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Nonequilibrium Bose–Einstein condensates

Bose–Einstein condensation was predicted in 1925 [Ein24, Ein25] but, except for
its indirect manifestation in the superfluidity of He4 [Lon38, Kap38, AllMis38], it
remained a purely theoretical construct until 1995, when condensation in alkali
gases was achieved in the laboratory [CorWie02, Ket02]. Since then, a great deal
of the theoretical work in the previous 70 years has been put to the experimental
test, while new avenues have been opening up, such as the superfluid–insulator
or Mott transition [FWGF89, GMEHB02, CaHuRe06], the BEC-BCS cross-over
[Leg06, Reg04] and the Tonks gas regime [Gir60, Par04]. Because of the great
experimental control over the relevant parameters and the deep understanding
of the fundamental physics, BECs have become a field of choice to perform
experiments of interest not just in atomic and molecular physics, but also in
quantum optics, condensed matter physics, quantum critical dynamics, even field
theory, gravitation, cosmology and black hole physics [CoEnWi99, PetSmi02,
Sou02, BonSen04, ParZha93, ParZha95, UnrSch07, BaLiVi05]. Moreover, cold
Bose gases on optical lattices have been proposed as a possible implementation of
a quantum information processing (QIP) device [JakZol04], boosting new interest
in these systems.

As introductions and reviews on this fast evolving subject abound, it is per-
haps more fitting for us to focus on certain aspects of the nonequilibrium field
theory of BEC, specifically [And04] the application of quantum field theoretic
methods described in this book to the description of nonequilibrium evolution
of condensed gases in magneto-optical traps [ChCoPh95].1

Of course NEqQFT is not the only possible description. Reflecting on the
characteristics of this field as a current attractor of different subdisciplines listed
above, the literature presents an almost bewildering array of possibilities. How-
ever, there are a few basic criteria that any successful description must meet:
it must be faithful to the presence of gapless excitations above the conden-
sate [HohMar65, Gri96, ShiGri98], and must respect the basic conservation laws
of particle number and energy–momentum [Kra60, BayKad61, Bay62]. These
requirements are sealed at the roots of a quantum field theoretical formulation

1 This means we would have to sacrifice the description of important topics like the physics
of cold atoms in optical lattices, which has a rapidly expanding literature [ChCoPh95], and
vortices in BECs and their associated phenomena [ElKrVo06], purely from space limitation
considerations.
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392 Nonequilibrium Bose–Einstein condensates

and, as such, provide a benchmark and standard against which other approxi-
mations may be compared. It also provides a systematic way to develop a per-
turbative expansion to arbitrary order [PRSC02, SPRS02, BFGR01, BaFrRa02,
Boy02].

Realistically, once one gets to the point of actually writing down a nonrela-
tivistic field-theoretic action to describe the second-quantized atomic gas, the
functional approach developed earlier in this book in the context of relativistic
scalar field theories works well in every detail we have considered so far. This
is one of the strengths of this approach. For this reason we will concentrate on
the first stage, namely, how to get from the physical model of the trapped gas to
a nonrelativistic field theory. In the process, we shall attempt to give a model-
independent characterization of the two requirements mentioned above, and to
discuss how they enter into the functional method.

Current experimental work on BECs presents a variety of nonequilibrium
problems, including the dynamics of condensation itself and the response of
the BEC to changes in its environment (temperature and trapping fields) and
particle interactions [KaSuSh96, KaSuSh97]. Probably the most extreme demon-
stration of far-from-equilibrium behavior is the so-called Bose–Nova experiment
[Don01, Cla03a, Cla03b, CoThWi06, SaiUed03, SanShl02, BajaMa04, Adh04,
GaFrTo01, SaRoHo03, WuHoSa05, Yur02, CalHu03, WDBDBH07], where a sud-
den sign change in the interatomic interaction triggers the implosion of the con-
densate. The possible use of cold gases in optical lattices in QIP poses, among
others, two specific challenges for a nonequilibrium theory: the detailed descrip-
tion of the initialization of the device [Rey04, Bre05, Pup04, ReBlCl03], and
an accurate estimation of static and dynamic decoherence times [SaOHTh97,
Oos02, PuWiPr06, Rei05].

The plan for this chapter is as follows: starting from the second-quantized
version of the weakly interacting Bose gas Hamiltonian in a closed time path
(CTP) framework, we shall present the basic (symmetry-breaking) formulation in
a model-independent way. We shall give a precise formulation to the requirements
of a gapless spectrum (the so-called Hugenholtz–Pines theorem) and particle
number conservation in the mean. In the process, we shall introduce the class of
Φ-derivable theories as a broad framework for viable models of BEC dynamics.

Then we shall introduce the 1PI and 2PI effective action descriptions of
the BEC, as described in Chapter 6 [LutWar60, DomMar64a, DomMar64b,
CoJaTo74, LunRam02]. This means that we opt to follow the evolution of
the condensate through the unfolding of correlation functions, as opposed, for
example, to obtaining a time-dependent wavefunction for the many-body system
[KohBur02, PrBuSt98, GKGB04]. We shall show that, in principle, the 2PIEA
leads to a Φ-derivable theory which is both gapless and conserving. However,
the appearance of many models derived from truncations of the 2PIEA in dif-
ferent degrees may tell a different story. We shall show how the familiar the-
ories arise from such truncations and examine them in detail. They are the
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13.1 The closed time path integral approach to BECs 393

Gross–Pitaevskii (GP), Bogoliubov, one-loop, Hartree–Fock–Bogoliubov (HFB),
Popov and two-loop approximations. We shall show that the two-loop approxi-
mation yields a minimal theory which is both gapless (to the required order in
perturbation theory) and conserving. We shall not discuss other approximation
schemes, like the 1/N approximation because they can be analyzed in terms
similar to those introduced in Chapter 6 [TemGas06, GBSS07].

Our next goal will be to discuss two specific predictions of the two-loop theory,
namely, that the evolution of condensate fluctuations is dissipative and stochas-
tic. This is in accord with the fluctuation–dissipation theorem discussed earlier
in the book. In particular, to discuss fluctuations we shall adopt a coarse-grained
effective action scheme where high-energy “noncondensate” modes act as an envi-
ronment for the low-energy “condensate band” modes, where condensation takes
place. We shall concentrate on the derivation of the noise terms coupled to the
Gross–Pitaevskii equation, yielding a stochastic GP equation. Of course, in so
doing the initial conditions for the condensate can also become stochastic, which
is an important consideration in actual applications.

In the regime where modes above the condensate are highly populated – not
macroscopically, of course – relaxation is efficient enough that a kinetic theory
description becomes possible, leading eventually to a two-fluid hydrodynamic.
Since we have discussed quantum kinetic theory in detail earlier in the book,
we shall focus here only on those features which are characteristic of the BEC
environment.

Finally, we shall close the chapter with a brief description of the so-called par-
ticle number conserving formalism. The symmetry breaking approach described
so far has the drawback that strictly speaking it cannot be applied to a sys-
tem with a finite number of particles. The particle number conserving formalism
overcomes this difficulty. In particular, we shall discuss a functional implementa-
tion of this formalism, which makes it as flexible as the better known symmetry
breaking approach.

13.1 The closed time path integral approach to BECs

In this section we put together the basic formulae for the coherent state rep-
resentation [NegOrl98] of the causal or CTP path integral method (introduced
in Chapters 3, 5 and 6) to compute the expectation values of physical observ-
ables. Let ρi be the density matrix describing the initial state of the system at
t = ti. Then expectation values with respect to ρi may be obtained from the
CTP generating functional (cf. Chapter 6)

eiW = Tr
{
U−1

2 (tf , ti)U1 (tf , ti) ρ (ti)
}

(13.1)

where

U1,2 (tf , ti) = T

[
e−i

∫ tf
ti

dt H1,2(t)

]
(13.2)
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394 Nonequilibrium Bose–Einstein condensates

We shall use the well-known coherent state representation [NegOrl98] in the
construction of a path integral representation of the generating functional in
the next subsection. The CTP boundary conditions will be introduced in the
following subsection.

13.1.1 The coherent state representation

For simplicity, we consider a single one-particle state. There is a basis made of
occupation number eigenstates |n〉

N |n〉 = n |n〉 (13.3)

where N is the number operator (in particular, n = 0 is the vacuum state |0〉).
These states are orthonormal and complete

〈m |n〉 = δmn (13.4)∑
|n〉 〈n| = 1 (13.5)

The destruction and creation operators relate states of different occupation num-
bers

â |n〉 =
√
n |n− 1〉 ; â† |n〉 =

√
n + 1 |n + 1〉 (13.6)

Therefore

â†â = N ; [â, â†] = 1 (13.7)

A coherent state |a〉 is an eigenstate of the destruction operator

â |a〉 = a |a〉 (13.8)

It follows that

〈n |a〉 =
1√
n
〈n− 1| â |a〉 =

a√
n
〈n− 1 |a〉 (13.9)

Adopting the normalization

〈0 |a〉 = 1 (13.10)

one gets

〈n |a〉 =
an√
n!

(13.11)

Or else,

|a〉 =
∑ an√

n!
|n〉 =

∑ anâ†n

n!
|0〉 = exp

{
aâ†
}
|0〉 (13.12)

Observe that

â† |a〉 =
∂

∂a
|a〉 (13.13)
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13.1 The closed time path integral approach to BECs 395

Let |b〉 be a second coherent state; then

b 〈a |b〉 = 〈a| â |b〉 =
∂

∂a∗
〈a |b〉 (13.14)

and

〈a |b〉 = exp {a∗b} (13.15)

The constant is determined by recognizing that the vacuum is the coherent state
with a = 0. From this point on, we shall omit the hats on operators whenever
there is no risk of confusion.

