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SOME STABILITY PROPERTIES OF ARENS REGULAR
BILINEAR OPERATORS
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In this paper we present three results about Arens regular bilinear operators. These are: (a). Let X, Y be two
Banach spaces, K a compact HausdorfF space, fi a Borel measure on K and m:Xx Y-*C a bounded bilinear
operator. Then the bilinear operator rh:C(K,X)*C{K,Y)-*C defined by m{<t>,<p) = $Km(<t>(t),{<l/(t))dii(t) is
regular ill m is regular, (b) Let (XJ, (.2Q,(Za) be three families of Banach spaces and let m,:X,x Ya-*Z, be a
family of bilinear operators with sup. ||m,|| < oo. Then the bilinear operator in:(£»® X.), x(£affi ^)i->
(Za©Za)i defined by m((xa), (>>,)) = (m,(x.,ya)) is regular iff each ma is regular, (c) Let X, V have the
Dieudonne property and let m:Xx Y-*Z be a bounded bilinear operator with m(X x Y) separable and such
that, for each z' in extZ',, z'otn is regular. Then m is regular. Several applications of these results are also
given.

1980 Mathematics subject classification (1985 Revision); Primary 47A99, 46H99.

Introduction

Let X, Y, Z be three Banach spaces. Denote by X' and X" the continuous first and
second duals of X and consider X as naturally embedded into X". In [1] R. Arens has
shown that given any bounded bilinear operator m:Xx Y->Z there exist two bounded
bilinear operators m***:X"x Y"-+Z" and m'M':X"x Y"-+Z" that extend the operator
TO. When m*** = m1***', the bilinear operator TO is said to be "Arens regular". This is
equivalent to saying that, for each functional z' in Z', the bilinear form z'om:X xY-*C
is weakly compact [22, Theorem 2.2] i.e., the linear operator u:X-+Y' corresponding to
z'omis weakly compact. In this paper, our purpose is to study some stability properties
of Arens regular bilinear operators. To explain the content of the paper, we need some
notation. The terminologies unexplained here are explained or referenced in Section 1
below. Let K be a compact Hausdorff space. By C{K, X) we denote the Banach space of
the continuous functions <j):K-*X equipped with the supremum norm. By Xl we denote
the closed unit ball of X and by extX\ the set of extreme points of the closed unit ball
of X'. For a family {XJael of Banach spaces, by (X,©-^a)p(i<P< 0°) we denote their
/p-sum. Now let m:XxY-*C be a bilinear form and \i a positive Borel measure
on K. To TO and \i associate the bilinear form m:C(K,X) x C{K, Y)->C defined by
TO(#, i/0 = JJC m(</>(r), i]/(t))dn(i). The main result of Section 2 states that the bilinear
form m is Arens regular iff TO is. Several variants and applications of this result are
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444 A. ULGER

given. Next, let (Xa), (Ya),(Za)(aeI) be three families of Banach spaces and, for each a in
/, let mx:Xxx Y1->ZX be a bounded bilinear operator such that sup^/n^^oo. Define
the bilinear operator

m:

by m((xx), (ytt)) = (mx(xx, yx)). The main result of Section 3 states that the bilinear
operator m is Arens regular iff each operator mx is. As an application of this result, we
give a very short proof of the known fact that the direct sum algebra of a family of
Banach algebras (AJael is Arens regular iff each factor algebra Ax is Arens regular [2,
Theorem 6]. In Section 4 our primary concern is the following question: Let
m:XxY-*Z be a bounded bilinear operator. Suppose that, for each z' in extZ'l5 the
bilinear form z'omis Arens regular. Is then m Arens regular? The main result of Section
4 states that if X and Y both have the Dieudonne property [12] and m(X x Y) is
separable then the answer to the preceding question is affirmative. As an application of
this result, we give a very short proof of the known fact that, for an algebra A not
containing an isomorphic copy of I1, the algebra C(K, A) is Arens regular iff A is so
[24]. The main ingredients of the proofs are a result of J. Diestel [7] about weak
compactness in the space Ll{n, X) of Bochner integrable functions, some results of A.
Grothendieck [12] and N. J. Kalton, E. Saab and P. Saab [15] about the Dieudonne
property, and Choquet's integral representations Theorem [19].

