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Abstract

The Kasparov groups K K° (A, B) are extended to the setting of inverse limits of G-C-algebras,
where G is assumed to be a locally compact group. The KK -product and other important features
of the theory are generalized to this setting.
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Introduction

The well-known Kasparov groups KK^{A, B) were defined by Kasparov for
G a locally compact group and A and B G-C*-algebras. Weidner [17, 18]
preceeded by a suggestion of Phillips ([9, p. 470]), generalized the definition of
the groups KKt(A, B) to the situation where A and B are inverse limits of C*-
algebras, and proved that the Kasparov pairing and other important properties
of these groups extended to this setting. In this paper the equivariant groups
KK?(A, B) are generalized to the setting of inverse limits of G-C*-algebras
where G is assumed to be a locally compact group. If G is compact then
Phillips [9] has denned representable K-theory groups RK^(B) in this context.
We show that there is a natural isomorphism KKG(C, B) = RK^(B) so that
the KKG groups defined here also generalize Phillips' construction.
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184 Claude Schochet [2]

There are several motivations to warrant this generalization. Weidner's gen-
eralization of the (non-equivariant) K X"-groups makes possible a direct and
concrete homotopy-theoretic characterization of the groups KKt(C(X), C(Y))
as in [14]. The analogous generalization of the equivariant KK -groups will
make possible a characterization of KKG(C(X), C(Y)) in terms of modern
equivariant homotopy theory. (This characterization would be new even for X
and Y finite G-complexes.) It is possible using this machinery to give a sys-
tematic modern treatment of the use of equivariant Spanier-Whitehead duality
in K K° -theory. (Added in proof: This program has been carried out. The res-
ults appear in 'On equivalent Kasparov theory and Spanier-Whitehead duality',
K-Theory 6 (1992), 363-385.) These results also may be of use in studying
index theory on the 5'-spaces Map (S1, X) which arise in gauge theory. In
each of these cases the straight-forward proofs of the main theorems call for
systematic use of topological spaces such as function spaces which are hardly
ever of the G-homotopy type of finite G-complexes but are of the G-homotopy
type of infinite G-complexes. These applications will appear separately. In
the applications G is generally assumed to be a compact Lie group, so that the
homogeneous spaces G/H are of the G-homotopy type of G-CW-complexes.

The paper is organized as follows:
Section 1. Kasparov Bimodules
Section 2. The Kasparov groups: elementary properties
Section 3. The Kasparov product
Section 4. Mapping Cones and Cofibration Exact Sequences
Section 5. Positive Splittings and Exact Sequences
Section 6. Additivity: Sums and Products
Section 7. Direct and Inverse Limits
For most of the general development it suffices to assume that G is a separable,

second countable, locally compact and a -compact group. However, in Section 5
certain exactness results seem to require that G be compact, and the results of
Section 5 are used to prove the various limit results of Section 7, so there too
compactness is required.

It will be clear to the reader that this paper is heavily dependent upon the work
of G. G. Kasparov, N. C. Phillips, and J. Weidner, to whom we are grateful. We
wish to thank Phillips especially for his continuous assistance in the evolution
of this work.
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[3] Equivariant K ^-Theory 185

1. Kasparov Bimodules

We suppose throughout that all C*-algebras are graded via some endomorph-
ism e, with e2 = 1, that homomorphisms are graded, and that commutators
are graded. All groups G are assumed to be separable, locally compact, and
a -compact, all group homomorphisms are continuous, and all subgroups are
closed. A G-algebra A is a topological *-algebra A together with a degree-
preserving action of G on A (that is, a homomorphism from G to the group of
automorphisms of A) such that for each a e A the map g i->- g(a) is continuous.
(If A is an inverse limit of a sequence of G-C*-algebras then each automorphism
of A is continuous and has a continuous inverse. If not then assume these prop-
erties.) The algebra lies over the ground field R or C, denoted F generically and
assumed to be trivially graded. A homomorphism of G -algebras is understood
to be equivariant.

A continuous C*-seminorm x on a G-algebra A is invariant if

\g(a)\x = \a\x forallgeG.

If the group G is compact then the invariant C*-seminorms are cofinal among
all C*-seminorms for given any C*-seminorm x, the C*-seminorm [x] defined
by

\ a \ M = s u p { \ g ( a ) \ x : g e G }

which is finite and continuous (cf. [9,5.2]) since G is compact, satisfies x < [x].
(If G is not compact then there may not be any G-invariant continuous C*-
seminorms. This is the case, for instance, for the translation action of [R on

Let y(A) denote the partially ordered set of invariant continuous C*-semi-
norms on A. For x e ^(A), the set

{aeA: \a\x = 0}

is a G-invariant ideal in A; let

Ax = A/{a e A : \a\x = 0}

denote the quotient G-C*-algebra. Note that Ax is complete, by ([12, Folgerung
5.4]; see also [8, Cor. 1.12]). There are natural maps nyx : Ay ->• Ax for y > x
and ny : A —>• Ay. Let

Aoo = lim [Ax : x e

with G-map n°° : A -> A^,.
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186 Claude Schochet [4]

DEFINITION 1.1. A G-algebra A is apro-G-C*-a/ge£vv2ifone of the following
equivalent conditions holds:

(1) There is an inverse system SS of G-C*-algebras with

A = lim &.

(2) The G-map n°° : A —» A^ is an isomorphism.
(3) The topology on A is given by a family of invariant C*-seminorms on

A and A is complete with respect to the topology.

Weidner would use 'generalized operator G-algebra', for this notion; we
follow Phillips, after Voiculescu (approximately) and Arveson. An inverse limit
of a sequence of G-C*-algebras is said to be a a-G-C*-algebra. The forgetful
functor takes pro-G-C*-algebras to pro-C*-algebras (in the sense of Weidner
[17]).

