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SMOOTHNESS AND THE
ASYMPTOTIC-NORMING PROPERTIES OF BANACH SPACES

ZHIBAO HU AND BoOR-LUH LIN

We study some smoothness properties of a Banach space X that are related to
the weak® asymptotic-norming properties of the dual space X*. These properties
imply that X is an Asplund space and are related to the duality mapping of X .

1.

Recently, Haydon [6] resolved a long standing conjecture in the negative by con-
structing an Asplund space that fails to admit an equivalent Frechét differentiable norm.
The authors [8] introduced the weak*-asymptotic-norming properties in the dual Ba-
nach spaces and showed that there exists a Banach space X such that X* has the
Radon-Nikodym property but fails to have the weak*-asymptotic-norming property
III. In this paper, we study some smoothness properties of X that are related to the
weak * -asymptotic-norming properties in X* and show that they imply that X is an
Asplund space. We partially solve a question raised in [1] concerning the duality map-
ping of X .

For a Banach space X ,let Sx ={z:z € X,|z|| =1} and Bx = {z:z € X, ||z| <
1}. A subset ® of Bx. is called a norming set of X if ||z|| = sup{z*(z) : z* € ®} for
all z in X. A sequence {z,} in Sx is said to be asymptotically normed by & [9] if
for any € > 0, thereis z* in ® and N in N such that z*(z,) >1~¢ forall n > N.

For k = I,II or III, a sequence {z,} is said to have the property x if

(I) {=zn} is convergent;
(II) {za} has a convergent subsequence;
() () eo{es:k>n}#4.
n=1

Let ® be a norming set of X. Then X is said to have the asymptotic-norming property
k, & = I,II, or IIT with respect to ® (®-ANP-x) if every sequence in Sx that is
asymptotically normed by ® has the property x. X is said to have the asymptotic-
norming property x (ANP-x) [9] if there is an equivalent norm || - || on X such that
there is a norming set ® with respect to (X,| :||) such that X has the ®-ANP-«,
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x = I,II or III. We say that a dual Banach space X* has the weak* asymptotic-

norming property K (w*-ANP-x) [8] if there is an equivalent norm |- || on X and a
norming set ® of (X*,|-||) in Bx such that (X*,||-||) has the -ANP-x, x = I,II
or III.

For a Banach space X, let X1 = {21 : 21 € X*** 2%(2) = 0 for all z in
X}. A Banach space X is said to be Hahn-Banach smooth [11] if for all z* in X*,
lz* + zt|| = [|z*|| = 1 implies that z = 0. In other words, z* in X*** is the unique
Hahn-Banach extension of z* |x. It is obvious that X is Hahn-Banach smooth if and
only if X* = {z*** : 2*** € X***,||2***|| = sup{z***(z) : z € Bx}}. Combining this
with [8, Theorem 2.3 and Theorem 3.1], we have the following result.

THEOREM 1. Let (X,| -||) be a Banach space. The following are equivalent:

(1) (X, |- ) is Hahn-Banach smooth;
(2) X™ has the w*-ANP-III with respect to the norm || -||;
(3i) there exists a norming set ® of (X,||-||) in Bx,. ) such that X* =
{3*** B s € X***, ”:B***” = sup 23***(2)},'
z€P

(3ii) for any norming set ® of X* in Bx ., X* = {&** : 2*** €
X#**’ ”3***” — sup z***(z)};
z€®

(4) the weak and weak* topologies coincide on S(x+ .-

COROLLARY 2. [11, Theorem 6]. If X is a Banach space such that (Sx«+,w*) =
(Sx+,| - lI), then X is Hahn-Banach smooth.

CorROLLARY 3. [1, Corollary 3.4]. Every Hahn-Banach smooth space is As-
plund.

ProoF: If X is Hahn-Banach smooth, then X* has the w*-ANP-IIL. By [8], X*
has the Radon-Nikodym property. Hence X is Asplund. 0

REMARK. In [2, Lemma 6], it is proved that (1) and (4) in Theorem 1 are equivalent.