While not orthogonal, the coherent states are complete, in the following sense∫
da∗da

2πi
exp {−a∗a} |a〉 〈a| = 1 (13.16)

We may use the completeness relationship to write down the trace of an opera-
tor A

TrA =
∑

〈n|A |n〉 =
∫

da∗da

2πi
exp {−a∗a} 〈a|A |a〉 (13.17)

Now consider the transition amplitude between the state |ai〉 at time ti = 0 and
the state |āf 〉 at time tf . We have (setting � = 1)

|āf 〉 = eiHtf |ā〉 (13.18)

and

〈āf |ai〉 = 〈ā| e−iHtf |ai〉 (13.19)

Note that |āf 〉 is not a solution of the Schrödinger equation, but an eigenstate of
the Heisenberg operator a (tf ) with proper value ā. Since a (tf ) = eiHtf ae−iHtf ,
we have a (tf ) |āf 〉 = ā |āf 〉.

Let N be some large number and ε = tf/N. Write ai = a0, ā = aN . Then,
inserting N − 1 identity operators, we have

〈āf |ai〉 =
∫ {N−1∏

n=1

da∗ndan
2πi

exp {−a∗nan} 〈an+1| e−iHε |an〉
}
〈a1| e−iHε |a0〉

(13.20)

which may be written as (assuming the Hamiltonian H = H(a†, a) is in a normal
form)

〈aN |a0〉 =
∫

[Da]N−1 exp {iSN [a∗, a]} ea∗
NaN (13.21)

where

[Da]N−1 =
N−1∏
n=1

da∗ndan
2πi

(13.22)

SN [a∗, a] =
N∑

n=1

{ia∗n (an − an−1) − εH (a∗n, an−1)} (13.23)
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Going to the continuum limit, where an − an−1 ∼ ε∂a/∂t, we get

〈āf |a〉 =
∫

[Da] exp {iS [a∗, a]} ea∗a(tf ) (13.24)

S [a∗, a] =
∫

dt

{
ia∗

∂a

∂t
−H (a∗, a)

}
(13.25)

The integration is over paths which interpolate between a (0) = a and a∗ (tf ) =
ā∗.

13.1.2 The closed time path boundary conditions

We now have all the necessary elements to evaluate the CTP generating func-
tional (13.1). The idea is that the initial density matrix ρ is propagated forwards
in time with some Hamiltonian H1 and then backwards with a Hamiltonian H2.
Insert three identity operators in (13.1) to obtain

eiW =
∫

da∗NdaN
2πi

da1∗
0 da1

0

2πi
da2∗

0 da2
0

2πi
exp
{
−
(
a∗NaN + a1∗

0 a1
0 + a2∗

0 a2
0

)}
×〈aN |U2 (tf , ti)

∣∣a2
0

〉∗ 〈aN |U1 (tf , ti)
∣∣a1

0

〉 〈
a1
0

∣∣ ρ (ti)
∣∣a2

0

〉
(13.26)

Now use the corresponding path integral representations

eiW =
∫

da∗NdaN
2πi

da1∗
0 da1

0

2πi
da2∗

0 da2
0

2πi
exp
{
a∗NaN − a1∗

0 a1
0 − a2∗

0 a2
0

} 〈
a1
0

∣∣ ρ (ti)
∣∣a2

0

〉
×
∫ [

Da2
]∗
N−1

exp
{
−iS2

N

[
a2∗, a2

]∗}∫ [
Da1

]
N−1

exp
{
iS1

N

[
a1∗, a1

]}
(13.27)

The configuration on the forward branch has a1 (0) = a1
0 and a1∗ (tf ) = a∗N . On

the backward branch, we have a2∗ (0) = a2∗
0 and a2 (tf ) = aN . Once W is known,

causal expectation values may be computed by differentiation. Equation (13.27)
is the main result of this section.

13.2 The symmetry-breaking approach to BECs

For a field-theoretic description of BECs we begin with a second-quantized field
operator Ψ (x, t) which removes an atom at the location x at times t. It obeys
the canonical commutation relations

[Ψ (x, t) ,Ψ (y, t)] = 0 (13.28)[
Ψ (x, t) ,Ψ† (y, t)

]
= δ (x− y) (13.29)

The dynamics of this field is given by the Heisenberg equations of motion

−i�
∂

∂t
Ψ = [H,Ψ] (13.30)
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13.2 The symmetry-breaking approach to BECs 397

where H is the Hamiltonian. The theory is invariant under a global phase change
of the field operator

Ψ → eiθΨ, Ψ† → e−iθΨ† (13.31)

The constant of motion associated with this invariance through Noether’s theo-
rem is the total particle number.

To motivate the symmetry-breaking approach to BECs we observe that there
is a special one-particle state, with wavefunction φ0, which, upon condensation,
acquires a macroscopic occupation number N0, comparable to the total number
of particles N . We call this state the “condensate.” We regard φ0 as the first
element of a complete basis of one-particle states, and expand Ψ = a0φ0 + . . .

The operator a0 is the destruction operator for the condensate.
Let |N,N0〉 be the state of the gas with N particles, N0 of which are in the

condensate. Then

a0 |N,N0〉 =
√
N0 |N − 1, N0 − 1〉 (13.32)

If N and N0 are both very large, then the state does not change much. We see
that the condensed state is very close to a coherent state for a0. Taking the
actual state for a coherent state is an excellent approximation when both N and
N0 are macroscopic (but an approximation nonetheless). We shall return to this
point below, in Section 13.3.

Under the approximation

a0 |N,N0〉 ≈
√
N0 |N,N0〉 (13.33)

the expectation value of the field operator is no longer zero

〈Ψ〉 ≡ Φ ≈
√
N0φ0 (13.34)

Because the field operator develops an expectation value, the symmetry (13.31) is
spontaneously broken. (Beware that the actual relationship between the expec-
tation value and the wavefunction of the condensate is more complex than a
simple proportionality, see Section 13.3.)

In the symmetry-breaking approach to BEC dynamics, one relegates this moti-
vation to the background and views the condensation as a resultant of the spon-
taneous breakdown of symmetry (13.31). Upon symmetry breaking Ψ develops
a nonzero expectation value Φ (c-number). We introduce a background field
decomposition for Ψ

Ψ = Φ + ψ (13.35)

where ψ (q-number) is the field operator corresponding to quantum fluctuations
with zero mean 〈ψ〉. Various approaches differ on how to handle the dynamics
of these two constituents.

To progress further, we need a specific model for the atom–atom interactions.
In principle, we should specify the atom–atom interaction potential. However,
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in many applications it is enough to know the cross-section σ for low-energy
spherically symmetric scattering of two identical bosons. We introduce the scat-
tering length a through σ ≡ 8πa2, where the factor 8π involves both integration
over all scattering angles and Bose enhancement factors. We shall adopt as a
model atom–atom interaction a contact potential Uδ (x). To reproduce the right
scattering length we need U = 4π�

2a/M , where M is the mass of the atoms. A
positive value of a means a repulsive interaction; we adopt the convention that
an attractive interaction is described by a negative value of a.

We observe that from the expectation value Φ and the scattering length a it
is possible to build a new characteristic length, the healing length ξ, as ξ−2 ≡
aΦ2. Physically, suppose we introduce a condition such as a boundary into the
condensate forcing Φ = 0 there. Then ξ is the distance from the boundary where
Φ grows back to its asymptotic value. The healing length also plays an important
role in the spectrum of fluctuations above the condensate, as we shall show below.

Assuming a contact atom–atom potential we get then the Hamiltonian

H =
∫

ddx
{

Ψ†HΨ +
U

2
Ψ†2Ψ2

}
(13.36)

The single-particle Hamiltonian H is given by

HΨ = − �
2

2M
∇2Ψ + Vtrap (x) Ψ (13.37)

where Vtrap (x) denotes a confining trap potential. Then the Heisenberg equation
of motion

i�
∂

∂t
Ψ = HΨ + UΨ†Ψ2 (13.38)

is also the classical equation of motion derived from the action

S =
∫

dd+1x i�Ψ∗ ∂

∂t
Ψ −

∫
dt H (13.39)

For later use, it is convenient to introduce a single field doublet ΨA =
(
Ψ,Ψ†).

Recall the Pauli matrices

σ1 =
(

0 1
1 0

)
(13.40)

σ2 =
(

0 −i

i 0

)
(13.41)

σ3 =
(

1 0
0 −1

)
(13.42)

We also include spatial and temporal position in the A indices (repeated indices
are added over discrete indices and integrated over spacetime). The classical
action reads (we also set � = 1)

S =
1
2
σ2ABΨA ∂

∂t
ΨB − 1

2
σ1ABΨAHΨB − UABCD

24
ΨAΨBΨCΨD (13.43)
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where

σiAB → σiABδ (xA − xB) δ (tA − tB) (13.44)

UABCD → U [σ1ABσ1CD + σ1ACσ1DB + σ1ADσ1BC ]

δ (xA − xB) δ (xA − xC) δ (xA − xD)

δ (tA − tB) δ (tA − tC) δ (tA − tD) (13.45)

is totally symmetric. UABCD = 2U if (ABCD) is a permutation of (2211), and
zero otherwise. The Heisenberg equations become

σ2AB
∂

∂t
ΨB − σ1ABHΨB − UABCD

6
ΨBΨCΨD = 0 (13.46)

From the expectation value of the Heisenberg equations we find the mean field
equation

σ2AB
∂

∂t
ΦB − σ1ABHΦB − ηA = 0 (13.47)

where we parameterize

ηA =
UABCD

6
〈
ΨCΨDΨB

〉
(13.48)

We adopt the convention that whenever different operators evaluated at the
same time appear within an expectation value, they must be normal ordered.
Therefore, in expanded notation

η2 = η†1 = U
〈
Ψ†Ψ2

〉
(13.49)

In Section 13.2.9 we will relate η to the chemical potential.
The fluctuations around the mean field will be described through the correla-

tion functions〈
T
[
ΨA (t,x) ΨB (t′,y)

]〉
≡ ΦA (t,x) ΦB (t′,y) + GAB ((t,x) , (t′,y)) (13.50)

GAB =
〈
T
[
ψA (t,x)ψB (t′,y)

]〉
(13.51)

These include the so-called normal and anomalous densities

ñ (t,x) =
〈
ψ†ψ

〉
(t,x) = G21 ((t,x) , (t,x)) (13.52)

m̃ (t,x) =
〈
ψ2
〉
(t,x) = G11 ((t,x) , (t,x)) (13.53)

The fluctuation field ψ inherits the ETCR[
ψA (x, t) , ψB (y, t)