If G is compact, A is a G-algebra, and the map G x A -> A is continuous then
A is a pro-G-C*-algebra, by ([9, 5.2]). If G is locally compact but not compact
then many interesting examples of G-algebras do not fall under this definition.
It might be possible to broaden the definition so as to include G-algebras of
the form A = lim Aj where each Aj is a Gj-C* -algebra for some collection of
subgroups {Gj} of G with union G, for instance, but we have not pursued this
possibility.

DEFINITION 1.2. Let B be a pro-G-C*-algebra. A graded pre-Hilbert G-
module E over 6 is a right B -module E equipped with a 5-valued scalar
product together with a continuous action of G on E by linear automorphisms
which preserves the grading and which satisfies the compatibility conditions

g(eb) = g(e)g(b) for e<=E,bsB

and
g((e,f)) = {g(e),g(f)) for g e G, e, f € E.

An invariant C*-seminorm x on B determines an invariant seminorm on E by

\e\x = \ ( e , e ) \ x
x l 1 .

Then E is a Hilbert G-module if E is complete with respect to the topology
which is determined by these seminorms. Each

Ex = E/{e € E : \e\x = 0}
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[5] Equivariant tftf-Theory 187

is a Hilbert G -module over Bx and

E = lim {Ex : x e ^{B)\.

Given a Hilbert G-module £ , one defines Jf (£) to be those B-linear operators
7 : E —> E which possess an adjoint T* : E —> E such that

(Te,f) = (e,T*f)

for all e, f e E. For example, rank one operators 8ef e -£?(£) are denned by

0 , , ( z ) = e(f, z) f o r e,f,ze E .

The group G acts upon Ĵ f (£) by

1 r e i f ( £ ) , e G £ .

A quick check shows that g{9ef) = 9ge,gf and thus G acts upon the ideal
generated by the rank one operators. Given x e y(B), a seminorm is given on

This seminorm is finite for each T e -£?(£) by [17, (1.1)]. Then .£?(£) is a
pro-C*-algebra with respect to this family of seminorms and

= lim

We note that the G -action on jSf (£) is not usually continuous, just as in the
C*-algebra case, although the action is continuous for the strict topology, cf. [8,
3.13]. The inverse limit displayed is an inverse limit of G -algebras. The closed
ideal Jf(E) generated by the rank one projections is closed under the action of
G by the above remarks.

Next we discuss tensor products. Suppose first that A and B are pro-G-C*-
algebras. Then for each (x, y) e y(A) x y(B) the G-C*-algebra Ax®m{nBy

is defined, where G acts diagonally. Define

A®B = lim {Ax®miaBy : (x, v) e S>(A) x S*(B)}.

Similarly, if E and F are Hilbert G-modules over B then their tensor product is
defined by

£®f iF = lim [EX%BFX : x e
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188 Claude Schochet [6]

It has the structure of a Hilbert G -module over B.
A more complicated situation arises given the following data. Suppose

that £ is a Hilbert G-module over D, F is a Hilbert G-module over B, and
<p : D -> ££{F) is an invariant homomorphism. If B and D were actually
G-C*-algebras then E®DF would be defined by forming their algebraic tensor
product E <S>D F and then completing with respect to the fi-valued norm

<ei®/l,<?2®/2> = (/l, *>««!, «2»(/2».

If B and D are only pro-G-C*-algebras then one still may form the algebraic
tensor product E <8>DF. Each x G S"{B) determines a seminorm on E ®DF via

\w\x = \{w, w)\x.

Denote by E®DF or E^^F the completion of E ®DF with respect to these
seminorms. It is clear that

E®DF = lim {Ef{x)®D,Fx : x e S*(B)}.

If £ is a Hilbert G-module over Bx and / ' : Bx ->• B2 then £®fi, B2 is a Hilbert
G-module over B2, and each flt-linear map T G Jt?(E) extends canonically to

DEFINITION 1.3. A Hilbert G-module E over B is countably generated if
is a countably generated Hilbert G-module over Bx for each x e

DEFINITION 1.4. Suppose that A and B are pro-G-C*-algebras. An A-B G-
bimodule E = (E, <p) is a graded countably generated Hilbert G-module E over
B together with an invariant homomorphism cp : A —>• Jif(E). Given an >4-fi
G-bimodule £, define ( ? A ( £ ) to be those T e Jf(E) whose graded commutator
[T, cp(a)] is in <%{E) and whose associated map g \-> g((p(a)T) is continuous
for all a e A. Further, define /^(E) to be those 71 e 0/*(^) such that T<p(a)
and <p(a)r lie in X{E) for all a e A.

DEFINITION 1.5. A Kasparov A-B G-bimodule (E,<p, T) is an A-B G-
bimodule (E, <p) together with an operator T e QA{E) of degree 1 such that

(7- - T*), (T2 - I), and (g(T) - T)

lie in IA(E) for all g e G.
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[7] Equivariant KK-Theory 189

The collection of all Kasparov A-B G-bimodules is denoted £"G(A, B). Un-
der the obvious operation this is an associative commutative monoid with iden-
tity. A Kasparov A-B G-bimodule is said to be degenerate if

(T - T*)<p(a) = 0, (T2 - I)<p{a) = 0,

[7>(fl)] = 0 and (g(T) - T)<p(a) = 0

for all a e A, g e G.

2. The Kasparov groups: elementary properties

DEFINITION 2.1. An operator homotopy from (E, T°, <p) to (E, T1, <p) is a
norm-continuous path {T1} with 0 < t < 1 which agrees at t — 0, 1 with the
given operators and which yields a Kasparov A-B G-bimodule for each t.