EXAMPLE. Let X = ¢o(w1) where w; is the first uncountable ordinal. Then X is an
Asplund space which admits an equivalent Frechét differentiable norm [12]. However,
in 8], it is proved that X* fails to have w*-ANP-III. Hence X is an Asplund space
which is Frechét differentiable but fails to have an equivalent Hahn-Banach smooth
norm. The spaces C(K) and Co(L) constructed by Haydon in [6] are Asplund spaces
that fail to admit an equivalent Frechét differentiable norm and they also fail to have
an equivalent Hahn-Banach smooth norm. We don’t know whether every Hahn-Banach
smooth space admits an equivalent Frechét differentiable norm, even though Hahn-
Banach smoothness is a property strictly stronger than the property that the space is
Asplund.
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2.

The duality mapping D for a Banach space X is the set valued function from Sx
to Sx+ defined by D(z) = {z* : ||z*|| =1 = z*(2)}, z € Sx. X is said to be very
smooth [11] if every element in Sx has a unique norming element in X***. It is known
that X is Frechét differentiable (respectively, very smooth) if and only if the duality
mapping D is single-valued and is (|| - || — || - ||) (respectively, (]| - || — w)) continuous.

DEFINITION: A Banach space X is said to be quasi-Frechét differentiable (respec-
tively, quasi-very smooth) if, when {z,} is any convergent sequence in Sx, then for any
z: € D(z,), n € N, the sequence {z}} has a norm-convergent (respectively, weakly

convergent) subsequence.

It is clear that if X is smooth and quasi-Frechét differentiable (respectively, quasi-
very smooth) then X is Frechét differentiable (respectively, very smooth). However,
let ¢y be the usual sup norm; then ¢j = £, has the w*-ANP-II [8]. By Theorem 4
below, ¢y is quasi-Frechét differentiable and Hahn-Banach smooth but is neither Frechét
differentiable nor very smooth.

Let X and Y be topological spaces. A set valued function D : X — Y is said to
be upper semi-continuous (u.s.c.) at =, ¢ € X if for any open set G in Y, G D D(z),
there exists a neighbourhood U of z in X such that D(U) C G. D is said to be
upper semi-continuous on X if D is u.s.c. at every point of X. In the case that X
is a normed space and Y = X*, Giles, Gregory and Sims [1] introduced a restricted
notion of upper semi-continuity for the duality mapping. The duality mapping D is
said to be GGS-u.s.c. (respectively GGS-w.u.s.c.) at z if for every open set G of the
form D(z) + N where N is an open neighbourhood of 0 in (X*,||-||) (respectively,
(X*, weak)), then there is a neighbourhood U of ¢ such that D(U) C G. It is easy to
see that if D(z) is compact, then the two definitions of u.s.c. are the same. However,
in general, D(z) is not compact in either the norm or weak topology of X*.

THEOREM 4. Let (X,| -||) be a Banach space and let D be the duality mapping
of X.

(1) If X* has the w*-ANP-I with respect to the norm || - ||, then (X,|| - |
is Frechét differentiable.

(2) I X* has the w*-ANP-II with respect to the norm || - ||, then (X, || - |)
is quasi-Frechét differentiable.

(3) If X* has the w*-ANP-III with respect to the norm || - ||, then (X, || - )
is quasi-very smooth and so every Hahn-Banach smooth Banach space is

quasi-very smooth.
(4) K X is quasi-Frechét differentiable then D(z) is compact for all z in Sx
and D : (Sx,| ) — (Sx<,{| - ||) is us.c..
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(8) If X is quasi-very smooth then D(z) is weakly compact for all z in Sx
and D : (Sx,| - |I) — (Sx+,w) is u.s.c.

Proor: (1) Let {z,} be a sequence in Sx such that li,l‘n ||zn — 2|| = 0 for some
z € X . Then for any z}, € D(z,), n €N, z%(z) — 1. Hence {z}.} is asymptotically
normed by Bx. Since (X*,| -||) has the w*-ANP-I, by [8, Corollary 3.2], it follows
that {z}} is convergent in (Sx«,|| - ||). Thus X is Frechét differentiable.

(2) and (3) are proved similarly to (1).

(4). It is clear that D(z) is compact for all z in Sx when X is quasi-Frechét
differentiable. To show that D is u.s.c,, it suffices to show that if F' is a norm closed
subset in X*, then the set A = {z : ||z]| = 1,D(z) N F # ¢} is norm closed in Sx.
Suppose {#,} C 4 and ].i'rln |#n — 2|| =0 for some z in X. Choose z}, € D(z,) N F.