]
= iσAB

2 δ (x − y) (13.54)

From the usual formulae〈
T
[
ψA (t,x)ψB (t′,y)

]〉
= θ (t− t′)

〈
ψA (t,x)ψB (t′,y)

〉
+ θ (t′ − t)

〈
ψB (t′,y)ψA (t,x)

〉
(13.55)
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and the equation of motion for the fluctuations (which is obtained by subtracting
the mean field from the Heisenberg equations)

σ2AB
∂

∂t
ψB − σ1ABHψB − UABCD

6
ΨBΨCΨD + ηA = 0 (13.56)

the equations of motion for the propagators read

0 = σ2AB
∂

∂t
GBE − σ1ABHGBE − UABCD

6
〈
T
(
ΨCΨDΨBψE

)〉
− iδEA (13.57)

which we parameterize as

0 = σ2AB
∂

∂t
GBE − σ1ABHGBE − ΣABG

BE − iδEA (13.58)

ΣABG
BE =

UABCD

6
〈
T
(
ΨCΨDΨBψE

)〉
(13.59)

Let us define the “free” propagators DBE as the solutions to

0 = σ2AB
∂

∂t
DBE − σ1ABHDBE − iδEA (13.60)

Observe that

D−1
AB = −i

δ2S

δΦAδΦB

∣∣∣∣
Φ=0

(13.61)

or, more explicitly,

D−1
AB = (−i)

(
0 D−1∗

D−1 0

)
(13.62)

D−1 = i�∂t +
�

2

2M
∇2 − V (x) (13.63)

We may then write this equation as

G−1
AB = D−1

AB + iΣAB (13.64)

Of course we cannot compute ηA and ΣAB in closed form. Different theories arise
from different ansatz for these unknowns as functionals of the mean fields and
propagators, thus closing the system.

13.2.1 A relationship between ηA and ΣAB

Observe that all of the above remains valid if we consider fields defined on a
closed time path. If we need to differentiate among the branches of the time
path, we shall make them explicit in the time argument. We shall write t for a
generic point on the time path, or else ta, where a = 1 denotes a point on the
first (forward) branch, and a = 2 a point on the second (backward) one.

One way of generating a vacuum expectation value for the field is coupling
it to an external source. The mean field is obtained from the derivatives of a
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generating functional

ΦA =
δW [J ]
δJA

(13.65)

eiW =
〈
ei
∫
JAΨA

〉
(13.66)

In the presence of the sources, the Heisenberg equations now read

σ2AB
∂

∂t
ΨB − σ1ABHΨB − UABCD

6
ΨBΨCΨD = −JA (13.67)

so taking the expectation value we obtain

σ2AB
∂

∂t
ΦB − σ1ABHΦB − ηA = −JA (13.68)

Since we have not committed ourselves as to the nature of ηA, this statement is
totally general.

We now have the linear response theory result

δΦA

δJE
= iGAE (13.69)

whereby

iδEA = σ2AB
∂

∂t
GBE − σ1ABHGBE − dηA

dΦB
GBE (13.70)

We use d for the variational derivative of ηA in the last term to emphasize that
we mean the full derivative. We shall return to this point below. Comparing
with (13.58) we see that in the exact theory there is a connection

ΣAB =
dηA
dΦB

(13.71)

Any approximation which does not respect this will get into trouble at some
point.

13.2.2 Gaplessness and phase invariance

It is a property of the Heisenberg equations that if ΨA =
(
Ψ,Ψ†) is a solution,

then

exp (iσ3ABθ) ΨB =
(
eiθΨ, e−iθΨ†) (13.72)

where θ is a constant, is also a solution. In the exact theory, this property is
inherited by the mean field equations, and so the small fluctuations equations
must always admit a solution δΦA = σ3ABΦB . This means that the fundamental
solutions −iGAB must have a pole.

In equilibrium, time-translation invariance means that ΦA must have the form

ΦA = e−iσ3ABμtΦB
0 =

(
e−iμtΦ1

0, e
iμtΦ2

0

)
(13.73)
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where ΦB
0 is constant and may be chosen as real, Φ1

0 = Φ2
0. Now recall the mean

field equations and write

ηA = eiσ3ABμtηA0 =
(
eiμtη10, e

−iμtη20

)
(13.74)

Then

η10 = η20 = (μ−H) Φ1
0 (13.75)

For a homogeneous trap V (x) = 0, Φ1
0 is a constant and HΦ1

0 = 0.
The linearized equations are[

σ2AB
∂

∂t
− σ1ABH − ΣAB

]
δΦB = 0 (13.76)

The requirement that these equations must admit a solution where δΦA is a
constant times a simple harmonic factor means that the operator in brackets has
a zero, but this is the same as saying that the two-point functions GAB have
a pole. Therefore, provided the relationship above between the self-energy ΣAB

and the “force” ηA holds, the theory must be gapless.
Actually, substituting δΦA = σ3ACe

−iσ3CBμtΦB
0 =

(
e−iμtΦ0,−eiμtΦ0

)
and

ΣAB =

(
Σ0

11e
iμ(t+t′) Σ0

12e
iμ(t−t′)

Σ0
21e

−iμ(t−t′) Σ0
22e

−iμ(t+t′)

)
(13.77)

implies

(μ−H) Φ0 (x) −
∫

dt′d3y
[
Σ0

21 − Σ0
22

]
((t,x) , (t′,y)) Φ0 (y) = 0 (13.78)

If V (x) = 0, the constant Φ0 cancels out and we obtain a connection between μ

and the ΣAB . This is the Hugenholtz–Pines theorem [HugPin59, Gold61]

μ =
∫

dt′d3y
[
Σ0

21 − Σ0
22

]
((t,x) , (t′,y)) (13.79)

13.2.3 Conserving and Φ-derivable theories

A theory is called conserving if particle number is conserved in the mean. The
theory is called Φ-derivable if there is a functional Φ of ΦA and GAB such that

ηA =
δΦ
δΦA

(13.80)

ΣAB = 2
δΦ

δGAB
(13.81)

We shall now show that a Φ-derivable theory is necessarily conserving provided
the Φ functional is invariant under time-dependent phase changes

ΦA → exp [iσ3ABθ (tA)] ΦB (13.82)

GAB → exp [iσ3ACθ (tA)] exp [iσ3BDθ (tB)]GCD (13.83)
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This is a more demanding requirement than the global phase invariance of the
classical action. To see this, introduce a tensor

cABC =
1
2
δ (tA − tB)σ1BC (13.84)

The particle number operator is

NA = cABCΨBΨC (13.85)

Global particle number conservation means that

∂

∂t
〈NA〉 = 0 (13.86)

But

∂

∂t
〈NA〉 = cABC

[
2ΦC ∂ΦB

∂tB
+

∂

∂tB
GBC +

∂

∂tC
GBC

]
(13.87)

By symmetry in the SU(2) indices and a spatial integration by parts the mean
field equations imply

2cABCΦC ∂ΦB

∂tB
= iδ (tA − tB)σ3BCΦCηB (13.88)

Analogously

0 =
∂

∂tB
GBC + iσBD

3 HDGDC − σBD
2 ΣDEG

EC − iσBC
2 (13.89)

0 =
∂

∂tC
GBC + iσDC

3 HDGBD + σEC
2 ΣDEG

BD + iσBC
2 (13.90)

Therefore, a conserving theory must obey

0 = iδ (tA − tC)
{
σ3BCΦCηB +

[
σDC

3 GEC + σEC
3 GCD

] ΣDE

2

}
(13.91)

which for a Φ-derivable theory is just the invariance statement above.
By extending the symmetry properties of the Φ functional it is possible to

enforce energy and momentum conservation as well. The discussion is similar to
the general proof of energy–momentum conservation in the mean in relativistic
theories, and we shall not repeat it here.

We emphasize that in the exact theory, particle number is strongly conserved,
not only in the mean. Strong particle number conservation implies an infinite
chain of identities which several correlation functions must obey; in a Φ-derivable
theory, they cannot all be satisfied.

Gapless, conserving and Φ-derivable theories

To summarize, Φ-derivable theories are always conserving if the Φ functional is
invariant under time-dependent simultaneous phase changes of the mean fields
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and propagators. They are also gapless if

ΣAB = 2
δΦ

δGAB
=

dηA
dΦB

=
δ2Φ

δΦAδΦB
+

1
2
δΣCD

δΦA

dGCD

dΦB
(13.92)

In the last term, the propagators are regarded as functionals of the mean fields
through their equation of motion, namely

G−1
AB = D−1

AB + iΣAB (13.93)

implies [
G−1

EGG
−1
HF + i

δΣEF

δGGH

]
dGGH

dΦB
= (−i)

δΣEF

δΦB
, (13.94)

so the condition for a gapless theory becomes

ΣAB = 2
δΦ

δGAB
=

δ2Φ
δΦAδΦB

− i

2
δΣGH

δΦA

[
G−1

EGG
−1
HF + i

δΣEF

δGGH

]−1
δΣEF

δΦB
(13.95)

Observe that in general the term in brackets is nonlocal, so either
δΣGH

δΦA
= 0 (13.96)

or else the self-energy ΣAB must contain a nonlocal part. This observation will
be crucial below.

13.2.4 The full 2PI effective action as a Φ-derivable approach

In this subsection, we shall discuss the 2PIEA as a Φ-derivable approach, assum-
ing one knows the full effective action.

As shown in Chapter 6, the 2PIEA is given by [RHCRC04]

Γ2

[
ΦA, GAB

]
= S

[
ΦA
]
+

1
2
S,ABG

AB − 1
2
i�Tr lnG + ΓQ (13.97)

where ΓQ is the sum of all 2PI vacuum bubbles for a theory with propagators
GAB and vertices

UABCD

24
ψAψBψCψD and

UABCD

6
ΦAψBψCψD (13.98)

The equations of motion are

S,A +
1
2
S,ABCG

BC +
δΓQ

δΦA
= 0 (13.99)

−iS,AB − 2i
δΓQ

δGAB
=
[
G−1

]
AB

(13.100)

Therefore

ηA =
UABCD

6
ΦBΦCΦD +

UABCD

2
ΦBGCD − δΓQ

δΦA
(13.101)

ΣAB =
UABCD

2
ΦCΦD − 2

δΓQ

δGAB
(13.102)
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which follow from the functional

Φ =
UABCD

24
ΦAΦBΦCΦD +

UABCD

4
ΦAΦBGCD − ΓQ (13.103)

Conservation follows from the fact that ΓQ is made out of graphs where the same
number of 1 and 2 fields enter at each vertex.