DEFINITION 2.2. If A and B are G-C*-algebras then the Kasparov group
KKG(A, B) is defined to be the quotient of <SG(A, B) by the equivalence
relation given by operator homotopy.

A more general version of a Kasparov A-B G-bimodule is needed in the
setting of pro-G-C*-algebras. We follow Weidner:

DEFINITION 2.3. Suppose given a pro-G-C*-algebra B. An {ordered) semi-
norm simplex a in S?(B) is a list (XQ, ..., xn) with xt e S^{B) and x0 < X\ <
. . . < xn. The seminorm simplex is nondegenerate if Xo < xx < . . . < xn.
Given an ordered seminorm simplex a in y{B), its Tth face ere' is obtained by
deleting the / 'th entry on the list.

Let

An = {T = (T°, . . . , T") € r + 1 : T' > 0, J2 r> = U

denote the usual geometric n -simplex.

DEHNITION 2.4. Let A and B be pro-G-C*-algebras. A Kasparov pro-A-B
G-bimodule (E, <p, {Ta}) is an A-B G-bimodule (E, <p) together with a collec-
tion of norm-continuous maps

Ta : An -
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190 Claude Schochet [8]

for each nondegenerate seminorm simplex a which satisfy the following condi-
tions:

(1) (£,0, <pxo, {rff(r)}) e S{A, Bxo) for each r e An, where <py = n?<p.
(2) coherence: for each nondegenerate seminorm simplex a = (x0,..., xn),

Tae° = < " ° ( 7 »

and
7ae

{ = Ta(i for / > 0.

We denote by SG{A, B) the collection of Kasparov pro-A-B G-bimodules.
Note that a coherent collection of maps {Ta} denned for nondegenerate seminorm
simplices may be extended canonically to all seminorm simplices (cf. [17,
p. 62].) With this understood, it is easy to see that Sa(A, B) is a contravariant
functor in A and a covariant functor in B.

DEFINITION 2.5. Two Kasparov pxo-A-B G-bimodules rf, r?1 e £G{A, B)
are homotopic if there is some rj € SG{A, B[0, 1]) restricting to rf, t]1 at
endpoints.

Just as in the non-equivariant case, the homotopy relation is transitive and
symmetric but not obviously reflexive; however Weidner's argument proving re-
fiexivity extends verbatim, so that homotopy is an equivalence relation. Further,
the obvious equivariant extension of Weidner's argument implies [17, p. 62-63]
that two Kasparov pro-A-B G-bimodules are homotopic if they are operator
homotopic.

DEFINITION 2.6. For two pro-G-C*-algebras A,B, the Kasparov group
KKG{A, B) is defined to be the quotient of SG(A, B) modulo the homotopy
relation 2.5.

PROPOSITION 2.7. (1) For each A and B pro-G-C*-algebras, KKG(A, B)
is an abelian group, with the group operation given by direct sum and identity
element the homotopy class of degenerate elements.

(2) The assignment (A, B) i->- KKG{A, B) is a bifunctor on the category
of pro-G-C*-algebras to the category of abelian groups which is contravariant
in A and covariant in B and which extends the Kasparov groups defined for
G-C*-algebras.

(3) The bifunctor is homotopy-invariant in each variable.
(4) / / B is a G-C*-algebra then KKG(A, B) is isomorphic to the set of

homotopy classes of Kasparov A-B G-bimodules.
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[9] Equivariant KK-Theory 191

PROOF. Only the last sentence requires comment. If B is a G-C*-algebra
then in y(B) the C*-norm | |B is a maximal element. A Kasparov pro-A-B
G-bimodule with respect to | |fi is precisely a Kasparov A-B G-bimodule, so
pro-bimodules may be replaced by bimodules uniquely up to homotopy.

3. The Kasparov Product

We turn next to the definition of the Kasparov product. Assume that A, B,
and D are pro-G-C*-algebras. The basic KKG -pairing is a map

KKG(A, D) ® KKG(D, B) —• KKG(A, B)

which is denoted
(a, ft) i—• a ®D p.

(Note that we follow Kasparov's notation; Weidner would write fi <g>D a.) We
assume that A is separable; that is, that each Ax is a separable G-C*-algebra.
(This unconventional terminology follows Weidner.) Suppose given

and

Given x e y{B), let <p*(x) denote the induced seminorm on D. Simil-
arly, given a seminorm simplex a = (xo,...,xn) e J^(fi), let (p*(a) =
(<p*(xo),...,cp*(xn))ey(D).

DEFINITION 3.1. A Kasparov pro-A-B G-bimodule

r,o<p, {Ra})

is called a Kasparov product of (E, <p, {Sa}) and (F, rp-, {Ta}) if there are operator
homotopies (E, (p, {S'J) and (F, f, {7CT'}) for 0 < t < 1 such that

(1) S°a = Sa, T° = Ta.
(2) For each seminorm simplex a e y(B) and r e A,

Ra(r) e S;,(CT)(T) jt ^ ( T )

where (J denotes the Kasparov Ar^T*-pairing ( ) <8y(*o) ( ) for G-C*-algebras.
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We require here that the graded commutator [Ra, <p*(Ta)] can be decomposed
into the sum of two norm continuous functions p + j such that p > 0 and for
r e A, j(T)eQA(E®DFX0).

THEOREM 3.2. Suppose given A, B, D pro- G-C*-algebras with A separable,
and suppose given

ae£"G(A,D), p e <fG(D, B).