Then limz}(z) = 1. Since X is quasi-Frechét differentiable, there is a subsequence
n

{z5,} of {3} and z* in Sx+ such that li’;n lzn, —2*|l = 0. It is clear that z* €
D(z) N F. Therefore A is closed.
(5) is proved similarly to (4). 0

REMARK. Since there exists a Frechét differentiable space X [8] that fails to admit
an equivalent Hahn-Banach smooth norm, hence there exists a Frechét differentiable
(respectively, quasi-Frechét differentiable) space X such that X* does not have the
w*-ANP-I (respectively, w*-ANP-II). We don’t know if X is Frechét differentiable
(respectively, quasi-Frechét differentiable) and Hahn-Banach smooth, whether or not
X* has the w*-ANP-I (respectively, w*-ANP-II).

3.
A Banach space X is said to be wedkly Hahn-Banach smooth [10] if in X***, for
any z* € X*, zt € X1, |lz* + 21| = |z*|| = 1 and z*(z) = ||z|| = 1 for some z in

X, then z+ =0.

X is said to be weakly very smooth [13]if forall z in Sx, 2, in Sx-, li’x‘n zh(z) =1
implies that {z}} has a weakly convergent subsequence in X*.

From [1, Theorem 3.1, Cororllary 3.2] and Theorem 4, we conclude that for a
Banach space X, the weakly Hahn-Banach smoothness, weakly very smoothness and

quasi-very smoothness are the same. From now on, we shall use the term weakly Hahn-
Banach smooth only.

In the following, for simplicity, we say that the duality mapping is w.u.s.c. if
D:(Sx,|-I) — (Sx+,w) is us.c.

4.

In (1], a question was raised: if a Banach space X admits an equivalent norm for
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which the duality mapping D is GGS-w.u.s.c., must X be an Asplund space? We give
necessary and sufficient conditions for the space X to be an Asplund space when the
duality mapping D of X is GGS-w.u.s.c. and show that if the duality mapping D is
w.u.s.c. then X is an Asplund space. In fact, we give several consequences of w.u.s.c.
of D that imply X is Asplund.

For a subset A in X*, an element z* in A4 is called a weak* strongly ezposed
(respectively, weak* denting) point of A if A is strongly exposed at z* by some element
in X (respectively, for any € > 0, there exists a slice of A determined by some element
in X which contains * and has diameter less than ¢). Also z* is called a weak™ -weak
point of continuity of A if the identity mapping Id : (A,w*) — (A,w) is continuous
at z*. Foraset A in X, let [A] (respectively, T6A) denote the closed linear subspace
in X spanned by A (respectively, the closed convex hull of A). If 4 is in X*, €0*A
denotes the closed convex hull of A under the weak* topology in X*.

LEMMA 5. If X is a separable Banach space such that the duality mapping D
of X is GGS -weak upper semi-continuous then for any z in Sx, a weak®-weak point
of continuity of D(z) is a weak™*-weak point of continuity of Bx-.

PROOF: Suppose z* € D(z) and z* is not a weak*-weak point of continuity
of Bx+. Since X is separable, there exist a sequence {z,} in X, 2** in X** and
€ > 0 such that w* —limz}, = z* and | z**(¢* —2}) | > 2¢, n € N. Let {z,} be
a dense sequence in (Sx,| -||). Since w* —limz}, = z*, choosing a subsequence if
necessary, we may assume that | (z* — z})(zm) | < 1/n for all » > m, n,m € N.
Let U, = {z* : z* € X*,| 2*(2m) I< 1/n, m = 1,2,--- ,n and | 2**(z*) | < €},
n € N. Since D is GGS-w.us.c. at z, by [1, Theorem 2.1], D(z) + U, contains a
slice of Bx+ determined by z. Since z* € D(z) and w* — limz), = z*, there is a
subsequence, say {ys}, of {z}} such that y € D(z)+U,n, n € N. Let 2} € D(z) and
2y —yy € Un, n € N. It follows that | (2 —2*)(ym) | <2/n forall n >2m, n,meN
and | z**(z* — 2}) | > €, n € N. Hence z* is not a weak*-weak point of continuity of
D(z). 0

LEMMA 6. For any Banach space X , the following are equivalent:

(1) For any subspace Y of X, By+ = ¢o{ weak* strongly exposed points of
By } . .