Since we are assuming ΓQ contains all graphs, the theory must be gapless.
Nevertheless, it is interesting to seek a direct proof. We must verify the identity
(13.95). To do this, let us put back the external sources in the equations of
motion

iD−1
ABΦB − ηA = −JA −KABΦB (13.104)

iD−1
AB − i

[
G−1

]
AB

− ΣAB = −KAB (13.105)

Taking variations we get

iD−1
AB

δΦB

δJC
− δηA

δΦB

δΦB

δJC
− δηA

δGBD

δGBD

δJC
= −δCA (13.106)

i

[[
G−1

]
AD

[
G−1

]
EB

+ i
δΣAB

δGDE

]
δGDE

δJC
− δΣAB

δΦD

δΦD

δJC
= 0 (13.107)

In any Φ-derivable approach,

δηA
δGBD

=
1
2
δΣBD

δΦA
(13.108)

and we still have the LRT result (13.69), from which we get

δGDE

δJC
=
[[
G−1

]
AD

[
G−1

]
EB

+ i
δΣAB

δGDE

]−1
δΣAB

δΦF
GFC (13.109)

so the first equation (13.106) becomes[
G−1

]
AB

= D−1
AB + i

δηA
δΦB

+
1
2
δΣFD

δΦA

[[
G−1

]
GD

[
G−1

]
EF

+ i
δΣGE

δGDF

]−1
δΣGE

δΦB
(13.110)

QED
This shows that, in principle, the 2PIEA yields a theory which is both gapless

and conserving. In reality, though, one does not known the full effective action,
and truncations may spoil either of these features, or both.

13.2.5 Varieties of theories from truncations

of the 2PI effective action

Let us expand on this last statement by looking at some common approaches to
nonequilibrium BECs as truncations of the 2PIEA. For simplicity, in this section
we assume V (x) = 0.
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(1) The simplest, and surprisingly useful, approach is the Gross–Pitaevskii
(GP) one: just write the classical equations of motion for Φ, and forget
about G. However, this approach is incomplete, because it says nothing about
fluctuations.

(2) The next simplest approach is Bogoliubov’s, which is based on the identi-
fications

ηBog
A =

UABCD

6
ΦBΦCΦD (13.111)

ΣBog
AB =

UABCD

2
ΦCΦD (13.112)

or, in expanded notation

η0Bog
2 = UΦ3

0 (13.113)

Σ0Bog
21 = 2Σ0Bog

22 = 2UΦ2
0δ (t− t′) δ (x − y) (13.114)

Here, the mean fields obey the Gross–Pitaevskii equation

i
∂

∂t
Φ = HΦ + UΦ†Φ2 (13.115)

and the fluctuations the linearized equation

i
∂

∂t
ψ = Hψ + Uψ†Φ2 + 2UΦ†Φψ (13.116)

Write Φ = e−iμtΦ0, ψ = e−iμtψphys to get

μ = UΦ2
0 (13.117)

i
∂

∂t
ψphys = Hψphys + UΦ2

0

[
ψ†

phys + ψphys

]
(13.118)

Bogoliubov’s approach is not Φ-derivable; however, it is gapless, because the
equation for the propagators is defined to be identical to the first variation of
the equation for the mean fields, and this is phase invariant. Equivalently, we
see that the Bogoliubov approach is consistent with the Hugenholtz–Pines
theorem.

The Bogoliubov approach is not conserving. This may be seen from the
analysis above, but it is probably simplest to give a direct proof. Since the
equation for the mean field is just the classical equation, its contribution to
particle number is conserved, so the only question is about the number of
particles in the fluctuation field. From the equations above we find

d 〈N〉
dt

= (−i)UΦ2
0

∫
ddx

[〈
ψ†2

phys

〉
−
〈
ψ2

phys

〉]
(13.119)

which does not vanish identically.
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The simplest Φ-derivable extension of the Bogoliubov approach is the one-
loop theory, where ΓQ = 0

Φ1 loop=
UABCD

24
ΦAΦBΦCΦD +

UABCD

4
ΦAΦBGCD (13.120)

From the above analysis, one loop is obviously conserving, but it is not
gapless. This can be seen from the fact that ΣAB is purely local, while to
satisfy the gapless condition it must also include nonlocal terms.

Alternatively, we can check that the one-loop approximation violates the
Hugenholtz–Pines theorem. The one-loop self-energies are the same as in the
Bogoliubov approach, but the forces are different

η01loop
2 =

[
UΦ2

0 + U (2ñ + m̃)
]
Φ0 (13.121)

leading to

μ = UΦ2
0 + U (2ñ + m̃) (13.122)

(3) The so-called Hartree–Fock–Bogoliubov approximation (HFB) is another
local Φ-derivable approach, where ΓQ is reduced to the double-bubble
diagram

ΦHFB = Φ1 loop +
UABCD

8
GABGCD (13.123)

HFB is conserving but not gapless, for the same reasons as the one-loop
approach. The HFB forces are the same as in the one-loop approach, while
the self-energies are

Σ0HFB
22 = U

(
Φ2

0 + m̃
)
δ (t− t′) δ (x − y) (13.124)

Σ0HFB
21 = 2U

(
Φ2

0 + ñ
)
δ (t− t′) δ (x − y) (13.125)

Observe that the Hugenholtz–Pines theorem is violated because of the m̃

term. This suggests a simple way to modify HFB so that it becomes gapless,
though no longer conserving. In the HFB approach, the equations for the
mean fields are

i
∂

∂t
Φ = HΦ + UΦ†Φ2 + 2U

〈
ψ†ψ

〉
Φ + U

〈
ψ2
〉
Φ† (13.126)

and the fluctuations obey the linearized equation

i
∂

∂t
ψ = Hψ + Uψ† (Φ2 +

〈
ψ2
〉)

+ 2U
(
Φ†Φ +

〈
ψ†ψ

〉)
ψ (13.127)

(4) In the so-called Popov approximation, one neglects the “anomalous” density
in both equations (13.126), (13.127). Writing Φ = e−iμtΦ0, ψ = e−iμtψphys,
we get

μ = U
[
Φ2

0 + 2
〈
ψ†ψ

〉]
(13.128)

i
∂

∂t
ψphys = Hψphys + UΦ2

0

[
ψ†

phys + ψphys

]
(13.129)
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which is easily verified to give a gapless spectrum (see the next subsection).
The first equation is the Hugenholtz–Pines theorem reduced to this approx-
imation.

The spectrum under the Popov approximation

We now investigate more closely the spectrum which results from the Popov
approximation. To this end, let us reinstate � into the equation, and assume a
homogeneous condensate in a three-dimensional normalizing box of volume V .
Φ0 is a constant, and ψphys may be expanded

ψphys =
∑
k

eikx√
V
ψk (t) (13.130)

i�
∂

∂t
ψk =

�
2k2

2M
ψk + UΦ2

0

[
ψ†
−k + ψk

]
(13.131)

We seek a solution

ψk = αkAke
−iωkt − βkA

†
−ke

iωkt (13.132)

where αk and βk are real and spherically symmetric, and α2
k − β2

k = 1. Collecting
positive and negative frequency terms we get(

�
2k2

2M
+ UΦ2

0 − �ωk

)
αk − UΦ2

0βk = 0 (13.133)

UΦ2
0αk −

(
�

2k2

2M
+ UΦ2

0 + �ωk

)
βk = 0 (13.134)

leading to the dispersion relation

�
2ω2

k =
(

�
2k2

2M
+ UΦ2

0

)2

− U2Φ4
0 (13.135)

and to a gapless spectrum, as expected. Let us write

�
2k2

2M
+ UΦ2

0 = �ωk cosh 2ϕ (13.136)

UΦ2
0 = �ωk sinh 2ϕ (13.137)

Then

αk = coshϕ, βk = sinhϕ (13.138)

It follows that

tanhϕ =
UΦ2

0(
�2k2

2M + UΦ2
0 + �ωk

) (13.139)

and so

βk =
UΦ2

0[(
�2k2

2M + UΦ2
0 + �ωk

)2 − U2Φ4
0

]1/2 (13.140)
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Let us introduce the scattering length a through U ∼ �
2a/M and the healing

length ξ through aΦ2
0 = ξ−2. Then the dispersion relation reads

ωk = csk

√
1 +

1
4

(ξk)2 (13.141)

where the speed of sound is

cs =
�

Mξ
(13.142)

We see that there are roughly two set of modes, hard modes with k > ξ−1 which
remain mostly undisturbed by the condensate, and soft modes k < ξ−1 which
lose their particle-like character and become phonon-like.

The above analysis does not apply to the homogeneous mode, which by con-
struction has zero frequency. Therefore the amplitude of the zero mode will grow
linearly in time, and eventually it will invalidate perturbation theory. The point
is that within the symmetry-breaking approach this is unavoidable. Of course
the zero mode is physically different from other modes, being closer to a collec-
tive variable [Raj87] than to a true physical degree of freedom. Therefore it is
justified to treat it in a different way than other modes [MCBE98, SiCaWi06].
But when we do so we move beyond the symmetry-breaking approach. A possi-
ble strategy is the particle conserving formulation, to be discussed later in this
chapter.

The equation obtained from the Popov approximation may be used to clarify
one important point, namely, what the physical small parameter in the loop
expansion is. As a measure of the size of the higher corrections, let us compare
the density of noncondensate particles ñ =

〈
ψ†

physψphys

〉
against the condensate

density Φ2
0. In the continuous approximation

ñ =
∫

d3k β2
k = 4π

∫ ∞

0

dk k2β2
k (13.143)

The integral converges at both limits. For small k, ωk ∼ k
[
UΦ2

0/M
]1/2 and

β2
k ∼

(
MUΦ2

0

)1/2
/�k (13.144)

Replacing U ∼ �
2a/M we get k2β2

k ∼ a−2 (ka)
(
a3/2Φ0

)
. In the opposite limit of

large k, we have �ωk ∼ �
2k2/2M and k2β2

k ∼ a−2 (ka)−2 (
a3/2Φ0

)4
. The largest

contribution comes from the cross-over region where k ∼ a−1
(
a3/2Φ0

)
.

