ n2}), r = 0, . . . , kn1 , s0 = 0 = t∗0 ,

with t∗r maximally chosen such that

∑
i∈I ′

r

P(Bi,bs (i)) ≤ 1

kn1

∑
i≤n

P(Bi,bs (i)).

Let Ir = {sr−1 + 2, . . . , sr} × {1, . . . , n2}, and now split each rectangle Ir into kn1kn2 quasi-
rectangles

V ′
r,p = ({s∗

r,p−1 + 1, . . . , sr} × {tp−1 + 1}) ∪ ({sr−1 + 1, . . . , sr} × {tp−1 + 2, . . . , tp})
∪ ({sr−1 + 1, . . . , s∗

r,p ≤ sr} × {tp + 1}), p = 1, . . . , kn2 , t0 = 0, s∗
r,0 = sr−1,

with s∗
r,p maximally chosen such that

∑
i∈V ′

r,p

P(Bi,bs (i)) ≤ 1

kn1kn2

∑
i≤n

P(Bi,bs (i)).

Let Vr,p = {sr−1 + 2, . . . , sr} × {tp−1 + 2, . . . , tp} and let B(Vr,p) be its boundary.
To obtain the result it is sufficient to prove that

P

(⋂
r,p

Mn(Vr,p) ≤ u

)
→ e−ν, ν > 0,

if and only if ∑
r,p

∑
i∈Vr,p

P(Bi,bs (i)) → ν > 0.

https://doi.org/10.1239/jap/1158784955 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1158784955


Limiting crossing probabilities of random fields 889

This follows from Proposition 2.1, and the relations

∏
r,p

P(Mn(Vr,p) ≤ u) = exp

(
−(1 + o(1))

∑
r,p

(1 − P(Mn(Vr,p) ≤ u))

)

= exp

(
−(1 + o(1))

∑
r,p

P(Mn(Vr,p) > u, Mn(B(Vr,p)) ≤ u) + o(1)

)

= exp

(
−(1 + o(1))

∑
r,p

∑
i∈Vr,p

P(Bi,bs (i)) + o(1)

)
,

since, by (1.1) and (2.1),
∑
r,p

P(Mn(B(Vr,p)) > u) ≤ 2kn1n2F max + 2kn2n1F max = o(1)

and, by the D′′(Bi,bs (i),n)-condition,
∑
r,p

∑
i,j∈Vr,p

P(Bi,bs (i), Bj ,bs (j)) = o(1).

If X is stationary then the result follows by assuming that un,i = un, i ≤ n, and that the
D′′(Bi,bs (i),n)-condition is

n1n2

∑
i≤(�n1/kn1�,�n2/kn2 �)

P(B1,bs (1),n, Bi,bs (i),n)
n→∞−→ 0.

Weaker local dependence conditions for the stationary case can be considered as in [4].
According to [2], the stationary random field X has extremal index θ ∈ [0, 1] if, for

each τ > 0, there exists {u(τ)
n }n≥1 satisfying (3.2) and P(Mn ≤ u

(τ)
n ) → exp(−θτ) as n → ∞.

If X is an i.i.d. random field or a stationary random field satisfying the conditions of
[11, Proposition 3.1], then the extremal index is equal to 1.

For nonstationary random fields the extremal index can be defined in a similar way,

θ(τ ) = − log limn P(
⋂

i≤n Xi ≤ u
(τ)
n,i)

τ
,

where
τ = lim

n

∑
i≤n

P(Xi > u
(τ)
n,i). (3.3)

Here the extremal index may depend on τ , as pointed out in the examples in [5].
The following result gives a convenient existence criterion for the extremal index and follows

immediately from Proposition 3.2.