1. Notation and preliminaries

In this section, we shall explain some of the notation and terminology mentioned in
the introduction and introduce some others. Our notation and terminology are standard
and match those of the books [8,11] with the one exception that we denote the
continuous dual of a Banach space X by X' instead of X*. By a linear (or bilinear)
operator we shall always mean a continuous linear (or bilinear) operator. For a linear
operator u, by u* and u** we denote its first and second adjoints. We recall that a
bilinear operator m:X xY-*Z is Arens regular iff for each h in Z' and each of the
sequences (x;) in Xx and (y,) in yt

lim li

whenever these limits exist, see for instance [22, Cor. 2.5]. For a family {Xx)xel of
Banach spaces, their /p-sum(l<p<oo) and co-sum are defined, respectively, as

and
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and ||x||00 = sup||x«||<oo},

Xa } = {x = (x«):x.e*«, Ve>0 ||x«||<e for all but finitely many «}.

and

Equipped with the norm x->||x||p(l<p<oo) (resp:x-»supa||xa||) the spaces
and (£a © XJQ are Banach spaces. An element x" in the second dual X" of a Banach
space X is said to be a Baire-1 functional if there exists sequence (xn) in X such that
x" = weak*-limxnB1(X), the collection of Baire-1 functionals in X", is a closed linear
subspace of X" [16], see also [17, p. 381]. This notion has been introduced by A.
Grothendieck in [12, p. 159]. In the same paper A. Grothendieck defines the Dieudonne
property and gives several characterizations of this property [12, pp. 158-159]. Among
these characterizations we shall take the following as the definition of the Dieudonne
property: A Banach space X is said to have the Dieudonne property if, for any Banach
space Y and any linear operator u:X-*Y, the inclusion u**(Bt(X))z y implies that u is
weakly compact [12, p. 158, prop. 11 (2 bis)]. As remarked by A. Grothendieck on p.
159 of [12], a Banach space X has the Dieudonne property iff, for any Banach space Y,
a linear operator u:X-*Y that sends weakly Cauchy sequences into weakly convergent
ones is weakly compact. This characterization is very useful and will be used below.
Among the Banach spaces having the Dieudonne property we have the space C(K) for
any compact Hausdorff space K [12, p. 160, Theorem 6]; any Banach space X that does
not contain an isomorphic copy of Z1 (this is an immediate consequence of Rosenthal's
^-Theorem [20, Main Theorem] and the above characterization of the Dieudonne
property); and C(K,X) for any Banach space X that does not contain a copy of I1 [IS,
Theorem 4). In [18] A. Pelczynski introduced the so-called F-property: A Banach space
X has the F-property if, for any Banach space Y, a linear operator u\X-*Y that
transforms weakly unconditionally Cauchy series into unconditionally convergent ones
is weakly compact [18, p. 642]. Comparing this definition with the above characteriza-
tion of the Dieudonne property, one can easily see via the Orlicz-Pettis Theorem [8, p.
22], that any Banach space X having the F-property also has the Dieudonne property.
Several uniform algebras, including the disc algebra [5, p. 293, Cor.], certain Wilken
algebras [6, p. 123, Theorem] and the algebras described in Theorem 2.6 of [25, p. 144]
have the F-property and hence also the Dieudonne property.

2. Lifting Arens regular bilinear operators

In this section, X,Y,Z are three Banach spaces, K a compact Hausdorff space and fx a
regular Borel measure on K. The main result of this section is the following theorem.

Theorem 2.1. Let m:XxY-*C be a bilinear form. To m and fi we associate the
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bilinear form m:C(K,X) x C(K, 7)->C defined by /n(^,i/r) = JJf m{<f>(t),il/(t))dn(t). Then m is
Arens regular iffm is Arens regular.