The resulting estimate yields ñ ∼ Φ2
0

(
a3/2Φ0

)
. We see that the physical small

parameter in the expansion is
√
Na, where Na = a3Φ2

0 ∼ a3N/V is the number
of particles within a scattering length of a given particle. The loop expansion is
therefore a dilute gas approximation.
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13.2.6 Higher gapless approximations

We see from the previous discussion that, while the 2PIEA yields a theory which
is truly both gapless and conserving, in practice truncations of the effective action
lead to approaches where one or the other feature must be sacrificed. To prevent
this, we must stick to approximations to the 2PIEA which satisfy the gapless
condition

−2
δΓQ

δGAB
=

UABCD

2
GCD − δΓQ

δΦAδΦB

− i

2

[
UGHADΦD − 2

δΓQ

δGGHδΦA

] [
G−1

EGG
−1
HF − 2i

δ2ΓQ

δGEF δGGH

]−1

×
[
UEFBJΦJ − 2

δΓQ

δGEF δΦB

]
(13.145)

This nonlinear equation in functional derivatives of ΓQ is too complex to admit a
closed-form solution, but it can be solved iteratively: we start by replacing some
value of Γ(n)

Q on the right-hand side, and find Γ(n+1)
Q by one integration with

respect to G. We thereby generate a family of theories which are gapless within
a prescribed accuracy.

Choosing as starting point the Bogoliubov approximation Γ(1)
Q = 0, we obtain

the first nontrivial approximation

Γ(2)
Q = −UABCD

8
GABGCD +

i

12
UGHADΦDGABGGEGHFUEFBJΦJ (13.146)

which is the full two-loop approximation to the 2PIEA, including the double-
bubble and setting sun graphs. This approximation was first explored by Beliaev
[Bel58a, Bel58b].

We note that other approximation schemes have been explored in the lit-
erature, most notably the 1/Nf expansion in a theory with Nf “flavors” or
equivalent Bose fields. If going over to a nonlocal approximation is considered
too involved, another possibility is to depart from the 2PIEA approach, adding
ad hoc terms, for example, to restore gaplessness in an otherwise conserving
theory.

As we have discussed in detail in earlier chapters, the two-loop approximation
leads to self-energies which are in general complex, signaling damping of the
condensate fluctuations. At zero temperature, the leading damping mechanism
is the decay of a condensate fluctuation into two noncondensate excitations. This
so-called Beliaev damping [Bel58a, Bel58b] has been discussed in detail in Chap-
ter 8, in the simpler context of a gφ3 scalar field theory. At finite temperature
a new mechanism appears, the so-called Landau damping where a condensate
fluctuation is absorbed by a noncondensate excitation, which transmutes into a
higher energy excitation. The imaginary parts of the thermal self-energy have
been discussed in Chapter 10, to which we refer the reader for details.
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Finally, we observe that for cold gases in an optical lattice, gaplessness may
actually become a problem, if one is interested in describing the Mott regime.

Let us return to Γ(2)
Q = ΓHFB

Q + δΓQ. In a more natural notation,

δΓQ =
iU2

2

〈{∫
dtd3x

[
Φ∗ψ†ψ2 + Φψ†2ψ

]}2
〉

(13.147)

where the expectation value is computed under a Gaussian approximation and
only 2PI terms are kept. Recall that the time integration runs over the closed
time path, and that products of fields are path ordered, or normal ordered if the
path ordering prescription is ambiguous. Expanding

δΓQ =
iU2

2

∫
dtd3x

∫
dt′d3y

×
{

Φ∗ (t,x) Φ∗ (t′,y)
[
2
〈
ψ†ψ†′〉 〈ψψ′〉2 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψψ′〉

]
+ Φ∗ (t,x) Φ (t′,y)

[
4
〈
ψ†ψ†′〉 〈ψψ′〉

〈
ψψ†′〉+ 2

〈
ψ†ψ′〉 〈ψψ†′〉2]

+ Φ (t,x) Φ∗ (t′,y)
[
2
〈
ψψ†′〉 〈ψ†ψ′〉2 + 4 〈ψψ′〉

〈
ψ†ψ′〉 〈ψ†ψ†′〉]

+ Φ (t,x) Φ (t′,y)
[
2
〈
ψ†ψ†′〉2 〈ψψ′〉 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψ†ψ†′〉]}

(13.148)

Although the model is built to be gapless to O
(
U2
)
, it is interesting to give a

direct check. We consider only the zero temperature case. Observe that

η2 = ηHFB
2 + δη2 (13.149)

δη2 = iU2

∫
dt′d3y

×
{

Φ∗ (t′,y)
[
2
〈
ψ†ψ†′〉 〈ψψ′〉2 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψψ′〉

]
+ Φ (t′,y)

[
4
〈
ψ†ψ†′〉 〈ψψ′〉

〈
ψψ†′〉+ 2

〈
ψ†ψ′〉 〈ψψ†′〉2]} (13.150)

In equilibrium, and after extracting the phases, this leads to a chemical potential

μ = μHFB + δμ (13.151)

with

δμ = iU2

∫
dt′d3y

[
2
〈
ψ†ψ†′〉 〈ψψ′〉2 + 4

〈
ψ†ψ′〉 〈ψψ†′〉 〈ψψ′〉

+4
〈
ψ†ψ†′〉 〈ψψ′〉

〈
ψψ†′〉+ 2

〈
ψ†ψ′〉 〈ψψ†′〉2] (13.152)

To O(U2) we may compute the expectation values as pertaining to a free field.
At zero temperature δμ vanishes.

https://doi.org/10.1017/9781009290036.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.019


412 Nonequilibrium Bose–Einstein condensates

Similarly we compute the self-energies

ΣAB = ΣHFB
AB + δΣAB (13.153)

δΣ0
21 = −2iU2Φ2

0

〈
ψψ†′〉0 [2 〈ψψ′〉0 +

〈
ψψ†′〉0 + 2

〈
ψ†ψ′〉+ 2

〈
ψ†ψ†′〉0]

(13.154)

δΣ0
22 = −2iU2Φ2

0 〈ψψ′〉0
[
〈ψψ′〉0 + 2

〈
ψψ†′〉0 + 2

〈
ψ†ψ′〉0 + 2

〈
ψ†ψ†′〉0]

(13.155)

In equilibrium, δΣ0
22 = 0 and

δΣ0
21 = −2iU2Φ2

0

(〈
ψψ†′〉0)2

(13.156)

The gaplessness condition reads

2Um̃ =
∫

dt′d3y δΣ0
21 (13.157)

to lowest order in U.

To compute the left-hand side we expand the destruction operators as

ψ0 =
∑ ei(kx−ωkt)

√
V

ak (13.158)

where

ωk =
�k2

2M
(13.159)

Therefore, after separating the contributions from both branches of the closed
time path∫

dt′d3y δΣ0
21 = −2U2Φ2

0

V

∑
p,q

δp+q

ωp + ωq
= −U2Φ2

0

V

∑
p

1
ωp

(13.160)

On the other hand, at zero temperature

m̃ =
−1
V

∑
p

αpβp (13.161)

To lowest order we have αp = 1

βp =
UΦ2

0

2�ωp
(13.162)

QED

13.2.7 Damping

The fact that under the above approximation there are nonlocal terms in the
equations of motion for both the mean field and propagators suggest that they
already include damping effects. Indeed, this has been proved by Beliaev [Bel58a,
Bel58b].
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13.2 The symmetry-breaking approach to BECs 413

Let us consider the evolution of a mean field fluctuation e−iμtδΦ. The lin-
earized equation of motion is

i
∂

∂t
δΦ = (H − μ) δΦ + UΦ2

0

[
δΦ† + 2δΦ

]
+ 2U

〈
ψ†ψ

〉
0
δΦ + U

〈
ψ2
〉
0
δΦ†

+UΦ0

[
2δ
〈
ψ†ψ

〉
+ δ
〈
ψ2
〉]

+ δη2 [δΦ] (13.163)

We see that there are two types of nonlocal terms, the terms coming from the
modification of the fluctuating field propagators, and terms from the second
variation of the effective action. The former will be shown to be proportional to
UΦ2

0 and therefore will dominate at low temperatures, where almost all particles
are condensed. Conversely, we expect the direct variation terms to dominate
immediately below the critical temperature. We consider only the former case.