Then there is a Kasparov product a <g>D ft e &G{A, B). This pairing passes to
a unique well-defined Kasparov pairing

®D : KKG(A, D) ® KKC{D, B) —> KKG(A, B)

which extends the KK-pairing for G-C*-algebras. If B is also separable, B' is
a pro-G-C* -algebra, and y e $G (B, B'), then the product is associative:

(a ®DP)®BY =<* <8>D (/? ®B Y)-

PROOF. Suppose that a is represented by (E,<p, {Sa}) and fl is represented
by (F, \fr, {Ta}). We must show that a Kasparov product a ®D fi e SG(A, B)
exists and that its equivalence class in KKG(A, B) is independent of choices of
representatives. The proof of existence in [17, pages 71-72] translates easily.
The idea is to construct Ra : An ->• Jz?((£ ®D F)Xo) for each seminorm simplex
a = ( x ° , . . . , x") such that

(1) (E®DF, Ra,<p.o1r) e^ G (A,B) , and
(2) Ra(r) 6 ^.(ff)(T) ft T^{x) for each a.
The construction is by induction on the number of vertices in a and uses

certain fixed homotopies on An for induction. These constructions preserve the
relevant G-structures and produce an element in SG (A, B). The uniqueness and
associativity arguments carry through by similar reasoning.

DEFINITION 3.3. A pro-G-C*-algebra A is countable at infinity if each asso-
ciated G-C*-algebra Ax has a countable approximate unit.

THEOREM 3.4. The Kasparov product defined in (3.2) has the following prop-
erties:

(1) The product is natural in each variable.
(2) IfB is countable at infinity then a G-map <p : A -* B defines an element

[<p] € KKG(A, B), and \<p\ =
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[11] Equivariant K ^-Theory 193

(3) The product generalizes composition of maps.
(4) Kasparov product with a KKG-invertible element is an isomorphism.
(5) If D is countable at infinity then the natural map

, B) —> HomG(A®D,

induces a homomorphism of groups

oD : KKC(A, B) —• KKG(A®D, B®D)

and similarly for {D®A,D®B).

The proof is direct from [15].

DEFINITION 3.5. The Kasparov product

®D : KKG(AU fl,®D) ® KKG(D®A2, B2) —• KKG(Al®A2,

is defined by the formula

a, ® D a2 = aAl(ai) <8)BI0D®A2 crBl(a2)

provided that Ai is separable and that 61 and A2 are countable at infinity.

Henceforth we assume that all operator algebras are countable at infinity
when necessary to form the requisite products.

THEOREM 3.6. Let A1 and A2 be separable. Then the Kasparov K KG product

®D : KKG(AU BX®D) <g> KKG(D®A2, B2) —• KKG(AX®A2,

has the following properties:
(1) The product is natural in each variable.
(2) The product is natural in D in the following sense: if<p : D\ —> D2 then

<P*(ai) ®D2 a2 = a, ®Dl <p*(a2).

(3) The product is associative.
(4) If D = F then the resulting cup product is commutative.
(5) The element 1^6 K KG(A, A) is a unit for the product.
(6) The ring R(G) — KKG(F, F) is commutative and for A separable

each KKG(A, B) is a two-sided R(G)-module.
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(7) If A\, A2, D2 are separable and D\ is o-unital then

= a <g>o P

fora e KKG(AU B^D&D), p e KKG{D®D2®A2, B2).
(8) If A\, A2, and D\ are separable then

o-D, (a <8>D P) = CTDI (a) ®D®D, <7D, (P)

fora e KKG(AU B{ ® D), p e /<:/i:c(D ® A2, fi2)-

These proofs are the same as in the nonequivariant case [15]. We note that if
G is compact, then R(G) is the usual representation ring. This identification is
realized as follows. Suppose that (E, T) G SG{F, F). Then l e F acts upon
E as a projection P e ££{E). Let Q be defined by

= [ g(T)edg.
JG

Then £ e Sf{E) and G - 7 e / , (£) . Let

M = PQ: P(E°) -*• P{El)

be the restriction of P g to P(E°). Then M is a G-Fredholm operator, and its
G-index

indG(M) = [Ker(M)] - [Ker(M*)]

lies in R(G). The construction (£, 7) h-> indc(M) induces the isomorphism

KKG(F,F) -+ R(G).

Suppose that V and W are linear G-spaces with associated Clifford algebras
Cv and Cw- (The isometric action of G extends naturally to an action of G on
the Clifford algebras.) The associated graded Kasparov groups are then defined
by

KVKW G(A, B) = KKG{A®CV, B®CW)).

As in the classical case, the groups depend only upon the class a = [V] — [W] e
R(G), so write

KKG(A, B) = KVKW G(A, B) for a = [V] - [W].
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[13] Equivariant KK-Thcory 195

If the action of G on V is trivial then Cv = Cn, the standard Clifford algebra,
for some n (cf. [4, Section 2]) and

KKG(A,B) = KKG(A,B).

The isomorphism is fixed by the choice of an orientation of Cv (cf. [4, p. 543-
544].)

If V = C with real coordinate subspace K" then

Spin(V) = {g e Cv : g*g = 1, gxg* e R" / o r * e R"}.

There is a natural double (for n > 2) covering map Spin(V) -»• SOW) where
5O(IR'1) denotes the group of orientation-preserving isometries of W. An
orientation-preserving action of the group G on W 'lifts to a spin representation'
if the natural map G -*• SO(n) factors through Spin(V). This should be
regarded as an orientability assumption upon the action which is slightly more
stringent than the usual assumption.

THEOREM 3.9. BOTT PERIODICITY (KASPAROV) If the action of the group
G on W lifts to a spin representation then the Bott element

is KKG-invertible with KKG-inverse

an e KKG(C0W)®Cn, F).