Proof. We first remark that the bilinear form m is bounded. Assume m is Arens
regular and let (</>,) (resp. (i//j)) be a sequence in the unit ball of C(K, X) (resp. C(K, Y))
for which the iterated limits

lim lim m(^>h \pj) and lim lim m(</>, ij/j)
i j j i

exist. We have to prove that these limits are equal. Let u:X-*Y' be the linear operator
corresponding to m, i.e. m(x,y) = (u(x), y}. The bilinear form m being Arens regular, u is
weakly compact [22, Theorem 2.2.]. Let H be the closure of u(Xv). The set H is a
weakly compact convex subset of Y'. Let Lvy{K, Y') be the space of Bochner integrable
functions f:K-+Y'. By a result of J. Diestel [7, Theorem 2], the set H' = {/ eL>(K, F):
for a.e.t. in K, f(t)eH} is a relatively weakly compact subset of L}n(K, Y'). Now
introduce a new bilinear form

defined by

T(f, f) = !</(£), Ht)>di4.t).
K

This bilinear form is easily seen to be bounded. Moreover, the sequence fj = u° i/', lies in
the set H and

T(u o 4>i, +i) = j WUt)),

The set H being relatively weakly compact and bilinear form T continuous,
Grothendieck's double limit criterion [13, Theorem 6] shows that the above iterated
limits are equal. Thus m is Arens regular. To prove the converse, it is enough to apply
the double limit criterion to the sequences of constant functions of the forms $,(0 = JC,
and il/j(t) = yj.

We proceed with some corollaries. The first corollary is apparently stronger than the
theorem but, in fact, they are equivalent.

Corollary 2.2. Let m:X xY->Z be a bilinear operator and g a function in l}\x{K,Z').
To m,g and \i we associate the bilinear form

Tg: C(K,X) x C{K, Y)^C defined by Tg(d>,</r) = J <g(t), m(<£(t), W)> d(i(t).
K

Then, Tg is Arens regular if m is.
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Proof. Assume m is Arens regular. As is well-known Lly(K, Z') = L1fi(K)® Z', the
projective tensor product of L}n(K) and Z' [8, p. 228]. The space L}y{K) <g) Z' being the
completion of the algebraic tensor product Llfi(K) ® Z', there exists a sequence (gn) in
this latter space that converges in the norm of L^niK^Z1) to g. Since, for <f> in C(K,X)
and \ji in C(K, Y)

and since, in the operator norm, the limit of a sequence of weakly compact operators is
weakly compact, it is enough to show that Tg is Arens regular for each g in
L V(K) ® Z'. Now, each element of L V(K) ® Z' is a finite sum of the form YJl= i Pi ® z't,
where /?;'s are in L}y{K.) and z,'s are in Z'. Therefore it is enough to show that Tg is
Arens regular for a g of the form g = fi®z'. But for such a g,

Now in the theorem, we replace mby z' om and the measure /x by fin and conclude that
Tg is Arens regular.

As an application of this result we have the following result.

Corollary 2.3. Let m:XxY—*Z be a bilinear operator and suppose Z' has the
Radon-Nikodym property. To m associate the bilinear operator
A:C(K,X)xC(K,Y)-+C(K,Z) defined by «(</>, M(t) = m((/>(t), M*))- Then m is Arens
regular iffm is Arens regular.

Proof. Assume m is Arens regular. We have to show that, for each A in C(K, Z)', the
bilinear form Xom is Arens regular. The elements of C(K,Z)' are regular countably
additive vector measures of bounded variation from the Borel <r-algebra of K into Z' [9,
p. 380]. Now let X be an element of C(K,Z)' and n = \A\ be the variation of X. Then /i is
a regular countably additive positive Borel measure [8, p.3, Proposition 9]. Since X is
absolutely continuous with respect to \i and Z' has the RNP, there exists a function g in
Lln(K,Z') representing X [8, p. 61, Definition 3] so that

X o m(<P, iP) = j (g{t), m(4>(t), <A(t))> dtf t).
K

It follows from the preceding corollary that rh is Arens regular. The converse is
immediate.

As an application of this corollary we have the following result.

Corollary 2.4. Let X be a reflexive Banach space, K(X) the space of compact linear
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operators on X and m: X x X-*X a bilinear operator. To m associate the bilinear operator
m:K(X) x K(X)-+K{X) defined by m(u,v)(x) = m(u{x), v(x)). Then m is Arens regular.

Proof. Let S be the closed unit ball of X equipped with the weak topology. We
embed K(X) into C(S,X) in a natural way and introduce the bilinear operator
m:C(S,X)xC(S,X)->C(S,X) defined by m(^,^)(s) = m(0(s),^(s)). Since any reflexive
space has the RNP, by the preceding corollary, m is Arens regular. Since m is the
restriction of m to K(X) x K(X), m is also Arens regular.