Since the perturbed propagators appear already in O(U) terms, we only need
to compute them to O(U) accuracy. At this level, it is enough to consider the
Heisenberg equation

i
∂

∂t
ψphys = (H − μ)ψphys + Uψ†

phys

(
Φ2

0 + 2Φ0δΦ
)

+ 2U
(
Φ2

0 + Φ0

(
δΦ† + δΦ

)
+
〈
ψ†ψ

〉
0

)
ψphys (13.164)

To the desired order

μ = U
[
Φ2

0 + 2
〈
ψ†ψ

〉]
(13.165)

and

i
∂

∂t
ψphys = Hψphys + Uψ†

phys

(
Φ2

0 + 2Φ0δΦ
)

+U
(
Φ2

0 + 2Φ0

(
δΦ† + δΦ

))
ψphys (13.166)

Let us write

ψphys = ψeq
phys + δψ (13.167)

where

ψeq
phys =

∑ eikx

√
V

[
Ake

−iωkt − UΦ2
0

2�ωp
A†

−ke
iωkt

]
(13.168)

and expand

δΦ =
∫

dω

2π

∑
k

ei(kx−ωt)

√
V

fk (ω) (13.169)

Keeping only up to O(U) terms

i
∂

∂t
δψ −Hδψ = 2Φ0U

[
ψeq†

physδΦ +
(
δΦ† + δΦ

)
ψeq

phys

]
(13.170)
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and so

δψ = 2Φ0U

∫
dω

2π

∑
p,q

ei(p+q)x

V

×
{
fp (ω)A†

−qe
−i(ω−ωq)t

ω − ωq − ω|p+q| + iε
+

[
fp (ω) + f∗

−p (−ω)
]
Aqe

−i(ω+ωq)t

ω + ωq − ω|p+q| + iε

}

(13.171)

We may now compute

δ
〈
ψ†ψ

〉
=
〈
ψeq†

physδψ
〉

+
〈
δψ†ψeq

phys

〉
= O

(
U2
)

(13.172)

δ
〈
ψ2
〉

=
〈
ψeq

physδψ
〉

= 2Φ0U

∫
dω

2π

∑
p,q

ei(px−ωt)

V 3/2

fp (ω)
ω − ωq − ω|p+q| + iε

(13.173)
The equation for the fluctuation is then

i
∂

∂t
δΦ = HδΦ + UΦ2

0

[
δΦ† + δΦ

]
+ U

〈
ψ2
〉
0
δΦ† + UΦ0δ

〈
ψ2
〉

(13.174)

or, after Fourier transformation,[
ω − ωp − UΦ2

0 −
2U2Φ2

0

V

∑
q

1(
ω − ωq − ω|p+q| + iε

)
]
fp (ω)

−U
[
Φ2

0 + m̃
]
f∗
−p (−ω) = 0 (13.175)

Changing p → −p, ω → −ω and conjugating we find the second equation

U
[
Φ2

0 + m̃
]
fp (ω)

+

[
ω + ωp + UΦ2

0 −
2U2Φ2

0

V

∑
q

1(
ω + ωq + ω|p+q| + iε

)
]
f∗
−p (−ω) = 0

(13.176)

Up to O(U2) the secular equation is

0 = ω2 −
(
ωp + UΦ2

0

)2 − 2U2Φ2
0

�2V
(ω − ωp)

∑
q

1(
ω + ωq + ω|p+q| + iε

)
−2U2Φ2

0

�2V
(ω + ωp)

∑
q

1(
ω − ωq − ω|p+q| + iε

) + U2Φ4
0 (13.177)

We expect that the solution will be close to ωp, but if there is a q such that
ωp ∼ ωq + ωp+q then the O(U2) terms become large and perturbation theory
breaks down. What is going on is that the free evolution of condensate fluctu-
ations cannot be described as oscillations with a small number of fundamental
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frequencies. This is clearly seen in the continuum limit, where we may replace

1
V

∑
q

→
∫

d3q

(2π)3
(13.178)

The resulting integrals have an imaginary part and the frequencies for the free
evolution of condensate fluctuations become complex, ω ∼ ωp − iΓ

Γ ∼ U2Φ2
0M

8π�3
p ∼

(
a

ξ

)
csp (13.179)

The underlying mechanism is that the energy of a condensate fluctuation carrying
momentum p is spent in exciting two particles out of the condensate, one of
momentum −q and another of momentum p + q. Of course, this mechanism
requires the presence of a condensate. The term δη2 [δΦ] contains additional
channels describing the direct decay of the condensate fluctuation into three
particles.

Also, we have assumed that the mode p was hard enough that it fell into the
“particle-like” part of the spectrum. In practice, damping is very sensitive to
the shape of the dispersion relation and to the number of spatial dimensions
[TsuGri03, TsuGri05, Rob05, RHCC05]. A more detailed calculation shows, for
example, that the mechanism we have described does not work in one dimension,
because it is not possible to satisfy energy conservation. In such a case damping
becomes a higher order effect.

13.2.8 The stochastic Gross–Pitaevskii equation

If the evolution of condensate fluctuations is damped, then from fluctuation–
dissipation relation considerations we must expect it will also be stochastic.
This is indeed the case. The resulting “stochastic Gross–Pitaevskii equation”
has been investigated by Stoof [Sto99], Duine and Stoof [DuiSto01] and specially
by Gardiner and collaborators [GaAnFu01, GarDav03, Jaigar04, BrBlGa05]. Our
treatment is essentially a translation of the discussion by Gardiner, Anglin and
Fudge [GaAnFu01] into the language of this book [CaHuVe07]. It is interesting
to compare our treatment of this problem with [DaDzOn02, KKHOSK06] and
[DomRit02].

The simplest way to identify the stochastic elements in the evolution of the
condensate is to adopt a coarse-grained effective action scheme (cf. Chapter 5)
where the single-particle modes are divided into a “condensate band” (system)
of low-lying modes, where most of the condensation takes place, and a “noncon-
densate” band (environment) of higher modes which act as an environment for
the system. In the open system treatment (see Chapters 5 and 8) the quantum
fluctuations of the higher band can be represented as classical stochastic fluctu-
ations in the lower band through the nonlinear coupling between the two bands.
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416 Nonequilibrium Bose–Einstein condensates

A second source of stochasticity is in the random initial conditions appropriate
to the condensate [Ste98, ScHuGa06, NobaGa05, NobaGa06].

Since the basic formalism and its physical content have been discussed in
detail in the quoted chapters, we shall only review here the simplest scenario.
We consider a bosonic gas confined to a box of volume V with periodic boundary
conditions, and assume the condensate band to contain just the homogeneous
mode, namely

Ψ (x, t) = φc (t) + χ (x, t) (13.180)

where φc is the condensate band field operator. Note the subscript “c” here
denotes condensate, not classical, thus this is not quite the background field-
quantum field split we have considered so far because φc, unlike the mean field
Φ, is a q-number, and the noncondensate band operator χ, unlike the fluctuation
field ψ, has no zero mode.

We compute the influence functional (equivalent to the coarse-grained closed
time path effective action) for the φ field to order U2, to which order the field
χ is just a nonrelativistic free bosonic field. Let φc

1 and φc
2 be the fields in

the first and second branch, respectively, and write (φn)− =
(
φc

1
)n −

(
φc

2
)n

,
(φn)+ = (

(
φc

1
)n

+
(
φc

2
)n

)/2. Then

SIF

[
φc

1, φc
2
]

= S
[
φc

1
]
− S

[
φc

2
]

+
iU2

2

∫
dt dt′

{(
φ†2)

− (t)
(
φ2
)
+

(t′) ν (t− t′) θ (t− t′)

−
(
φ2
)
− (t)

(
φ†2)

+
(t′) ν (t′ − t) θ (t− t′)

+
1
2
(
φ†2)

− (t)
(
φ2
)
− (t′) ν (t− t′)

}
(13.181)

where

ν (t− t′) =
∑
p

e−2iωp(t−t′), ωp =
�p2

2M
(13.182)

The last line in the influence functional may be traded for two stochastic sources

exp
{−U2

4�

∫
dt dt′

(
φ†2)

− (t)
(
φ2
)
− (t′) ν (t− t′)

}

=
∫

DξDξ∗ P [ξ, ξ∗] exp
{
iU

2�

∫
dt
[
ξ (t)

(
φ2
)
− (t) + ξ∗ (t)

(
φ†2)

− (t)
]}

(13.183)

where P is a Gaussian measure defined by the correlations

〈ξ (t)〉 = 〈ξ (t) ξ (t′)〉 = 0

〈ξ∗ (t) ξ (t′)〉 = �ν (t− t′) (13.184)

https://doi.org/10.1017/9781009290036.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290036.019


13.2 The symmetry-breaking approach to BECs 417

Variation of the influence functional yields the stochastic GPE for the condensate
field

i�φc,t − Uφc
†φc

2 +
iU2

V
φc

†
t∫
dt′ ν (t− t′)φc

2 (t′) = −U

V
ξ∗ (t)φc

† (t) (13.185)

As a check, let us seek the equilibrium solution (neglecting the stochastic term).
In equilibrium,

φc =

√
N

V
e−iμt/� (13.186)

so the only unknown is the chemical potential

μ =
UN

V
− U2N

2V 2

∑
p

1
ωp − μ− iε

(13.187)

which is equivalent to the one-loop result.
We see that in general the condensate will undergo non-Markovian dynamics

driven by multiplicative colored noise. The generalization of (13.185) for a trap
of arbitrary shape is given in [CaHuVe07].

13.2.9 The hydrodynamic and quantum kinetic approach to BECs

So far we have described in some detail the equilibrium and linear response
regimes of the condensate, but a nonequilibrium approach has not shown its
worth unless it can tackle also the out-of-equilibrium evolution. Of course, the
truly far from equilibrium case is as hard to handle as with all other quan-
tum fields we have discussed in this book; see e.g. Chapter 12. However, there
is one case where one should be able to make progress, namely, when both
the condensate and noncondensate densities are high enough to enforce efficient
local thermalization. Then a quantum kinetic theory approach along the lines of
Chapter 11 ought to be viable.

The quantum kinetic theory approach to BECs was introduced by Kane
and Kadanoff [KanKad65] and elaborated in two series of papers by Gar-
diner, Zoller and collaborators and Holland, Wachter, Walser and collaborators
[GarZol97, JaGaZo97, GarZol98, JGGZ98, GarZol00a, WWCH99, WaCoHo00,
WWCH01, WWCH02a, BhWaHo02, WWCH02b]. The derivation of quantum
kinetic theory from the 2PIEA is discussed in [BaiSto04, RHCC05]. We follow
the latter reference.

There are two basic differences between the quantum kinetic theory applied to
BECs and to a generic scalar field theory as discussed in Chapter 11. First, there
are two fundamental quantum fields (ψ and ψ†) and therefore the number of
propagators is higher. This poses only formal difficulties and we will not discuss
it in detail (similar problems arise in the application of the quantum kinetic
theory approach to gauge theories, see Chapter 11).
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Second, the quantum kinetic theory approach assumes that all mean fields are
slowly varying on the scale of the wavelength of the relevant quantum modes, so
that an adiabatic expansion is feasible. In the case of BECs, this assumption can
be made for the condensate density, but the condensate phase may show strong
position dependence.

A solution to this problem is suggested by the long known fact that the evolu-
tion of the condensate as described by the GPE is equivalent to the evolution of
an irrotational fluid. The idea is that the kinetic description will be valid when
the hydrodynamic variables (rather than the condensate wavefunction itself) are
slowly varying functions of position.

