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Abstract. We investigate the migration of two giant planets embedded in a proto-stellar disk.
The inner planet(initially located at R10 = 1) is of 1 Jupiter mass and the outer one(R20 = 1.5)
is of 1 Saturn mass. We find that due to the existence of the inner massive planet, the outer
planet can not open a clear gap. Instead of an inward migration and being captured by the
mean motion resonance of the inner planet, the outer planet undergoes an outward runaway
migration. We conclude that this runaway migration is caused by the co-rotation torque in the
co-orbital region of the outer planet and sustained by the wave(flow) driven by the inner massive
planet.
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1. Introduction
Migration of planets is one of the important processes that affect the final architecture

of a planet system. Important migrations such as Type I, Type II and Type III migrations
may change substantially the configuration of multiple-planet systems(See Masset 2008
for a review). A protoplanet normally undergoes Type I or Type II migration depending
on its mass. These two kinds of migration had been well studied both analytically and
numerically during the past years. However, the cause as well as the consequence of Type
III migration remains unclear and needs further investigations especially in a multiple-
planet system. Linear analysis suggests that the interaction between an embedded planet
and the disk leads to a negative torque on the planet, which is called differential Lind-
blad torque(Goldreich & Tremaine 1980, Ward 1986). So it is believed that low mass
protoplanets will undergo rapid inward migration(Type I) and be trapped in the mean
motion resonances of the giant planet in a multiple-planet system(Kley 2000, Cresswell
& Nelson 2006). The first numerical simulation of Jupiter and Saturn embedded in a
gas disk has been done by Masset and Snellgrove(2001). They found the Saturn was
captured into the 2:3 mean motion resonance with Jupiter. And then the two planets
reversed their migration outward in parallel. Morbidelli and Crida (2007) extend their
work by exploring a wider set of initial conditions and disk parameters. They found the
two planets will eventually end up locked in a MMR. The situation maybe different if
planets embedded in a disk where the disk gas is still massive. In such a situation, the
co-rotation torque on the protoplanets may arise and play a significant role on the orbital
evolution of planets(Masset & Papaloizou 2003).

In this report, we study the onset of type III migrations in a two-planet system. The
inner planet is set to have a mass of 1 Jupiter mass and the outer one is of 1 Saturn
mass. The planets are embedded in a massive disk with totally more than 20 Jupiter
masses distributed in the disk uniformly. Numerical simulation indicated that the outer
planet can not open a clear gap due to the presence of inner planet perturbation, and
a rapid runaway outward migration occurs on the outer planet. By comparing with the
single-planet case, we conclude that this outward runaway migration is probably caused
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by the existence of inner planet which performs strong perturbation to the outer planet’s
co-orbital region and results in a strong co-orbital torque on the planet. We present our
numerical methods in section 2 and our results in section 3. In section 4 we summary
and discuss the implication of our results.

2. Physical and Numerical Model
2.1. Physical model

We construct a 2D numerical hydrodynamic scheme to solve the continuity and mo-
mentum equations, neglecting the effect of any explicit viscosity. We solve the governing
equations in the Cartesian coordinate.

The vertically averaged continuity equation for the disk gas is given by
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The equations of motion in the Cartesian coordinates are,
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where P is pressure and Φ is the gravity potential of the star-planets-disk system, which
includes the softened potential of central star (Φs), softened potential of the planets
(Φpi), potential of the disk itself (Φd) and indirect potential (Φi) due to the acceleration
of origin by the planets and the disk. σ is the vertical integrated surface density.

We assume the disk gas has an isothermal equation of state. The sound speed is
cs = (H/r)vk where we set H/r = 0.04 and vk = 1(Keplerian velocity at r = 1).
We don’t add any explicit viscosity in the simulation. There is however some numerical
viscosity associated with our computational scheme and grid effects. To focus on the
migration and reduce variables, we don’t allow the planet to accrete gas from the disk.

2.2. Computational Units
For numerical convenience we set gravitational constant G = 1, solar mass M� = 1 and
the radius of inner planet’s initial orbit R10 = 1, where R10 = 5.2AU . The unit of time is
1/2π of the inner planet’s initial orbit period P10 . Total mass within the disk are about
20 Jupiter masses, which corresponds to a uniform surface density σ = 0.0006.

2.3. Numerical Method
The Antares code we have developed is adopted in the calculations. It is a 2-D Godunov
code based on the exact Riemann solution for isothermal or polytropic gas, featured with
non-reflecting boundary conditions. At the boundaries we adopt non-reflecting (absorb-
ing) boundary condition to make sure there is no wave reflect from the boundaries. To
avoid initial impact of the system we adopt a ’quiet start’ initial condition. For the orbit
of planets we use RK78 to integrate it. For more details of the physical and numerical
methods please see Zhang et al. 2008.

