
/. Austral. Math. Soc. (Series A) 31 (1981), 207-216

ON GENERALIZATIONS OF PROJECTrVITY
FOR MODULES OVER DEDEKIND DOMAINS

JUTTA HAUSEN

(Received 19 June 1980; revised 7 November 1980)

To my father on June 12, 1981

Communicated by R. Lidl

Abstract

A module M over a ring R is K-projective, K a cardinal, if M is projective relative to all exact
sequence of /{-modules 0—>.4—>B-»C-»0 such that C has a generating set of cardinality less than
K. A structure theorem for K-projective modules over Dedekind domains is proven, and the
K-projectivity of M is related to properties of Extj,(M, 0 .R) . Using results of S. Chase, S. Shelah
and P. Eklof, the existence of non-projective {<,-projective modules is shown to undecidable, while
both the Continuum Hypothesis and its denial (plus Martin's Axiom) imply the existence of a
reduced K0-projective Z-module which is not free.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 13 C 05, 13 C 10, 18 G 15;
secondary 20 K 20, 20 K 40.

1. Introduction

In a recent paper, V. A. Hiremath (1978) considers finitely projective modules
over a Dedekind domain R.

The purpose of the present article is two-fold: firstly, we wish to consider
Hiremath's results on finitely projective modules in the larger setting of K-projec-
tivity where K is any infinite cardinal. Terminology is chosen such that "finitely
projective" equals "N0-projective".

Secondly, we turn to the question of existence. Hiremath has shown that an
/^-module is N0-projective if and only if its reduced part has this property;
however, he did not address the existence problem for reduced non-projective
N0-projective modules.
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Our findings are as follows: an R-module M is K-projective if and only if it
satisfies the condition

Every submodule N of M with K-generated quotient M/N
(K) contains a direct summand N' of M such that M/N' is

projective.

(2.4). Furthermore, we show that N0-projectivity of M is equivalent to
Ext/?(A/, R) being a torsion-free /^-module (3.2), while for K uncountable and
exceeding the number of prime ideals of R, |spec R\, the K-projectivity of M is
equivalent to ExtR(M, ®XR) = 0 for each cardinal X < K (4.2). Consequences
are Hiremath's result that pure submodules of N0-projective modules are N0-pro-
jective (3.4), and the fact that every submodule of a K-projective module, K
sufficiently large, is K-projective (4.3). Of independent interest may be our
finding that, for K = No and M reduced, or K > No- |spec R\, condition (K) is
equivalent to the apparently stronger condition of M being K-coseparable; that is
M is torsion-free, its submodules of rank less than K are prqjective, and every
submodule with K-generated quotient contains a direct summand of M with
K-generated quotient (4.2).

Having related the K-projectivity of M to the structure of ExtR(M, ©/?), we
can use results of Chase (1963), Shelah (1974, 1979) and Eklof (1980) to shed
some light on the existence problem: both the Continuum Hypothesis and its
denial (plus MA) imply the existence of a reduced N0-projective module M
which is not projective (5.3, 5.4). Whether the existence of such M can be
derived from within our standard set theoretical framework (Zermelo-Fraenkel
plus Axiom of Choice) is an unsolved problem.

For K > Ko and R a countable Dedekind domain which is not a field, every
K-projective /^-module is projective if one assumes the Axiom of Constructibil-
ity; assuming Martin's Axiom and 2"° > Hx instead, there exist N,-projective
Z-modules which are not free (5.1, 5.2). Thus, for K = X,, the existence of
non-projective K-projective modules is independent of and consistent with our
standard set theory. Whether this is true for any cardinal K > Ho is not known to
us.

Throughout, all modules are unital left modules and Z denotes the ring of
integers.