(2) For any subspace Y of X, By. = co{ weak* denting points of By+}.

(3) For any subspace Y of X, By+ = ¢o{ weak* -weak points of continuity of
By.}.

(4) For any separable subspace Y in X, By+ = ¢o{ weak™ strongly exposed
points of By«}.

(5) For any separable subspace Y in X, By+ = co{ weak* denting points of
By-}.
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(6) For any separable subspace Y in X, By» = co{ weak* -weak points of
continuity of By+}.

Furthermore, each of them is a sufficient condition for X to be an Asplund space.

PRrooF: It suffices to show that (6) = (1). We first show that (6) implies that
X is Asplund. Let E be a separable subspace of X. Then there exists a separable
norming subspace & of E in E*. Since ® is norming, F; = Bg+. Hence Bg contains
all weak™* to weak points of continuity of Bg+. By (6), we have Bs = Bg+ and so E*
is separable. This implies that X is Asplund.

Let Y be any subspace of X, A ={y: ||y|| = 1,] - || is Frechét differentiable at y}
and F = {y* : y* is a weak* strongly exposed point of By+}. Then 4 = Sy.

Suppose (1) is false. Then there exist € > 0 and y* € By~ such that d(y*,coF) >

€. Let A; be any countable subset of A. Then the set |J D(z) is countable. Hence
TEA)

there exists a countable subset 4; in 4, Ay C A2, Sj4,) C 42 and sup (y* — z*)(y) >
y€A2

€ forall z* ¢ co( U D(z)) . Continue by induction; there is a sequence {4,} in 4,
zE€EA;

An C Any1, Sia,) C Anyy and sup (y* —2*)(y) > € forall z* € co( U D(z)).
YyE€EAn z€An

Let Yy = [|JAn]. Then Y, is separable; Sy, = |JA,. Let Dy be the duality mapping
of Y. The:l Byy; =©6"{Do(z) : z € U 4n}. Byu(ﬁ), By, = co{ weak*-weak points of
continuity of Bys}. Hence By. = E'{‘Do(:c) : 2 € JAn}. However, y* |y, € Bys and
llv* lve —2*|ly, > € for all 2* in co{Do(z): z € UA:} which is impossible. g

A Banach space X is called nicely smooth [2] if for all z** in X**,

() Bx+(z,llz** —~ z||) = {=**}

z€X

where Bx«++(z,r) is the closed ball in X** with centre z and radius r. Equivalently (5,
Lemma 2.4], X is nicely smooth if and only if X* contains no proper closed norming

subspace of X .
LEMMA 7. Let X be a Banach space. Then the following are equivalent.

(1) Every subspace of X is nicely smooth.
(2) Every almost monotone basic sequence in X is shrinking.

PRrOOF: (1) = (2). Let {z.} be an almost monotone basic sequence in X, and
let Y = [z,]. If {2} is the coefficient functional of {z,} in Y*, since {z.} is
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almost monotone, [z},] is a norming subspace of Y. Hence [z;] =Y*, that is, {z,} is
shrinking.

(2) = (1). Suppose not. Without loss of generality, we assume that there exists
a proper closed norming subspace F of X in X*. Choose ¢§ € Sx+ and z3* € Sx»*
such that z}*(z3) > 1/2 and z}*(F) = 0. Let 0 < £, < 1 and suppose [](1 —¢&,)

converges. By the principle of local reflexivity, there exists Ty : [25*] — X ,ﬂ||T1 I <2
and z§(Tizg*) = z5*(z5). Let @1 = Ti(25*) and let F; be a finite subset of SF such
that F; (1 —e;)-norms [z;]. By the principle of local reflexivity again, there exists
T : [z5*] — X, ||T2]l < 2 and z3(Tez}*) = zp*(zf) for all 2* in Fy U {z5}. Let
z; = Thzy*. Continue by induction; for each n € N, there exist z, € X, a finite
subset F, in Sf, F, (1 —¢ey,)-norming set of [zy,...,z,] and z*(znty1) = z5*(z*)
for all z* € F, U {z5}. It follows that ||z,| < 2, z§(znt+1) = zg*(x5) > 1/2 and
Tny1(z*) = 23*(2*) = 0 for all z* € F,,, n € N. Clearly {z.} is not shrinking. It
remains to show that {z,} is an almost monotone basic sequence.