Kasparov product with the Bott element defines an isomorphism

KKG
+n(A®CoW), B) =S KKG(A, B) = KKG_n{A,

in the real and complex cases.

PROOF. The Bott element has a #£G-inverse by [4, p. 547], and hence
induces an isomorphism under pairing.

REMARK 3.10. The classical Thorn isomorphism theorem for equivariant K-
theory generalizes to G-C*-algebras, as in [4, Theorem 8, p. 549]. Since the
isomorphism is given by K KG-pairing with a KKG-invertible element, this
isomorphism also extends immediately to our setting. We omit the statements
for brevity and refer the reader to [4].
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THEOREM 3.11. The Kasparov product 3.5 extends to a unique product

° % 2 , B2) - ^

fora, b € R(G) with the obvious graded extensions of the properties which are
listed in 3.6. The product respects all periodicity maps and Thorn maps.

PROOF. Only the last sentence requires comment. The point is that the peri-
odicity and Thorn maps are given by K KG pairing with appropriate elements, so
that the general associativity properties of the pairing translate into the desired
properties for periodicity and Thom maps.

4. Mapping Cone and Cofibration Exact Sequences

We begin by introducing a bit of notation. Given an operator algebra A,
define

IA = C[0, \]®A;

CA = {$ e I A: §(0) = 0} the cone on A;

SA = {£ e CA : §(1) = 0} = CO(IR)®A the suspension of A.

The group G acts trivially upon C[0, 1] and acts upon A by the given action.
If <p : A —> B then the mapping cone of cp is defined by

Ccp = {(§, a)eCB®A: £(1) = <p(a)).

There is a natural mapping cone sequence

(4.1) 0 ^ S B ^ ^

defined by n{%, a) = a and L(£) = (£, 0). This sequence induces mapping cone
sequences of the form

(4.2) KK°(D, C<p) ^ > KK?(D, A) o ^ KK°(D, B)

and
(4.3) KK°{C<p,D) £- KK°(A,D) <£- KK°(B,D)

with (p*Ti* = 0 and n*(p* = 0.
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LEMMA 4.4. (WEIDNER)

(1) In the sequence (4.2), Ker <p* = Im n* provided that D is separable.
(2) In the sequence (4.3), Ker7r* = \m.(p* provided that A and B are

separable.

PROOF. Weidner's proof holds verbatim. The basic fact is that the version of
Bott periodicity required may be realized as a K KG -pairing with an appropriate
Bott element which is invertible by classical equivariant Bott periodicity (cf. 3.9).

THEOREM 4.5. MAPPING CONE SEQUENCES Let<p : A -+ B be a morphism
of pro-G-C*-algebras.

(1) If D is separable then there is a long exact sequence of the form

• • • - • KK°+1 <P,B)-U KKG(D,Op) -^> KK°(D,A) - % . . . KK°(D,B)-+ . . .
(4.6)

The boundary homomorphism 3 in (4.6) is given by the composite

KK°+1(D, B) = KK°(D, SB) ^ > KK°(D, Ccp).

(2) If A and B are separable then there is a long exact sequence of the form

... KK°(B, D) ^ KK°(A, D) o "-U KK°(C<p, D) ^ KK°+l(B, D)...
(4.7)

The boundary map 3 in (4.7) is given by the composite

KK°{C<p, D) - A KK^{SB, D) = KK°+l(B, D).

PROOF. This is a formal consequence of Lemma 4.4 and standard mapping
cone arguments.

The mapping cone exact sequences (4.6) and (4.7) are precisely those expected
for generalized homology/cohomology theories.

REMARK 4.8. The usual Mayer-Vietoris sequences associated to the mapping
cones of a commutative square of pro-G-C*-algebras hold in this generality as
well. In the presence of excision these reduce to the very well-known Mayer-
Vietoris sequences. For details, see [18, p. 83-84], [13].
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THEOREM 4.9. Suppose that <p : A —> A/J is a cofibration in the sense of
[13] {called 'fibration' byWeidner). Then:

(1) The natural inclusion £ : J —> C<p given by £(y) = (0, j) is an
equivalence.

(2) If D is separable then there is a long exact sequence of the form

{D,J) -* KK°(D,A) - % KK°(D,A/J) —
(4.10)

(3) //"A w separable then there is a long exact sequence of the form

... KK°(A/J,D) -^ KK^(AD) —• KK°(J,D) —• KK°+l(A/J,D)...
(4.11)

PROOF. If <p:.<4—• / I / / is a cofibration then the natural inclusion 7 -*• C<p
is an equivalence by [13, 2.4]. The rest of the Theorem is immediate from
Theorem 4.5.

The cofibration assumption in Theorem 4.9 is strong enough to imply exact-
ness properties for any generalized homology theory. It is possible for applica-
tions within ^f^f-theory to get by with much less. One needs only that the map
J —*• Ccp act like an equivalence with respect to Kasparov theory. Theorem 4.13
and Corollary 4.16 pursue this theme.

NOTATION 4.12. There are many exact sequences which arise below. For ease
of exposition, we abbreviate as follows. When the conclusion of (4.10) holds
we shall say that the theory KK°(D, —) is exact for (J, A, A/J). Similarly,
when the conclusion of (4.11) holds we shall say that the theory KK^{—, D) is
exact for (J, A, A/J).

THEOREM 4.13. Suppose given a short exact sequence

(4.14) 0 —> J —> A -A- A/J —• 0

of pro-G-C*-algebras, with natural associated sequence

(4.15) 0 — • J -U- CTT—• CA—>0.