2. K-Projective modules

Let K be a cardinal. Following Eklof and Huber (1979), p. 449, we call a
module M over a ring R K-generated if it has an /?-generating set of cardinality
strictly less than K. And M is K-projective if M is projective relative to all exact
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sequences of R -modules Q-+A —» 2? —» C -» 0 with C K-generated. Clearly,
(2.1) Every K-projective module is X-projective, for any cardinal X less than K.
A consequence of Anderson and Fuller (1974), p. 186, 16.10, is
(2.2) Direct sums and direct summands of ic-projective modules are K-projec-

tive.
These and other properties of K-projective modules hold in much more general

context: if C is a class of /?-modules which is closed with respect to isomorphic
copies, define a module M to be C-projective if M is projective relative to all
short exact sequences

0->y4->.B->C-»0
of /?-modules with C belonging to C. Standard arguments prove that, if C is
closed with respect to homomorphic images, then C-projective modules belong-
ing to C are projective. Hence

(2.3) Every K-projective K-generated module is projective.
From now on assume that R is Dedekind domain. Thus, by Cartan and

Eilenberg (1956), p. 14, 5.4, submodules of projective .R-modules are projective.
It follows from Kaplanky (1952), p. 333, that submodules of K-generated
/^-modules, K infinite, are K-generated.

The following result, again, could have been formulated for C-projective
modules; for this we would need that C is closed with respect to submodules
and epimorphic images and contains enough projectives. Following Anderson
and Fuller (1974), we call M 5-projective if M has the projective property
relative to all exact sequences of /^-modules 0-*A-*B^C-*0.

(2.4) THEOREM. Let R be a Dedekind domain and let K be an infinite cardinal.
The following properties of the R-module M are equivalent.

(i) M is K-projective.
(ii) For every cardinal X < K, M is ®xR-projective.
(iii) Every submodule N of M with K-generated quotient M/N contains a direct

summand N' of M such that M/N' is K-generated and projective.
(iv) Every submodule N of M with K-generated quotient M/N contains a direct

summand N' of M such that M/N' is projective.

PROOF. (ii)=*(iii): U N < M with M/N K-generated, there exists a cardinal
X < K and an epimorphism a: F'-» M/N where F = 0 XR. Thus for f: M-»
M/N the natural map, f = a ° \f/ for some \f/: M -» F. Hence i//(M) < F is
K-generated and projective implying M = ker \p © Q, Q ca \p(M) as desired.

(iv) => (i): Consider a diagram

B

https://doi.org/10.1017/S1446788700033498 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033498


210 JuttaHausen [4]

with C K-generated and a epic. Then <p(M) ^ M/ker <p is K-generated, so that
M = K © Q with AT < ker <p and g protective. Thus, there exists >//: Q -» 2?
such that a ° <// = <p|(?. Extend ^ ' to a map %p: M —» B by defining *̂ (AT) = 0.

Let Q(R) denote the quotient field of R and suppose R ¥= Q(R). For P a
maximal ideal of R, let Z(P°°) denote the P-primary component of Q(R)/R.
Then Z(i>c0) is K,-generated, every divisible /J-module is a direct sum of copies
of Q(R) and Z(P°°) for various maximal ideals P, and every /?-module is a
direct sum of a divisible and a reduced submodule; see Kaplansky (1952).

(2.5) LEMMA. Let R be a Dedekind domain which is not a field, let K be an
infinite cardinal and let M be a K-projective R-module. Then:

(i) / / K > No then M is reduced.
(ii) If M is reduced then M is torsion-free and every submodule of countable

rank of M is projective.

PROOF. For (i), assume K > No and not every ic-projective module is reduced.
Then, by (2.2), there exists a K-projective divisible module D and an epimor-
phism <p: D -» Z(P°°) where P is some maximal ideal of R. If F is free of
countable rank then HomJi(Z), F) = 0. Hence <p cannot be factored through
/"-contradiction.

For part (ii), observe that, by Hiremath (1978), p. 332, Theorem 8, a reduced
N0-projective module is torsionless which as is well known implies the conclusion
of (ii).