For any z € [zi,...,2n], choose z* € F,,, z*(z) > (1 — €x)||z||. For any A € R,
|z + Aznt1l] 2 2*(z + AZat1) 2 (1 — €n)||z||. Since [[(1 — €n) converges, it follows

n

that {z.} is a basic sequence and if {P,} is the sequence of associated projections of
{z.}, then ||P,|| <1/ ( II@a- ek)> — 1. Thus {z,} is an almost monotone basic
k2n

sequence. 0

Let K be a bounded subset of X*. A subset B of K is called a boundary [3] of
K if for every z in X, there exists z* in B such that z*(z) = sup{y*(z) : y* € K}.
Observe that if B is a boundary of K then B is also a boundary of co*K. We need
the following fundamental fact.

THEOREM 8. [3, Theorem1.2]. Let B be a boundary of a bounded closed convex
set K in X*. Suppose for any bounded convex set C in X and for any z** in X**
which is in the closure of C for the topology op of pointwise convergence on B, there
exists a sequence {z,} in C such that op —limz, = z**. Then K is weak* compact
and K = ¢B. In particular if B is a separable bounded set in X* such that B is a
boundary of itself, then ¢o*B = ¢oB and so ¢o*B is separable.

Let us remark that Theorem 8 implies a result of Haydon [7}: If K is a weak*
compact convex set in X* such that the set of extreme points of K is norm separable,
then K is separable in the norm topology.

THEOREM 9. Let X be a Banach space such that the duality mapping D of X
is GGS -weak upper semi-continuous. Then the following are equivalent:

(1) X is Asplund.
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(2) Forall z in Sx, D(z) has the Radon-Nikodym property.

(3) For all separable subspace Y in X, By. = to{weak*-weak point of
continuity of By+}.

(4) Every subspace of X is nicely smooth.

ProOF: (1) implies (2) is well-known.

(2) = (3). Let Y be a separable subspace of X and let Dy be the duality
mapping of Y. Since D is GGS-w.us.c. on X, Dy is GGS-w.us.c. on Y. By (2)
and Lemma 5, the set w* — wpcBy+ consisting of weak*-weak point of continuity of
By+ is non-empty and is a boundary of By+. Since Y is separable, w* — wpcBy+
satisfies the hypothesis of Theorem 8, and hence ¢6(w* — wpcBy+) = By-.

(3) => (4). Let Y be any subspace of X. By (3) and Lemma 6, By+ = co{w*-
strongly exposed points of By»}. Hence the set of weak* strongly exposed points of
By+ separates the point of X**. It follows [2, Lemma 5] that Y is nicely smooth.

(4) = (1). Let Y be a separable subspace of X. Since Y 1is nicely smooth, Y*
contains no proper closed norming subspace of Y. Hence Y* is separable and so X is
Asplund. 0

REMARK. The fact that the dual space of a separable nicely smooth space is separable
has been proved in [2, Lemma 10]. The question of whether every Asplund space admits
an equivalent nicely smooth norm has been raised in {4, Question E] and is still open.

THEOREM 10. Let X be a Banach space and let D be the duality mapping of
X . Consider the following statements.

(1) D is weakly upper semi-continuous.

(2) For any symmetric closed convex set F in X*, theset {z : ¢ € Sx,D(z)N
F # ¢} is norm closed.

(3) For any separable subspace Y in X and for any dense sequence {y,} in
Sy , then for any z}, € D(yn),n € N, By. =co{tz} |y: n € N}.

(4) For any separable subspace Y in X, By+ = co{ weak* strongly exposed
points of By+}.

(5) Every subspace of X is nicely smooth.

(6) X is Asplund.

Then (1) = (2) = (3) = (4) = (5) = (6).

PROOF: By definition of w.u.s.c. mapping, it is clear that (1) = (2).