Let us begin by briefly reviewing the hydrodynamic formulation. Unlike the
relativistic theories described in Chapter 12, the condensate is represented as a
nonrelativistic (super) fluid. Since the superfluid carries no entropy, the energy
density ε, pressure p, number density ρ, chemical potential μ, superfluid velocity
v and momentum density π are linked through the relationship

ε + p− ρμ− v · π = 0 (13.188)

This implies the Gibbs–Duhem relation

dp− ρdμ− π · dv = 0 (13.189)

If we assume the usual relationship π = Mρv, this suggests

μ = μ0 −
1
2
Mv2 (13.190)

where the relationship between μ0 and p is the usual one for a fluid at rest

dp = ρdμ0 (13.191)

We have to make contact between this fluid description and the usual one
in terms of a condensate wavefunction. Let us write the mean field as [Mad27,
Hal81, Cas04]

Φ = eiΘ(x,t)
√
ρ (x, t) (13.192)

(observe the position dependence of the phase), whereby we have a microscopic
interpretation of the density, and the propagators as

GAB ((x, t) , (y, t′)) = eiσ3ACΘ(x,t)eiσ3BDΘ(y,t′)ḠCD ((x, t) , (y, t′)) (13.193)

Observe that since ΓQ is built out of Feynman graphs based on local interactions
it has no explicit dependence on the phases Θ (x, t). Therefore the force η2 will
transform as

η2 [Φ] = eiΘ(x,t)η̄
[
ρ, ḠAB

]
(13.194)

Now the mean field equation is given by

e−iΘ(x,t)

[
i�

∂

∂t
+

�
2

2M
∇2

]{
eiΘ(x,t)

√
ρ (x, t)

}
− V (x)

√
ρ− η̄ = 0 (13.195)
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Its imaginary part reads
∂ρ

∂t
+

�

M
∇ [ρ∇Θ] = 2

√
ρIm η̄ (13.196)

This allows us to identify

v =
�

M
∇Θ (13.197)

as the superfluid velocity, which is therefore (locally) irrotational by definition.
There may be global rotation, if the volume occupied by the condensate is not
simply connected.

The real part of the mean field equation reads

−�
∂Θ
∂t

=
M

2
v2 + V (x) +

Re η̄√
ρ

− �
2

2M
√
ρ
∇2√ρ (13.198)

This leads to the evolution equation for the superfluid velocity

∂vi

∂t
+
(
vj∇j

)
vi =

−1
M

∇i

[
V (x) +

Re η̄√
ρ

− �
2

2M
√
ρ
∇2√ρ

]
(13.199)

where we have used the assumption that the superfluid velocity is irrotational.
For the momentum density we get

∂Mρvi

∂t
+ ∇j

[
Mρvjvi

]
+ ρ∇iRe η̄√

ρ
= −ρ∇i

[
V (x) − �

2

2M
√
ρ
∇2√ρ

]
+ 2Mvi

√
ρIm η̄ (13.200)

The usual hydrodynamic equation would read

∂Mρvi

∂t
+ ∇jT

ij = F i (13.201)

where T ij is the nonrelativistic momentum flux tensor

T ij = Mρvjvi + pδij (13.202)

Comparing the hydrodynamic and the microscopic forms of the equation for the
superfluid velocity we may identify the pressure. Assume Re η̄ is a function of ρ.
Then

dp

dρ
= ρ

d

dρ

[
Re η̄√

ρ

]
(13.203)

It is interesting to observe that also
dp

dρ
= Mc2s (13.204)

defines the speed of sound in the condensate. Going back to the Gibbs–Duhem
relation we find

μ0 =
Re η̄√

ρ
(13.205)
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and so the equation for the time dependence of the phase is

−�
∂Θ
∂t

=
1
2
Mv2 + V (x) + μ0 −

�
2

2M
√
ρ
∇2√ρ (13.206)

To close this system we need the equations for the propagators. From the decom-
positions

G−1
AB ((x, t) , (y, t′)) = e−iσ3ACΘ(x,t)e−iσ3BDΘ(y,t′)Ḡ−1

CD ((x, t) , (y, t′)) (13.207)

ΣAB ((x, t) , (y, t′)) = e−iσ3ACΘ(x,t)e−iσ3BDΘ(y,t′)Σ̄CD ((x, t) , (y, t′)) (13.208)

we get

Ḡ−1
AB = D̄−1

AB + iΣ̄AB (13.209)

where

D̄−1
AB = eiσ3ACΘ(x,t)D−1

CDeiσ3BDΘ(y,t′) (13.210)

Concretely,

D̄−1
AB = (−i)

⎛
⎝ 0 D̄−1∗

D̄−1 0

⎞
⎠ (13.211)

D̄−1 = e−iΘ

[
i�∂t +

�
2

2M
∇2 − V (x)

]
eiΘ

= i�

(
∂t + v.∇ +

(∇.v)
2

)
+

�
2

2M
∇2 + μ0 −

�
2
(
∇2√ρ

)
2M

√
ρ

(13.212)

From this point on, the derivation of the quantum kinetic equation for the non-
condensate particles follows the lines of Chapter 11. For a discussion of nontrivial
hydrodynamic behavior in BECs see [HACCES06].

13.3 The particle number conserving formalism

The symmetry-breaking approach described above has the disturbing feature
that, strictly speaking, symmetry breaking only occurs in the thermodynamic
limit. We therefore have a formalism that assumes the number of particles is
essentially infinite. Most actual experiments deal with situations where particle
number is bounded. Under this circumstance a condensate as described above
simply cannot happen.

In this section we shall describe an alternative formulation which is designed
to deal with gases with fixed particle numbers. We shall call this formulation the
particle number conserving formalism, PNC for short. See [GirArn59, GirArn98,
CasDum97, CasDum98, MorCas03, Gar97, GJDCZ00, Mor04, Mor99, Mor00,
Idz05a, Dzi05b, GarMor07]. Let us begin by discussing how is it possible to
speak of a BEC in a situation where there is no symmetry breaking.
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13.3.1 Problems with the symmetry-breaking approach

Recall in the symmetry-breaking (SB) approach to BEC, condensation is signaled
by a spontaneous breakdown of phase invariance (13.31), whereby Ψ develops
a nonzero expectation value Φ. We can therefore employ a background field
decomposition [NegOrl98, PetSmi02] around Φ (c-number): Ψ = Φ + ψ where ψ

(q-number) is the field operator describing quantum fluctuations (see equation
(13.35)).

A common feature of these approaches is that the total particle number

N =
∫

ddx Ψ†Ψ (13.213)

is not fixed. For example, let us assume that the condensate is confined within a
homogeneous box of volume V , condensation occurring in the lowest (translation-
invariant) mode. Let ak be the operator that destroys an atom in the k mode.
Then we may approximate (see the more careful discussion below)

ψ (x, t) =
∑
k�=0

eikx

√
V
ak (13.214)

Even if we treat ψ as a linear perturbation on the condensate, the Hamiltonian is
not diagonal on the ak. To diagonalize it, we must introduce phonon destruction
operators Ak and perform a Bogoliubov transformation

ak = αkAk + βkA
†
−k (13.215)

At zero temperature, the state is the phonon vacuum, Ak |0〉 = 0 for all k �= 0.
We find

〈N〉 =
∫

ddx
〈
Ψ†Ψ

〉
= V

[
|Φ|2 + ñ

]
(13.216)

where

ñ =
〈
ψ†ψ

〉
=

1
V

∑
k�=0

〈
a†kak

〉
=

1
V

∑
k�=0

|βk|2 (13.217)

but 〈
N2
〉

= V 2

[(
|Φ|2
)2

+ |Φ|2
(

4ñ +
1
V

)
+ Φ∗2m̃ + Φ2m̃∗ + . . .

]
(13.218)

where

m̃ =
〈
ψ2
〉

=
1
V

∑
k�=0

〈a−kak〉 =
1
V

∑
k�=0

αkβk (13.219)

The Bogoliubov coefficients αk and βk cannot be equal, because the canoni-
cal (Bose) commutation relations imply |αk|2 − |βk|2 = 1, and so also m̃ �= ñ.

We conclude that necessarily
〈
N2
〉
�= 〈N〉2 in the symmetry-breaking approach,

signaling the presence of particle number fluctuations.
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13.3.2 The one-body density matrix and long-range coherence

We consider as above a second-quantized Bose field Ψ. The state of the many-
body system is an eigenstate of total particle number operator (13.213). There
is no particle exchange with the environment.

In this case of a finite system, there is no symmetry breaking. The symmetry-
broken state is essentially a coherent state and thus a coherent superposition
of states with arbitrarily large total particle number. Nevertheless, there are
situations where there is long-range coherence across the system, thus capturing
the essential feature of the condensed states. Sometimes these situations are
referred to as quasi-condensates, but we shall not make this distinction, just
referring to them as the symmetry-broken siblings of BECs.

To characterize the BEC state, let us introduce the one-body density matrix
[PenOns56]

σ (x,y, t) =
〈
Ψ† (x, t) Ψ (y, t)

〉
(13.220)

Long-range coherence appears when σ fails to decay as x and y are taken apart.
Observe that σ is Hermitian and nonnegative, in the sense that for any function f∫

ddxddy f∗ (x)σ (x,y, t) f (y) ≥ 0 (13.221)

Therefore it admits a basis of eigenfunctions∫
ddx σ (x,y, t)φα (y, t) = nαφα (x, t) (13.222)

where the eigenvalues nα are real and nonnegative. We assume the φα are nor-
malized

(φα, φβ) = δαβ (13.223)

(f, g) =
∫

ddx f∗g (13.224)

and complete ∑
α

φ∗
α (x, t)φα (y, t) = δ (x − y) (13.225)

The field operator may be expanded in this basis

Ψ (x, t) =
∑
α

aα (t)φα (x, t) (13.226)

The Bose commutation relations imply[
aα (t) , a†β (t)

]
= δαβ (13.227)

The aα (t) are operators which, at time t, destroy a particle in the one-particle
state α whose wavefunction is φα (x, t) . From the definition of σ we find〈

a†α (t) aβ (t)
〉

= nα (t) δαβ (13.228)
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Therefore the eigenvalues nα (t) are the mean number of particles in the one-body
state α at time t. We also have the strong identity

N =
∑
α

a†α (t) aα (t) (13.229)

Condensation occurs when one of the nα, say α = 0, becomes comparable with
N itself. Then we have, for large separations

σ (x,y, t) ∼ n0φ
∗
0 (x, t)φ0 (y, t) (13.230)

which displays long-range coherence, as expected. Here φ0 (x, t) is the condensate
wavefunction. We stress that this is the fundamental definition; φ0 (x, t) is not
necessarily proportional to the mean field Φ introduced in the symmetry-breaking
approach.