Then:
(1) Suppose that D is a separable pro-G-C*-algebra. Then the theory

, -) is exact for (J, A, A/J) if and only if the map £ : / - • Cn is a
, -)-equivalence.
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(2) Suppose that A is separable. Then the theory KKG{—, D) is exact for
(J, A, A/J) if and only if the map £ : / -> Cn is a KK^(—, D)-equivalence.

PROOF. This follows directly from the exactness of the mapping cone se-
quences (4.6) and (4.7) and general mapping cone arguments.

COROLLARY 4.16. Suppose given the short exact sequence (4.14) and suppose
that the associated map % : / —> Cn is KKG -invertible. Then:

(1) / / D is a separable pro-G-C*-algebra, then the theory KK°(D, - ) is
exact for (J, A, A/J).

(2) If A is separable then the theory KK°(-, D) is exact for (J,A,A/J).

PROOF. Any KKG-equivalence induces an isomorphism in KKG-\hQory in
either variable.

Corollary 4.16 shifts attention to conditions that imply that the map % : J —>•
Cn is KKG-invertible. This is the subject of Section 5.

5. Positive Splittings and Exact Sequences

The results in this section are equivariant generalizations of standard exact-
ness arguments and owe much to the treatment of [2].

DEFINITION 5.1. If A is a pro-G-C*-algebra then \a\fi is defined for a e A by

An element a € A is said to be bounded if \a\p is finite.

DEFINITION 5.2. The exact sequence (/, A, A/J) of pro-G-C*-algebras is
positively split if there is a continuous linear graded G-map a : A/J —• A such
that

(1) The map a is a section for n : A -> A/J.
(2) The map a is completely positive.
(3) The map a is norm-decreasing on bounded elements; that is,

W(w)\p < \w\p for all w € A/J.

Such a map a is a positive splitting for (/, A, A/J) and is denoted a :
A/J =>• A.
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PROPOSITION 5.3. Let G be a compact group. Suppose that

0 —> J —• A -?+ A/J —• 0

is an exact sequence of pro-G-C*-algebras, A is a separable o-G-C*-algebra,
and a : A/J =>• A is a positive splitting. Then the associated sequence

0 —> SJ —• CA^U- Cn —• 0

is positively split.

PROOF. (Sketch—see [18, p. 87-88], for details.) Since A is a separable a-
G-C*-algebra, there is a countable approximate unit (^n)ne|^| in / with h\ = 0
which is quasi-central for A. By averaging, we may assume that each hn is
fixed by the action of G. (This is the place in the paper where compactness of
G seems to be necessary. If 5.3 can be established without the compactness
assumption then so can all of Section 5.) Define h : (0, 1] ->• J by

= (2nt- l)hn + (2-2nt)hn+l for 2~" < t

Then h is norm-continuous. Write

Cn = {(£, a) e C(A/J) 0 A : f(l) = 7r(a)}

and define o : Cn - • CA by setting £(£, a)(t) = 0 for t — 0 and, for t > 0,
setting

a(f, a)(t) = (1 - *(r))1/2ff(£(r))(l - A(0)1/2 + h(t)]/2(l - t)ah(t)l/2.

Then a : Cn =>• CA is a positive splitting for \jr.

THEOREM 5.4. [2, Theorem 2.1] Let G be a compact group. Suppose that

0 —• / —> A -^> A / / —• 0

sequence of pro-G-C*-algebras with a positive splitting, A is sep-
arable, and % : / —> Cn is the natural inclusion. Then the associated element

€ KK^{J, Cn) is KKG-invertible.
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PROOF. Let a e KKG(SCU F) be the Bott inverse element (3.9). The
extension

0 —• SJ —> CA —> Cn —> 0.

is positively split, by Proposition 5.3. Such a positively split extension gives
rise to a canonical element

S e KKG(Cn,SJ ®d)

by the equivariant version of the construction of Skandalis [16, p. 196-197].
(Note that this construction makes use of the equivariant Stinespring stabilization
theorem (cf. [5, p. 151]).) Define co e KKG(Cn, J) by co = -<$<§>sc,a. Then

(5.5) r(<u) = h e KKG(J, J)

by the argument of [2] 2.3, so that co is a left inverse to £»(//) e KKG(J, Cn).
Next consider the exact sequence

(5.6) 0 —> CH —> C(Cn) -% C(A/J) —• 0

where <p is the natural composite

C(CTT) - • Cn - • C(A/J).

The sequence (5.6) admits a positive splitting since each factor does. Applying
the argument of (5.5) to <p (rather than to n) implies that the map

KKG(B, C£) —• KKG(B, C<p)

is injective for any B. However, the mapping cone sequence

KKG_y{B, C(A/J)) —• KKG(B, dp) —• KKG(B, C(CTT))

is exact and the functor KKG(B, —) is homotopy-invariant, and hence
KKG(B,C<p) = 0. This implies that KKG(B,C%) = 0. Using the map-
ping cone sequence for C£, this implies in turn that the map

&, : KKG(B, J) —• KKG(B, Cn)

is an isomorphism. Taking B = Cn and using the fact (5.5) that co is a left
inverse to £*(!/), it is immediate that co is an inverse to £*(!./).
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THEOREM 5.7. Let G be a compact group. Suppose that

0 —• / —> A —• A/J —• 0

is a positively split short exact sequence of pro-G-C*-algebras and that A is
separable. Then:

(1) IfD is separable then the theory KK?(D, -) is exact for (J, A, A/J).
(2) The theory KK?(-, D) is exact for (J, A, A/J).

PROOF. This follows from combining Theorem 4.13 and Theorem 5.4.