For R a Dedekind domain, the relevant properties of Extjj are identical with
those of Extz. Since R is commutative, Ext^ is an /?-module; see Cartan and
Eilenberg (1956) for details. No confusion should arise by writing Ext instead of
Ext, .

(2.6) LEMMA. Let M be a module over a Dedekind domain and let K be a
cardinal. If M is K-projective then, for each cardinal \ < K, the R-module
Ext(Af, ®XR) is torsion free.

PROOF. Let X < K, let F = ®XR, and let 0 =£ r & R. Since 0 - •
F^> F-± F/rF —> 0 is exact, so is the induced sequence

Hom(M, F ) i Hom(M, F/rF)?* Ext(M, F ) -^ Ext(M, F),

where /? = r • IEX ĴI/.JO is ^ e multiplication by r. M being ic-projective implies
that a' is surjective. Hence y = 0 proving ker(/?) = 0 as desired.
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3. Hie countable case

Some terminology, motivated by Griffith (1970), p. 133, will be convenient.
Again, K is a cardinal and R is a Dedekind domain.

(3.1) DEFINITION. An R-module M is n-coseparable if (i) M is torsion-free; (ii)
every submodule of M of rank less than K is projective; and (iii) every
submodule N of M with K-generated quotient M/N contains a direct summand
N' of M with K-generated quotient M/N'.

Hiremath (1978), p. 331, Proposition 6, has shown that a module over a
Dedekind domain is N0-projective if and only if its reduced part has this
property. We have the following characterization which holds with and without
the parenthetical statement in (ii).

(3.2) THEOREM. Let M be a module over a Dedekind domain R. The following
conditions are equivalent.

(i) M is H0-prqjective.
(ii) Every submodule N of M such that M/N is finitely generated contains a

direct summand N' of M such that M/N' is projective (and finitely generated).
(iii) M = D © N where D is a divisible and N is an H0-coseparable R-module.
(iv) The R-module Ext(A/, R) is torsion-free.

REMARK. By Theorem 2.3, p. 655, of Griffith (1968), (i)-(iv) of (3.2) are
equivalent with the condition that M = D (B N with D divisible and N both
N0-coseparable and separable. Griffith's proof however depends on the machinery
of Chase (1962), Theorem 4.2.

PROOF OF (3.2). (i) «=> (ii): (2.4).
(i)<=>(iii): Hiremath (1978), p. 331, Proposition 6, together with (2.2), (2.4),

and (2.5) above.
(i)^(iv):(2.6).
(iv) => (i): Let M = D © N with D divisible and N reduced. If P is a maximal

ideal of R then Ext(R/P", R) is a non-zero torsion module for each positive
integer n. Hence N cannot have cyclic primary summands ^ 0 so that, by
Kaplansky (1952), p. 336, Theorem 9, N must be torsion-free. By (2.4) it suffices
to show that ./V is F-projective for each free module F of finite rank. Let a:
F-*C and <p: N^C be homomorphisms with a epic. Since C is finitely
generated, by Kaplansky (1952), C = B © Q with B bounded and Q projective.
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It follows that there exists a decomposition

N = N' 0 Q', N' = <p~\B), Q' projective.

Consequently, for some homomorphism i|/: Q' —> F, a ° $' = <p\Q'. The proof
will be completed once we show the existence of a homomorphism \p": N' -» F
such that a ° \p" = <p\N'. Let T̂ denote the kernel of a. The exactness of
0^> K—> F-* C -» 0 implies the exactness of

Hom(Af', F)°^ Hom(N', C)^> E\t(N', K) ->• E x t ^ ' , F),

where a* is the map induced by a. Since Ext(W, F) is a direct summand of

Ext(Ar, F) = Ext(7V, © / ? ) - © Ext(AT, R),
^ fin '

which is torsion-free, the image of y is a pure submodule of Ext(W, K); but, by
Cartan and Eilenberg (1956), p. 135, 5.3, TV' torsion-free implies Ext(A '̂, K)
divisible. Hence y(Hom(N', C)) is divisible. Regarding Hom(A '̂, E) in a natural
way as a submodule of Hom(Ar', C), we have tp\N' G Hom(A '̂, B) and
y(Hom(Ar', B)) = 0 since B is bounded. It follows that <p|iV' belongs to the
image of a* and the proof is completed.