(2) = (3). Let Y be a separable subspace of X and let Dy be the duality
mapping of Y. By (2), it is obvious that for any symmetric closed convex subset F
in Y*, {y : y € Sy,Do(y) N F # ¢} is norm closed in Y. Let {y,} be a dense
sequence in Sy and let y}, € Do(yn), n € N. Then {y;;} is a norming set of ¥ and
so ¢o*{y:} = By+. Let F = co{xy%}. Then F is a symmetric closed convex set in
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Y*. Hence theset A = {y:y € Sy,Do(y) N F # ¢} is norm closed. Since yn € 4,
n € N, we conclude that 4 = Sy. Thus for all y in Sy, there exists y* € F such that
¥*(y) =1 = sup 2*(y). By Theorem 8, F =F = By-.

zZ*EF

(3) = (4). By (3), every separable subspace of X has a separable dual. Hence
X is Asplund. Let Y be a separable subspace of X and let {y,} be a dense sequence
of Sy such that the norm is Frechét differentiable at y,, n € N. Then Dg(y.) is a
weak* strongly exposed point of By« and by (3), By« = co{weak* strongly exposed
points of By«}.

(4) => (5). Let Y be a subspace of X. If F is a close norming subspace of
Y in Y™, then F;- = By+. Since By+ = ¢o{weak”*-weak points of continuity of
By}, P-} contains all weak* to weak points of continuity of Bys. It follows that
Bp = F;‘ = By+. Hence Y* contains no proper closed norming subspace of ¥ and so
Y is nicely smooth.

(5) => (6). Let Y be a separable subspace of X . Since every separable space has
a separable norming subspace in its dual, we conclude that Y* is separable and so ¥
is Asplund. Thus X is Asplund. 0

We conclude this section with the following characterisations of reflexive Banach
spaces.
THEOREM 11. The following are equivalent for a Banach space X .
(1) X is reflexive
(2) For any equivalent norm || - || on X, (X,|| -||) is Hahn-Banach smooth
and (X,| - ||) has the ANP-IIIL. '
(3) For any equivalent norm || - || on X, the duality mapping of (X, | - ||) is
w.u.s.C.
(4) For any equivalent norm |-|| on X, every almost monotone basic sequence
in (X,||-|) is shrinking.
(5) X admits an equivalent norm || - || such that (X,||-]||) has the ANP-I
and both (X, || -||) and (X*,]|| - ||) are locally uniformly rotund.
(6) X admits an equivalent norm || - || such that (X,|| -||) has the ANP-III
and the duality mapping of (X, || - ||) is w.u.s.c.

Proo¥F: By the definition of ANP-III, it is clear that every reflexive space has the
ANP-III and by Theorem 10, we conclude that (1) = (2) = (3) = (4).

(4) = (1). Let {z,} be a basic sequence in X. Then there is an equivalent norm
f|-1] on X such that {z,} is almost monotone in (X, || - ||). Hence {z,} is a shrinking
sequence. By the well-known result of Zippin [14], X is reflexive.

(1) => (5). Since every reflexive space admits an equivalent norm || - || such that
(X, -1) and (X*,]|-]|) are locally uniformly rotund and every reflexive space has the
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ANP-III, it follows that (X,|| - ||) has the ANP-I {8].

(5) = (6). Obvious.

(6) => (1). Without loss of generality, assume that X is separable. Let ||| be an
equivalent norm of X such that (X, || -|) has the #-ANP-III for some norming set ®.
We may assume that & is closed convex. It follows that %" = Bx-. Since the duality
mapping D of (X, || - ||) is w.u.s.c., by Theorem 10, Bx+ = ¢a{weak* strongly exposed
points of Bx+} and so ® = Bx«. Hence (X,|| - ||) is Bx+-ANP-III. By (8, Theorem
2.3], we conclude that X = {z** : 2** € X**,||=2**| = sup z**(z*)} = X**, that is,

z*EBxe

X is reflexive. 0

5.

In Theorem 4, we have proved that if (X*,| -||) has the weak* ANP-II, then
(X, |l - ) is quasi-Frechét differentiable and so the duality mapping D of (X, | -]|) is
u.s.c. and D(z) is compact for all z in Sx. In the case that D(z) is compact for
all z in Sx, D is us.c. if and only if D is GGS-u.s.c. The next theorem, using the
Hahn-Banach theorem only, extends [1, Theorem 2.1}. The conditions (3) — (7) show
that in the case that D is GGS-u.s.c. at z, then D(z) behaves like a “weak™ strongly
exposed set” of Bxs.