We say that a pro-G-C*-algebra A is nuclear if each Ax is nuclear.

THEOREM 5.8. Let G be a compact group. Suppose that

0 — • / — • A — • A/J — • 0

is a short exact sequence of pro-G-C*-algebras and that A is separable and
nuclear. Then:

(1) IfD is separable then the theory KK?(D, - ) is exact for (J, A, A/J).
(2) The theory KK°{-, D) is exact for (J, A, A/J).

PROOF. The fact that A is nuclear implies that there is always a positive split-
ting, by inductive use of the Choi-Effros theorem [1]. Then invoke Theorem 5.7.

The following consequence of Theorem 5.7 is useful in applications.

THEOREM 5.9. Let G be a compact group. Suppose that

(5.10) 0 — • J®B—• A®B ^ {A/J)®B—»0

is a short exact sequence of pro-G-C*-algebras and that A is a separable nuclear
o-G-C*-algebra and B is separable. Then:

(1) IfD is separable then the theory KK^(D, -) is exact for (J(g)B, A®B,

(2) The theory KK?(-, D) is exact for (7§fi, Afgifi, (A/J)%B).

PROOF. In this situation it has a positive splitting a : A/J => A. Then
a <S> lfl : (A/J)<g>B =>• A®B is a positive splitting for n®\B, so Theorem 5.7
applies.
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6. Additivity: sums and products

If (̂ x)x€A is a family of pro-G-C*-algebras, let & denote the collection of
families x — (*x)xeA where xx is a continuous C*-seminorm on Ak. For x e &,
define
(6.1) |(ax)|x

DEFINITION 6.2. The sum (BnAn of a sequence of pro-G-C*-algebras is
defined by

®nAn = {(an) e ]~[ A« '• l i m \°nL = 0 for each (*„) e

The group G acts on 0n/ in by g{an) — (gan). For each x, the seminorm (6.1)
is a G-C*-seminorm on ©nv4n . Give ©nAn the topology which is induced by
these seminorms.

Note that if each An is a <r-G-C*-algebra then ®nAn is a pro-G-C*-algebra,
but it is almost never the inverse limit of a sequence of G-C*-algebras, since &
generally has no countable cofinal subset.

Let ik : Ak -> ©«/4n denote the natural universal map.

PROPOSITION 6.3. FINITE ADDrnvrrY Let A, B, Ax, A2, Bx, B2 be pro-G-
C*-algebras. Then there are natural isomorphisms induced by {ik} of the form

KK°{AX © A2, B) ^ KK°{AU B) © KK?(A2, B)

and
KK?(A, Bx © B2) ^ KK?(A, Bx) © KK?(A, B2).

PROOF. This is immediate from elementary considerations.

PROPOSITION 6.4. COUNTABLE ADDITIVITY Let Ax, A2,... be a sequence
of pro-G-C*-algebras and let B be a pro-G-C*-algebra. Then the natural map

?(®nAn, B) —> Y\KK?(An, B)

is an isomorphism.
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PROOF. This is identical to [18,4.2-4.3].

Countable additivity in the second variable fails in general even if the group
G is trivial and only C*-algebras are involved, though it does hold when A — F:
cf. the discussion in [11, Remark 7.12].

DEFINITION 6.5. If (Ak)k€A is a family of pro-G-C*-algebras then the product
A = Y[k Ak with the product topology is again a pro-G-C*-algebra. Let 7rx :
A -> Ak denote the canonical map.

Note that if A is infinite then A is almost never a C*-algebra except in trivial
cases.

DEFINITION 6.6. Given a finite set {A.i,..., Xm) c A and x, e y(Aki) for
1 < i < m, define a new seminorm x = (xi\.. .\xm) on Aby

\(ak)\x = max [\ax\Xi : 1 < / < m]

Then
y(A) = {(JC,| . . . \xm) : Xi € y(Ak'), 1 < i < m}.

where {A.i,...,A.m}CA ranges over all finite subsets of A.

DEFINITION 6.7. Suppose that E is a Hilbert G-module over A = J~[x Ax, the
product of pro-G-C*-algebras. For each A € A, let

Ex = E®AAX.

For each x e y(Ak), let x e y{A) be the seminorm which is obtained by the
composite

A J ^ Ak 2 \ 0£+.

Then there are natural maps E —>- Ex for each x, and

Ek = \\m{Ex : x e &{Ak)\,

so there are natural maps E ->• Ek and \j/ : E ->• \\x Ek.

PROPOSITION 6.8. (1) The map rj/ : E ->• Y[k £x »'* an isomorphism of
Hilbert G-modules.

(2) 77je induced map

isomorphism.
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PROOF. The map \j/ is an isometry, since y(A) is given by seminorms x =
(x\\... \xm) with Xj G y(Ax;). The map xjr is onto the dense subspace ©„£„
and both E and J~JA £\ are complete, so ty is an isomorphism. This proves (1);
part (2) follows immediately from (1).

THEOREM 6.9. COUNTABLE ADDrnviTY FOR PRODUCTS Let A and {Bx :
X € A} be pro-G-C*-algebras. Then the natural map

n = (nxj

w a« isomorphism.

PROOF. Let B — \\k Bx. Define an inverse to it as follows. For each X e A,
let ?jA = (£x, Tf, <pk) be a Kasparov pro-A-Bx-G-bimodule. Then E = \\kEx

is a countably generated Hilbert G -module over B, and

<p = ( / ) : A -

by Proposition 6.8. An «-simplex a = ( a ' | . . . |crm) e y{B) has the form

Define
r A i f ( £ x . . . x

by t i—> (rCTi(r),..., 7 X 0 ) . Then rj - (E, Ta, <p) is a Kasparov pro-A-B
G-bimodule. The map

defines a G-map which is inverse to n.