Corollary 3.1. Suppose that the random field X satisfies (2.1), the D′′(Bi,bs (i),n)-condition
holds for some s ∈ {1, . . . , 8}, and the D(un,i)-condition holds over C(Bi,bs (i),n) with un,i ≡
u

(τ)
n,i satisfying (3.3). Then there exists θ(τ ) if and only if there exists

ν = lim
n→∞

∑
i≤n

P(Bi,bs (i),n),
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and, in this case, the following expression holds:

θ(τ ) = ν

τ
.

The extremal index clustering measure can be considered for subfields of X. Let {In}n≥1
be an increasing sequence of subsets of Rn. If, for each τ > 0, there is a family of levels
{v(τ)

n : i, i ∈ In}n≥1 such that ∑
i∈In

P(Xi > v
(τ)
n,i )

n→∞−→ τ

and

P

(⋂
i∈In

Xi ≤ v
(τ)
n,i

)
n→∞−→ exp(−θτ),

we say that X has extremal index θ over
⋃

n≥1 In.
In general, we cannot compare the extremal indices over regions with the extremal index of

the random field since the normalized levels are not, in general, coincident.

4. Examples

Much research has been undertaken, using a specific approach, on the asymptotic behaviour
of the maximum of a stationary normal field under a variety of conditions (see [1], [2], [13]).
The classical limit still holds under quite a slow rate of dependence decay and the extremal
index is equal to 1. In [12] the authors considered another kind of local dependence condition
that restricts the local path behaviour with respect to exceedances in the sense of the D′(un)-
condition of [10] and extended the results of [2] to a nonstationary normal field. After some
technical lemmas we again found that the extremal index is equal to 1.

We will now illustrate the results with several 1-dependent random fields which satisfy
different local dependence conditions. Let Y = {Yn}n≥1 be an i.i.d. random field and let
{un}n≥1 be such that n1n2 P(Y1 > un) → τ . From Y we shall define several nonstationary and
anisotropic random fields.

Let X = {Xn}n≥1 be such that, for each i = (i1, i2) = (2k + 1, 2s + 1), k, s ≥ 0, the
following expressions hold:

Xi = Yi, Xb1(i) = Yb1(i),

Xb2(i) = max{Yb1(i), Yb2(i)}, Xb3(i) = max{Yi, Yb3(i)}.

This random field only satisfies the D′′(Bi,bs (i))-condition for s = 3 and s = 7 and has extremal
index θ = 2

3 .
Let W = {Wn}n≥1 be such that, for each i = (i1, i2) = (2k + 1, 2s + 1), k, s ≥ 0, the

following expressions hold:

Wi = Yi, Wb1(i) = max{Yi, Yb1(i)},
Wb2(i) = Yb2(i), Wb3(i) = max{Yi, Yb3(i)}.

This random field satisfies the D′′(Bi,bs (i))-condition for s = 1, s = 3, s = 5, and s = 7, and
has extremal index θ = 5

6 .
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Finally, let U = {Un}n≥1 be such that, for each i = (i1, i2) = (2k + 1, 2s + 1), k, s ≥ 0,
the following expressions hold:

Ui = Yi, Ub1(i) = max{Yi, Yb1(i)},
Ub2(i) = max{Yb1(i), Yb2(i)}, Ub3(i) = max{Yb2(i), Yb3(i)}.

This random field does not satisfy the D′′(Bi,bs (i))-condition. However, it has extremal index
θ = 2

3 , which we can easily compute directly. Let I1,n = {(i1, 2s +1) : i1 ≤ n1 ∧2s +1 ≤ n2}
and I2,n = Rn − I1,n. We have

P(Mn ≤ u) = P(Mn(I1,n) ≤ u) P(Mn(I2,n) ≤ u | Mn(I1,n) ≤ u),

which converges to exp(− 7
6 )τ . Since

∑
i≤n P(Xi > un) → 7

4τ > 0, we find that θ = 2
3 .

For the region
⋃

n≥1 I1,n we find that θI,1 = 2
3 and for

⋃
n≥1 I2,n we find that θI,2 = 3

4 .
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