We list a consequence which may be of interest in the construction of
non-projective N0-projective reduced modules.

(3.3) COROLLARY. A reduced module M over a Dedekind domain is H0-cosepara-
ble if and only if every submodule N of M with finitely generated quotient M/N
contains a direct summand N' of M such that M/N' is projective.

Using standard homological arguments, the equivalence of (i) and (iv) in (3.2)
proves the following result due to Hiremath.

(3.4) COROLLARY (Hiremath (1978)). Pure submodules of HQ-projective modules
over Dedekind domains are X0-projective.

If M is an R-module such that Ext(M, R) = 0 then M is said to be a
Whitehead module. By (3.2), every Whitehead module is N0-projective. Assume
that R is a countable Dedekind domain which is not a field. Then every
Whitehead /^-module is reduced (see Eklof (1980), p. 85, 9.1) and torsion-free
(2.5). Thus, using (3.2) and (2.5), we have derived

(3.5) COROLLARY. If R is a countable Dedekind domain which is not afield, then
every Whitehead R-module is reduced, ^-projective and H0-coseparable.
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4. The uncountable case

Let, again, R be a Dedekind domain, and let spec R denote the set of prime
ideals of R. If K0 = No • |spec R\, then the quotient field of R has an R-generat-
ing set of cardinality K0; furthermore, for every cardinal K > KQ, every torsion-
free R-module of rank less than K is K-generated.

The proof of the following result is modeled after Griffith (1970), p. 132, proof
of Theorem 190.

(4.1) LEMMA. Let M be a K-projective R-module where K > No- |spec R\. Then
for all ordinals X < K, Ext(M, ( ^ R) = 0.

PROOF. Fix X < K, let F = 0 X R, and consider an exact sequence

where / is the inclusion map. By (2.5), M is torsion-free. Let H be an F-high
submodule of X. One verifies that H is pure in X and X/(F ffi H) is torsion (see
Feigelstock (1977), p. 259, Lemma 9). Hence X/H and (F © H)/H ^ F have
equal rank X < K SO that, by the remark above, X/H is K-generated. Then so is

j(F@H) F ffi H'

and because of (2.4), M = K ffi B where K <Zj(H) and B is K-generated and
projective. If C = j~\B) and E = j'\K) n H, one verifies as in Griffith (1970),
p. 132, that X = C ffi E. By construction, B = y"(C) c^ C / F is projective, hence
C = F ® B' and the given sequence splits.

The following theorem is the counterpart to (3.2). The equivalence of (iii) and
(iv) is due to Griffith. Again, the equivalence of (ii) and (iii) may facilitate the
construction of non-projective K-coseparable modules. The theorem is valid both
with and without the parenthetical statement in (ii).

(4.2) THEOREM. Let R be a Dedekind domain and let K be an uncountable
cardinal which is larger than the number of prime ideals of R. Then the following
properties of the R-module M are equivalent.

(i) M is K-projective.
(ii) Every submodule N of M with K-generated quotient M/N contains a direct

summand N' of M such that M/N' is projective {and K-generated).
(iii) M is K-coseparable.
(iv) For every cardinal X < K, Ext(M, ®XR) = 0.

https://doi.org/10.1017/S1446788700033498 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033498


214 JuttaHausen [8]

PROOF. (i)<»(ii): (2.4).
(i)=>(iv):(4.1).
(iv) => (i): By (2.4), it suffices to show that M is /""-projective for every free

/^-module F of infinite rank A < K. Every submodule S of such F is iso-
morphic to a direct summand of F. Consequently, Ext(M, S) = 0 and the
exactness of a sequence 0 —» S1 —* F-* C -» 0 implies the exactness of
Hom(Af, F) -» Hom(Af, C) -> 0 where a' is the induced map.