3. Direct sum of bilinear operators

In this section (Xa),(Ya), (ZJ (a e /) are three families of Banach spaces and ma:Xax
Ya-*Zx(oteI) is a family of bilinear operators. We assume that supa||ma||<oo. To the
family (mj we associate the bilinear operator.

© *«) x ( l ©

defined by m((xa), (ya)) = (ma(xa, ya)). This is a well-defined bounded bilinear operator.
The main result of this section is the following theorem.

Theorem 3.1. The bilinear operator m is Arens regular iff each bilinear operator ma is
Arens regular.

Proof. Assume each ma is Arens regular. Let h=(h<x) be an element of J^
the dual space of ( E . e Z . ) ! . Then fiom=(/iIomJ. Let *:(£,©*, , ) !-•(£.© Y'a)x and
ua:Xa->Y'a be, respectively, the linear operators corresponding to hom and hxomx. The
operator u and the M '̂S satisfy M((XJ) = (wa(xj) for (xj in (Y.*®x<*)i- A s

sup ||fta omj g sup ||fia|| sup ||ma|| g ||/>||oo' sup ||m«|| < oo
a a a a

and each element x = ( x j is absolutely summable, the element u{x)=(ux(xx)) actually lies
in (E«© ^«)o- For t n e same reason, u* maps (£«© 7 ^ ! into (£ a © X'a)0. It follows that
u** maps (^a ® XJ,')! into (£«© y«)'i- Moreover, as one can see very easily, for x"=(x£)
in ( E a © ^ ' ) i , w**(x")=(«a**(x;')). Now let x" = x'; + £ be an element of (£.©*«)"
decomposed according to the following well-known decomposition

© *" . Y = ( l © ^:) © ( l ©

Then, for each / ' in
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since u*(y") is in (Z» ® X'x)0. Thus we have the equality

Next, by Arens regularity of mx, ua being weakly compact [22, Theorem 2.2], «**
applies XI into Y'x. It follows that, for * i = ( O in (Z©*«)i , «**W) = («?*«)) lies in
(Z«© ^i)o- Thus, by (*), u** maps the second dual of ( Z « © * J i into (Z*© K)o- This
proves that M is weakly compact, and m is Arens regular. For the converse it is enough
to remark that the restriction of m to Xx x Yx is mx.

The proof of the preceding theorem shows that, when each ma is Arens regular, for

)"=(z©*;') e(i©*:Y
'1 \a /I \ x Jo

and

respectively, we have

z © Y*) = (z © n/N) © fz
I \« /I \«

As an application of this theorem we give the next corollary. We recall that a Banach
algebra A is said to be "Arens regular" if on the second dual A" of A the two Arens
products coincide [3,10]. This is equivalent to saying that, for each a' in A', the bilinear
form m on Ax A defined by m(a,b) = (a',aby is Arens regular. Now let (Ax)ael be a
family of Banach algebras and /l=(Za© ^Ui- Then A, equipped with the coordinate-
wise multiplication, is a Banach algebra. As an immediate corollary of the preceding
theorem and the remark following it we have the following result, which is Theorem 6
of [2]. At this point we point out that the proof of the preceding theorem in essence is a
generalization of the proof of [2, Theorem 6].

Corollary 3.2. The algebra >4=(Za© Ax)i is Arens regular iff each algebra Ax is
Arens regular. Moreover, in this case, the unique Arens product of A" is given, for
a" = « ) + £ and b" = (b" = (K) + r, in

b" = (a'x b'x).
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4. Extreme point regularity

In this section, X, Y, Z will be three Banach spaces and K a compact Hausdorff
space. By extZ',, we shall denote the set of extreme points of Z\, and B^X) the
subspace of X" consisting of Baire-1 functionals. We assume that all our vector spaces
are defined over the field of real numbers R. This assumption is not essential, but it will
simplify some notation.

Let m:Xx Y->Z be a linear operator. Let us say that m is "extreme point regular" if,
for z' in extZ'j, the bilinear form z'°m is Arens regular. The main question of this
section is this: Does extreme point regularity imply Arens regularity? Although a
positive answer to this question seems to be unlikely, we do not have any counter-
example to it. Below we show that at least in two important cases the answer to this
question is positive.