THEOREM 12. Let X be a Banach space and let # € Sx. Then the following
are equivalent:

(1) The duality mapping D of X is GGS-u.s.c. at z.

(2) For any € > 0, D(z) + eBx+ contains a weak* slice of Bx+ determined
by =.

(3) For any net {z%} in Bx-, if z,(z) — 1 then d(z,,D(z)) — 0 where
d(z%,, D(z)) is the distance from z%, to D(z).

(4) For any sequence {z} in Bxs, if z)(z) — 1, then d(z},, D(z)) — O.

(5) For any sequence {z,} in Sx, if lim||z, — 2| = 0 for some z, then
d(z},,D(z)) — O for any z, € D(zn), n € N.
(6) For any sequence {z,} in Sx, if lim|zn, — z|| = O for some z then

d(D(2n), D(z)) — 0.
(1)t sup (1 /1= + 9] - =) = (3) | 5° € D(e)} = 0.
PROOF: (2) = (3) = (4) = (1) = (5) = (6) are obvious.
(6) = (7). Let t € (0,1), y € Sx, z* € D(z) and y* € D(z + ty/||z + ty|).
Then
z*(y) = [ (z + ty) — 2"(2)] /t < (ll= + tal - ||=ll) /2
< ¥ +ty) -y ()] /t = v (v).
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Hence | (llz +tyll — ||z])/2 — =*(y) I< |lz* — *|| for all y € Sx. Thus inf{|
(2 + tyll — ll2l))/t — 2°(3) |: 2* € D(2)} < d(D(=2), D(z + ty)/ |z + tyl]). Therefore

lim sup inf{| (l}2 +tyl - ll2l))/t - 2" (v) |: =" € D(2)}

20 jiy|l=1

<lim sup d(D(e), D((z+ 1)/l + ) =0.

=0 iyjl=1

(7) = (2). Assume (2) is false. Then there exist ¢ > 0, and =z}, € Bx+, with
limz}(z) =1 and d(z}, D(z)) > €. By the Hahn-Banach theorem, there exists z, €

Sx for each n € N such that (z}, — 2*)(z,) > € for all z* € D(z). By (7), choose
§ > 0 such that for all 0 <|#|< 4,

sup int{] 7 (I +tall - el]) — =) =" € D(&)} < 5.

llyll=1
Let yp, = §zp,n € N. Then for any z* € D(z),

e < (a5 — 2*)(¥m) = [23(2 +¥a) = 2*(2) — 2" (3n)]
= 23(2) + 2" < (Jlo + vall = llzl| - =" (va)) — =2(2) +1.

Thus §e < inf{”z +ya|l - |l2]l —2*(yn) : 2" € D(z)} —zn(z)+1
<6() —an(z) +1—6()

which is a contradiction. 0

REMARK. (1) <= (2) were proved in [1].

COROLLARY 13. Let X be a Banach space, z € Sx, and let D be the duality
mapping of X. Then the following are equivalent:

(1) D is us.c. at ¢ and D(z) is compact.

(2) Forany € >0, D(z) + ¢eBx+ contains a weak* slice of Bx+ determined
by ¢ and D(z) is compact.

(3) For any net {z%} in Bxs, if () — 1 then {z} has a norm conver-
gent subnet.

(4) For any sequence {z.} in Bx., if z;, — 1, then {z,} has a norm
convergent subsequence.

(3) If {zn} is a sequence in Sx such that li'x‘n”z,, — z|| = 0, then for any

z; € D(z,), {z.} has a norm convergent subsequence.
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(6) D(z) is compact and for any sequence {z,} in Sx, if lim ||z, — z|]| =0
then d(D(z,), D(z)) — 0.
(7) D(z) is compact and lim sup inf{| 1/t(||z: + ty|| — ||z||) —z*(y)|:z* €

=0y 1=1
D(z)} =0.

REMARK. (1) <= (2) < (3) are proved in |1, Theorem 3.2].

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(9]
(10]
[11]
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[13]
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