3. Numerical Results
We performed a hydrodynamic simulation to investigate the orbit evolution of two

giant planets embedded in a massive disk. The computational domain is from -3 to 3 in
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Figure 1. Density evolution of the disk contains only one planet. Without the inner massive
planet, the outer planet may open a clear gap when it is of 1 Saturn mass.

x direction and from -3 to 3 in y direction. Total resolution is Nx × Ny = 1024 × 1024.
At beginning the disk is uniform and have 20 Jupiter masses. The initial locations of two
planets are R10 = 1(Jupiter mass) and R20 = 1.5(Saturn mass). We hold their orbits
and increase their mass gently from 1 × 10−7 to their final mass. After 200P10 which is
the orbit period of the inner planet, two planets had grown up and we release them at
the same time. In first case, we neglect the inner planet by setting its mass equal to 0.

As we can see in Fig.1, the (outer)planet opens a gap and a regular, symmetric horse-
shoe zone appears within its co-orbital region. In second case,we turn on the effects of
inner planet. During the first 200P10 , the inner planet had already form a gap but the
outer planet do not clear any gap. Since we set H/r = 0.04 in our simulations, it will
open a clear gap when the embedded planet is above tens of Earth masses(as in the first
case). However, the existence of the inner massive planet prevents the outer planet from
opening a clear gap. From Fig.2 we can see the inner planet had already open a gap while
the outer planet’s co-orbital region is still replete of gas.

Further more the waves excited by the two giant planets perturb each other’s co-orbital
region significantly. During a short period after release, outer planet undergo inward
Type I migration and soon be perturbed by the inner planet. Gas flows in and out from
its co-orbital region rapidly and form a large vortensity gradient, then this vortensity
gradient generates great co-rotation torque on the planet. As a result, the migration of
outer planet become unstable. We see a outward runaway migration occurs soon after
the release. We also note that during a short period the outer planet is captured into the
5:3 MMR of the inner planet. But as soon as the the outer planet’s migration became
unstable this MMR is broken up.In the first case when the inner planet is absent, the
outer planet is embedded in the gap and undergoes Type II migration which is smooth
and slow. See Fig.3-a.
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Figure 2. Density evolution of the disk contains two planets. The interaction between the two
planets significantly perturbs each planet’s co-orbital region, and prevent the outer less massive
one from clearing gap.

4. Conclusion and Discussion
From the comparison, we can conclude that the runaway migration is triggered by

the perturbation comes from the inner planet. Masset & Papaloizou (2003) have shown
that a protoplanet embedded in a massive disk may undergo runaway migration when
the co-orbital mass deficit δm is comparable with the planet mass Mp . They analyzed
co-rotation torque and gave a relation between the migration rate and co-orbital mass
deficit. In a Keplerian case it reads:

1
2
aΩp(Mp − δm)ȧ = ∆ΓLR − πa2δm

3xs
ä, (4.1)

where a is the semi-major axis of the planet orbit, Ωp is the angular velocity of the planet,
∆ΓLR is the differential Lindblad torque and xs is the half-width of planet horseshoe
zone. The co-orbital mass deficit (δm = MH S0 − MH S ) can be roughly understood as
the mass variation within the planet horseshoe zone, where MH S0 is the initial mass
within planet horseshoe zone and MH S is the mass within planet horseshoe zone which
changes with time. When δm � Mp , above equation indicates that small perturbation
to semi-major axis (a) leads to its exponentially growing on a timescale of few tens of
orbital periods. And in specific initial condition(a and ȧ) outward runaway migration
may occur naturally.

A strong perturbation to planet orbit makes gas flush into or out of its co-orbital
region and therefor leads to a large δm. Then the planet will undergo runaway migration
triggered by the co-rotation torque. Once the rapid migration occurs, it can self-sustained
because the gas will keep flooding in its co-orbital region as it travels a large radial shift
within very short time(Zhang et al. 2008).

In our simulations,the existence of the inner giant planet gives strong perturbations
to the gas traveling within the outer planet horseshoe region, which leads to a large
δm. Fig.3-b shows the evolution of MH S of each planet. Clearly, the rapid variation
of MH S greatly affects the planet migration. As soon as δm becomes larger than the
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Figure 3. (a).Migration curves of multiple planets system. Two cases are shown in this figure.
The first case contains only single Saturn mass planet. The second case contains two planets, one
is of a Jupiter mass while the other is of a Saturn mass. (b).Evolution of MH S in second case.
Curves are normalized by each planet’s mass. Clearly the rapid change of MH S significantly
affects the migration of planet 2. At around T = 350P10 , a large δm appears and leads to the
runaway migration of planet 2.

outer planet(Mp2 = 3 × 10−4), a runaway migration occurs. Within a few orbits after
T = 350P10 , MH S increases sharply and δm ∼ 2Mp2 . When the planet 2 is far away from
planet 1, this runaway migration can be halted since the perturbation has damped. But
its orbit is still unstable. The properties of this kind of runaway migration substantially
depends on the initial condition of the system, which merits further studies.
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