Proposition 4.1. / / the space Z does not contain a copy of I1 then every extreme point
regular bilinear operator m:X x 7->Z is Arens regular.

Proof. This is an immediate consequence of a result of R. Haydon [14, p. 269],
which says that if Z does not contain a copy of /' then, in the norm topology of Z', the
convex hull of ext Z\ is dense in Z\.

As an application of this proposition, we give the following result due to N. Young
[26, Theorem 3], see also [23, Corollary to Theorem 2].

Corollary 4.2. Let A = K(X) be the operator algebra of compact linear operators on X.
Then A is Arens regular iff X is reflexive.

Proof. Assume X is reflexive. Then the algebra A does not contain a copy of I1 [4,
Corollary 1.12], and ext A\ = extX\ ®e,\tXx [21, Theorem 1.3]. Now, for M, V in A and
x' (g) x in ext A\,

<u o v, x' <g) x> = <M*(X'), i>(x)>.

The space X being reflexive, a simple application of the double limit criterion shows
that the bilinear operator m(u, v) = uov from Ax A into A is extreme point regular, so
regular. Hence A is Arens regular. The converse is also easy and proved as in N.
Young's paper [26].

Another important case where extreme point regularity implies Arens reglarity is
given in the theorem below. For the proof of this theorem some preparation is needed.
In [12, p. 161] A. Grothendieck remarks that a separable Banach space X has the
Dieudonne property iff every sequence (x̂ ) that converges to zero for a(X',Bx(X))
converges weakly to zero. No published proof of this fact being available, the referee has
asked us to include a proof of this fact.

Lemma 43. A separable Banach space X has the Dieudonne property iff every
a{X',Bx(X)) null sequence (x'n) in X' is weakly null.
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Proof, (i) Assume X has the Dieudonne property and let (x'n) be a aiX^B^X)) null
sequence in X'. Following the referee's suggestion, we introduce the linear operator
T:X->c0 defined by T(x)=«x^,x». By the closed graph theorem, T is continuous. As
(x'n) is a{X',B^JQJ-null, T** maps B^X) into c0. Hence, since X has the Dieudonne
property, T** maps X" into c0, and (x'n) is weakly null.

(ii) Conversely, assume the condition of the lemma is satisfied. Let Y be any Banach
space and u:X->Y a linear operator such that u**(B1(.Y)) is contained in Y. We have to
show that u is weakly compact. Since the space u(X) is separable, replacing Y by u(X)
we can and do assume that Y is separable. Then (Y\, weak*) is a metrizable compact
space. Let (/„) be a sequence in Y\. Passing to a subsequence if necessary, we can
assume that (y'n) converges weak* to an element / in Y\. The condition u**(B1(A

r))£ 7
implies that u* is continuous from (Y\ weak*) into (X'^X^B^X)). Hence
u*(y'n)^u*(y') for C7(A",B1(X)). Now the condition of the lemma implies that u*(y'n)->
«*(/) weakly. Thus u*, so u, is weakly compact, and X has the Dieudonne property.

We remark that in part (i) of the above proof we did not use the separability of X.
We shall use this remark in the proof of the next theorem. In the initial version of this
theorem, in the hypotheses, we had "X and Y separable" instead of "m(X x Y)
separable". This stronger version has been suggested by the referee.

Theorem 4. Assume both X and Y have the Dieudonne property and let m:Xx Y->Z
be an extreme point regular bilinear operator with m(X x Y) separable. Then m is Arens
regular.

Proof. Let Zo be a separable subspace of Z that contains the image of m. As is
well-known [19, pp. 129-130], given any extreme point in the unit ball of Z'o, there
exists a functional z' in extZ't that extends z'o. Therefore we can and do assume that Z
itself is separable. Then the unit ball of Z' equipped with the weak* topology is
metrizable. The rest of the proof can conveniently be divided into two parts. In the first
part, using only the extreme point regularity of m, we shall show that, for any x" in
Bi(X) and / in B^Y), the equality.

m***(x",y") = mim<(x",y") (1)

holds. In the second part, using the Dieudonne property, we shall show that the equality
(1) holds for all x" in X" and / ' in Y". That is, m is Arens regular.