This completes the proof of the equivalence of (i), (ii), and (iv). Since, for
every submodule S of M, Ext(M, F) -» Ext(S, F) ->• 0 is exact, it follows that
submodules of /c-projective modules are K-projective as stated in the first
corollary below. In order to derive (iii) from the equivalent properties (i), (ii),
(iv), it suffices to show that every K-projective module M is torsion-free and its
submodules of rank less than K are projective. The first assertion follows from
(2.5), and the second one from (2.3) and the fact that such submodules are both
/c-generated and K-projective. The final implication from (iii) to (ii) is trivial.

(4.3) COROLLARY. Let R be a Dedekind domain and let K > Xo • |spec R \. Then
submodules of K-projective R-modules are K-projective.

(4.4) COROLLARY. For K an uncountable cardinal, every K-projective module over
a countable Dedekind domain is a Whitehead module.

5. Existence problems

A Whitehead Z-module is called a Whitehead group. The existence of non-
free Whitehead groups was a long standing problem that was solved by Saharon
Shelah (1974) in a most surprising way: two axioms, each independent of and
consistent with our standard logical framework, the Zermelo-Fraenkel set
theory, ZF, plus the Axiom of Choice, AC, lead to contradictory answers when
added to ZF + AC. One of these is the Axiom of Constructibility, V = L; the
other one is Martin's Axiom, MA, together with the denial of the Continuum
Hypothesis, CH.

Assuming Martin's Axiom and 2*° > N,, Shelah (1974) established the ex-
istence of a non-free Whitehead group of cardinality N,; furthermore, by Shelah
(1979), p. 312, 1.1, an abelian group A of cardinality N, is a Whitehead group if
and only if Ext(/4, (BKZ) = 0. Thus (4.2) implies

(5.1) THEOREM (MA + -iCH). There exists an abelian group of cardinality N,
which is H.-projective but not free.

https://doi.org/10.1017/S1446788700033498 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033498


[9] Generalizations of projectivity 215

In contrast to this, Eklof (1980), p. 86, 9.2, has shown that, assuming the
Axiom of Constructibility, every Whitehead module over a countable Dedekind
domain is projective. Thus observing (4.4),

(5.2) THEOREM (V = L). For K an uncountable cardinal, every K-projective
module over a countable Dedekind domain is projective.

It follows that the existence of non-projective K,-projective modules is inde-
pendent of and consistent with our standard set theory.

For N0-projective modules, the situation is different. By Hiremath (1978),
every divisible /^-module is N0-projective. This raises the question whether there
exist reduced N0-projective modules which are not projective. Assuming the
Continuum Hypothesis, Chase (1963), p. 191, 4.4, has given an affirmative
answer: there exists a reduced non-free abelian group A of cardinality N, such
that Ext(v4, Z) is torsion-free. Thus, (3.2) implies

(5.3) THEOREM (CH). There exists a reduced H0-prqjective abelian group of
cardinality Nj which is not free.

Let R be a countable Dedekind domain which is not a field. Eklof (1980),
p. 86, 9.2, has established the existence of a non-projective Whitehead R-mod-
ule, again assuming MA and denying CH. Combining this with (3.5) we obtain

(5.4) THEOREM (MA + -iCH). If R is a countable Dedekind domain which is
not a field, then there exists a reduced HQ-projective R-module which is not
projective.

Thus, both the Continuum Hypothesis (which is a consequence of ZF and
V = L) and its denial (plus MA) imply the existence of non-projective N0-pro-
jective reduced modules. Whether such modules must exist without augmenting
our standard set theoretical framework is an unsolved problem.
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