13.3.3 The particle number conserving approach

We shall now discuss the dynamics of the condensate wavefunction φ0 (x, t) and
the condensate occupation number N0 (we switch to a capital N to emphasize
its macroscopic character). We envisage a situation in which N is finite but
large, and will seek equations of motion as an expansion in inverse powers of
N. In preparation for this, it is convenient to scale the interaction term, writing
U = u/N.

As we have seen above, in the symmetry-breaking approach the condensate
state (for an interacting gas) is seen as a coherent superposition of particle pairs,
each pair having zero total momentum. The basic insight of the PNC approach is
that each particle above the condensate corresponds to a hole in the condensate,
so we may speak of particle–hole (PH) pairs. Of course, introducing a PH into
the system does not change the total number of particles.

Following Arnowitt and Girardeau, let us introduce the operator

β =
1√

N̂0 + 1
a0 = a0

1√
N̂0

(13.231)

where

N̂0 = N −
∑
α�=0

a†αaα (13.232)

is the condensate number Heisenberg operator. Observe that for a number eigen-
state β |N0〉 = |N0 − 1〉 unless N0 = 0, in which case β |0〉 = 0. Therefore β pre-
serves the norm for all states orthogonal to the state with no particles in the
zeroth mode (which is much stronger than not having a condensate). If there is
a condensate, any physically meaningful state will satisfy this requirement, and
β may be considered a unitary operator, with inverse

β† =
1√
N̂0

a†0 = a†0
1√

N̂0 + 1
(13.233)
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We now introduce the destruction operator of a PH with the particle in mode α

λα = β†aα (13.234)

If we consider the β’s as unitary, then the λ’s satisfy bosonic canonical commu-
tation relations. This relationship may be inverted:

aα = βλα (13.235)

The number of particles in a given mode is equal to the number of PH

a†αaα = λ†
αλα (13.236)

We write the field operator restricted to the subspace with a well-defined total
number of particles N as Ψ =

√
Nβφ

φ = φ0 (x, t) +
1√
N

λ (x, t) − 1
2N

f [δn (t)]φ0 (x, t) (13.237)

where

λ (x, t) =
∑
α�=0

λα (t)φα (x, t) (13.238)

δn (t) =
∫

d3x λ†λ (13.239)

f (x) = 2N
[
1 −
√

1 − x

N

]
∼ x + O

(
N−1

)
(13.240)

Within our approximations β commutes with φ. Finally we have the relationship

0 =
〈
a†0 (t) aα (t)

〉
=
〈
a†0 (t)βλα (t)

〉
=

√
N

〈⎡⎣√1 − 1
N

∑
γ �=0

λ†
γλγ

⎤
⎦λα (t)

〉

(13.241)
which implies

〈λ〉 =
1

2N
〈f [δn (t)]λ〉 (13.242)

The idea is to seek a solution of the Heisenberg equations of motion for Ψ where
β and the λα’s have developments in inverse powers of N . Define a “q-number”
chemical potential μ̂ from

β† dβ

dt
=

−iμ̂

�
(13.243)

We have

i�
∂

∂t
φ = (H − μ̂)φ + uφ†φ2 (13.244)
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We then find

0 = −i�φ0,t + (H − μ̂)φ0 + uφ3
0

+
1√
N

[
−i�λ,t + (H − μ̂)λ + uφ2

0

(
2λ + λ†)]+ O

(
N−1

)
(13.245)

Taking the expectation value we find

0 = −i�φ0,t + (H − 〈μ̂〉)φ0 + uφ3
0 −

1√
N

〈μ̂λ〉 + O
(
N−1

)
(13.246)

Recall that φ0 is real (if the condensate is nondegenerate) and μ̂ is Hermitian.
So we may decompose this equation into

0 = (H − 〈μ̂〉)φ0 + uφ3
0 −

1
2
√
N

〈
μ̂λ + λ†μ̂

〉
+ O

(
N−1

)
(13.247)

and

0 = −i�φ0,t −
1

2
√
N

〈
μ̂λ− λ†μ̂

〉
+ O

(
N−1

)
(13.248)

This is consistent with the normalization condition∫
φ0φ0,t = 0 (13.249)

Subtracting the expectation value from the Heisenberg equation, we get

0 = (〈μ̂〉 − μ̂)φ0 +
1√
N

[
−i�λ,t + (H − μ̂)λ + uφ2

0

(
2λ + λ†)]+

1√
N

〈μ̂λ〉

+O
(
N−1

)
(13.250)

The orthogonality of φ0 and λ implies∫
(φ0λ,t + φ0,tλ) = 0 (13.251)

and from (13.250), (13.248) and (13.247) we get

0 = 〈μ̂〉 − μ̂ +
u√
N

(
J3 + J†

3

)
+ O

(
N−1

)
(13.252)

where

Jn =
∫

φn
0λ (13.253)

Observe that this implies

〈μ̂λ〉 = O
(
N−1/2

)
(13.254)
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The equation for λ simplifies into

0 = −i�λ,t + (H − μ̂)λ + uφ2
0λ + Q

[
uφ2

0

(
λ + λ†)]+ O

(
N−1/2

)
(13.255)

where

Q [X] = X − φ0

∫
φ0X (13.256)

The homogeneous case

To get a feeling of the working of the PMC approach, let us apply it to the sim-
plest case of a BEC in a homogeneous box of volume V, with periodic boundary
conditions.

In equilibrium, by symmetry, the condensate wavefunction must be homoge-
neous, and by normalization we must have φ0 = V −1/2. This equation holds to
all orders in 1/N. Therefore

〈μ̂〉 =
u

V
+ O

(
N−1

)
(13.257)

This gives 〈μ̂〉 = UN/V + . . . . By contrast, in the Bogoliubov approximation the
chemical potential is μBog = UN0/V and in the Popov approximation μPop =
(U/V ) (2N −N0) . We also have

μ̂ = 〈μ̂〉 + O
(
N−1/2

)
(13.258)

and so the lowest order equation for the inhomogeneous mode is

0 = −i�λ,t + Hλ +
UN

V

(
λ + λ†) (13.259)

These are the Popov equations with N in place of N0, and so we know the
spectrum will be gapless. Moreover, in this case there is no zero mode divergence.

After solving these equations it is simple to compute the higher corrections
to μ̂.

13.3.4 Particle number conserving functional approach

One problem with the PNC approach as presented so far is that it is not cast
within a functional approach, and therefore lacks the flexibility which has been
key to most of the applications of NEqQFT in this book. To be able to give a
functional PNC approach, we must revise the measure of integration in the path
integral expression for the generating functional we have considered so far. The
idea is to define a new generating functional which will agree with the old one in
the computation of expectation values for particle number conserving operators,
but will lead to different results otherwise. In particular, the expectation value
of the field operator in the new approach will be identically zero, as it must be
in a system with a finite number of particles.
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The quantum theory of the BEC may be regarded as the quantization of
the nonrelativistic classical field theory defined by the action functional (13.39),
where the canonical variables are Ψ(x, t) and its conjugate momentum i�Ψ∗.
This theory conserves particle number (13.213), and we are interested in the
case in which particle number takes on a definite value N . We may reinforce this
point by adding a constraint on the theory. This is achieved by introducing a
Lagrange multiplier μq (t), whereby the action becomes

S =
∫

dd+1x

[
i�Ψ∗ ∂

∂t
Ψ + �μq (t)

(
Ψ∗Ψ − N

V

)]
−
∫

dt H (13.260)

The original action (13.39) is invariant under a global transformation (13.31) but
the new action (13.260) is invariant under the local (in time) transformations (a
familiar theory with local U(1) gauge symmetry is electromagnetism)

Ψ → eiθ(t)Ψ, Ψ† → e−iθ(t)Ψ†, μq → μq +
dθ

dt
(13.261)

provided θ vanishes both at the initial and final times (when θ is infinitesimal,
these are just the canonical transformations generated by the constraint) [Dir50,
Dir58b]. Therefore it must be quantized using the methods developed for gauge
theories, such as the Fadeev–Popov method [PesSch95].

The need for a further refinement of the functional measure comes from the fact
that now the path integral is redundant, since we may transform the fields as in
(13.261). The Fadeev–Popov approach fixes the redundancy by factoring out the
gauge group. Choose some function fθ = f

[
μqθ,Ψθ,Ψ

†
θ

]
, such that dfθ/dθ �= 0.

Then

1 =
∫

dfθ
dθ

dθ δ (fθ − c) (13.262)

Inserting this into the vacuum persistence amplitude and averaging over c with
a weight eic

2/2σ we get

Z0 = Θ
∫

DΨDμq eiSμq,σ/�Det
[
δfθ
δθ

]
θ=0

(13.263)

where

Θ =
∫

Dθ (13.264)

is the volume of the gauge group we wish to factor out;

Sμ,σ = S +
�

2σ

∫
dt f2

0 (13.265)

where S is defined in (13.260). The determinant is expressed as a path integral
over Grassmann fields ζ, η (see Chapter 7)

Det

[
δfθ
δθ

]
θ=0

=
∫

DζDη e−
1
�

∫
dt ζ

δfθ
δθ η (13.266)
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To finalize the set-up, we need to choose the gauge fixing function f0. Possibly
the simplest choice is the “covariant” gauge

f0 =
dμq

dt
(13.267)

which makes the ghost fields decouple. This gauge is employed in [CaHuRe06] to
explore the critical regime in the Mott transition. Other choices are also available,
and in fact the freedom to choose the gauge fixing condition is one of the main
strengths of the approach [DeuDru02, DrDeKh04].
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