Let x" in B^X) and / ' in B^Y) be given. Then for some sequences (x.) in X and {yj)
in 1̂  x" = weak*-limx, and y" = weak*-lim_y;. It follows that [1, Theorem 3.2], for any h
in Z',

lim lim <fc, m(xh j>,)> = </», m***(x", /')> (2)
•• j

and
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lim lim </i, nixh yj)> = </:, m'***'(x", /')> • (3)

The fact that m is extreme point regular implies that, for z' in extZ'i, the equality

<z', m***(x", /')> = <z', m'***'(x", / )> (4)

holds. Now fix a functional h in Z\. By Choquet's integral representation Theorem [19,
pp. 120-127], there exists a Borel probability measure fi on (Z\, weak*) concentrated on
ext Z\ such that, for all i and j ,

<hMx,,yj)>= J <z',m(x,,^.)>d/i(z')- (5)
extZ'i

Taking into account the equalities (2), (3), (4) and applying the Lebesgue Dominated
Convergence Theorem to (5) we get the equality

</i, m***(x", /')> = </i, m'***'(x", / )> . (6)

The functional h being arbitrary, this proves equality (1).
Fix again a functional h in Z\. Let w: X-*Y' (resp. v: Y-*X') be the linear operators

representing the bilinear form hom. We have to prove that u is weakly compact. To
prove this, since X has the Dieudonne property, it is enough to show that u** maps
Bi(X) into 1". To this end, let x" be an arbitrary element of B^X). Then x" =
weak*-limx,- for some sequence (x,) in X. Let y" be an arbitrary element in B^Y). Then
y" = weak*-lim )>j for some sequence (^) in Y. Now, by (6) and [22, Proposition. 2.1]

lim <u(x,), / '> = lim lim <w(xf), yj> = lim lim </z, m(x,-, ̂ > ,
••

= <fc, m***(x", /')> = <K m'***'(x", /')> = <*"> f **(/)>

Thus, u(Xj)-»i;*(x") for a{Y',B1(Y)). Since the space Y has the Dieudonne property, by
part (i) of Lemma 4.3 above and the remark preceding the theorem, M(X,)-»D*(X") weakly
in 7'. On the other hand, u** being weak*-continuous, u(x,)-m**(x") for a{Y'", Y"). It
follows that u**(x") = v*(x"), and u**{x")eY'. Thus u** maps B^X) into y . Since X
also has the Dieudonne property, from this we conclude that u is weakly compact.
Hence m is Arens regular [22, Theorem 2.2].

Next we present an application of this theorem. Let A be a Banach algebra. Then the
space C(K, A), equipped with the pointwise multiplication and the supremum norm, is a
Banach algebra. Recently Arens regularity of the algebra C(K, A) was completely settled
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in [24]. The result is that the algebra C(K,A) is Arens regular iff A is Arens regular.
The proof of this result is quite complicated; here, as an application of the preceding
theorem, we give a very short proof of this result in an important particular case.

Corollary 4.4. Assume A does not contain a copy of I1. Then the algebra C(K,A) is
Arens regular iff A is Arens regular.

Proof. Assume A is Arens regular. Since every separable subalgebra of C(K, A) is
isomorphic to a subalgebra of C(S, B), where S is a metrizable quotient of K and B is a
separable subalgebra of A [24, Section 2a], and since an algebra is Arens regular iff its
separable subalgebras are Arens regular, we can and do assume that K is metrizable
and A is separable so that C(K, A) is separable. By [15, Theorem 4], the space C(K,A)
has the Dieudonne property. Therefore it is enough to prove that the multiplication
m{4>,\fi) = (j>-\l/ of C(K, A) is extreme point regular. Now extC(K, A)\ = {5t ® a':teK,

[21, Theorem 2.4], where <5, is the Dirac measure at t. For (j>, i// in C(K,A),

Therefore, by Arens regularity of A, we conclude, by the double limit criterion, that m is
extreme point regular, so regular. Hence C(K,A) is Arens regular. The converse is
trivial.

We end this note with two questions. Let A be a Banach algebra.

(a) Is Bt(A) a subalgebra of A" under either Arens product of A'"!
(b) Characterize those Banach algebras for which the two Arens products of A"

coincide on BX(A). The proof of Theorem 4.4 shows that, for a separable Banach
algebra with the Dieudonne property, this is equivalent to Arens regularity.
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