THEOREM 6.10. lf{Ax) is a family of pro-G-C*-algebras and B is a G-C*-
algebra, then the natural map

n = « ) : ®kKK?(Ak, B) —• KK?(Y\ Ak, B)

is an isomorphism with inverse induced by the natural maps

A '% ffi A . FT A
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PROOF. Let A = Y\k Ax and let rj = (£, Ta, y) be a Kasparov A-B G-
bimodule. Since J f (£ ) is a G-C*-algebra, there are finitely many [ku . . . , kn]
such that <p : A —>• ̂ f(E) factors over AXl ® . . . © /4Xn. Therefore, for each
r), il(ri) = 0 for all but finitely many A, so that J^x '*(*?) is a finite sum. Thus
i* = (i*) is well-defined as a map

<* : KK?([\Ak, B) —• ©iATA:,0^, B)
A

and it is easy to see that i* is inverse to n.

REMARK 6.11. (WEIDNER). If B is not a C*-algebra then the result is false
in general; it fails for B = Y\T=i<^--

7. Direct and Inverse Limits

The presence of suitable additivity and long exactness axioms imply pleasant
behavior with respect to limits, as is well-known, since (at a categorical level)
direct limits are formed from direct sums and cokernels, and inverse limits
are formed from products and kernels. Since the primary exactness results in
Section 5 were proved under the added assumption that G was compact, the
same will be true in the present section. Here is the first result.

THEOREM 7.1. Let G be a compact group. Let

... < An < An+\ < . . .

be a sequence of pro-G-C* -algebras with

A = limAn.

Suppose that either all maps a" are cofibrations or that A is a separable nuclear
a-G-C*-algebra. Then:

(1) For all separable G-C*-algebras D, there is a natural short exact
sequence

0 - • lim1 KK°+l(D, An) - • KK°(D, A) - • limATA^D, An) - • 0.

(2) If each An is separable then for each G-C*-algebra D, the natural map

\\mKK^{An, D) —• KK?(A, D)

is an isomorphism.
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PROOF. This follows from the usual telescope argument (cf. [18,91-92], [6]).
Note that the assumption that each a" is a cofibration or that A is a separable
nuclear a-G-C*-algebra is necessary to assure exactness, and the assumption in
b) that D is a G-C*-algebra is necessary to assure additivity of KK^{—, D).

Theorem 7.1 represents a new phenomenon, since for C*-algebras the ques-
tion would be almost vacuous.

The remaining limit questions deal with KK°(limAn, B). Of course for C*-

algebras this leads to the familiar lim1 sequence. For pro-G-C*-algebras, one
must first define Iimy4n.

DEFINITION 7.2. (WEIDNER). Let {Ak} be a directed system of pro-G-C*-
algebras, with

The direct limit A of the system is defined as follows. Let

:altl{xll)<xx for all k <
x.

Each x e ^determines a directed system of G-C*-algebras

{(Ak)Xk : X e A}.

Let
Ax = li

with C*-norm | \x. Then {Ax : x e 3£\ is an inverse system of G-C*-algebras;
let

A = li

be its inverse limit. It is a pro-G-C*-algebra. By construction there are natural
morphisms ik : Ak -» A.

Weidner comments that this construction corresponds to taking inverse limits
of compactly generated spaces which are completely Hausdorff. Note that in
general A will not be a a-G-C*-algebra even if A is countable, since ^Thas no
countable cofinal subset.

Phillips [8] notes that this is the categorical direct limit in the category of
pro-G-C*-algebras. He also gives examples to show how poorly behaved this
construction really is. The most striking ([8, 3.9]) is an example of a countable
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direct system in which every map is injective and no algebra is zero, but for
which the direct limit is zero.

Recall that a map / : X -*• Y of locally compact spaces is proper if f~l(K)
is compact for every compact subset K of Y. Such a map induces a map on
one-point compactifications. If X is compact then every map X ->• Y is proper.
Proper maps of spaces induce proper maps of function spaces, and conversely.
Weidner generalizes to operator algebras as follows.

DEFINITION 7.3. a : A -> B between pro-G-C*-algebras is proper if foreach
x e y(A), the map

a H- \a\a,M = sup{|fl|j, : a*(y) < x}

defines a finite, continuous C*-seminorm on B.

If B is a G-C*-algebra or a is onto then a is proper. If or is proper then
a)f{y{A)) is a cofinal subset of y(B). If {An} is a direct sequence of a-G-C*-
algebras and each map An -> An+X is proper then \imAn is a cr-G-C*-algebra.

THEOREM 7.4. Let Gbea compact group. Let

Ai —> A2 —> . . .

be a direct sequence of separable nuclear o-G-C*-algebras with

A = limAn.

Suppose that each an is proper. Then for each separable pro-G-C* -algebra D
there is a natural short exact sequence

0 - • \\mxKK°_x{An, D) - • KK°(A, D) -> limKK°(An, D) - • 0.

PROOF. This follows from the additivity and exactness properties of the co-
homology theory KK?(-, D), cf. [18, 93-94], [13].

REMARK 7.5. As noted previously, the natural map

is not an isomorphism in general, even for G-C*-algebras with G trivial.
However, the class Qi of pro-G-C*-algebras A for which t, is an isomorph-
ism is fairly interesting. For example, $) contains all C(X), where X is a
G-C W-complex or a G-ENR. The class $> is closed under certain bootstrap
operations; see [ 18, p. 95] and [ 11, (7.13)] for further information on this subject.
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We apply the results of this section to compare the one-variable functor
KKG(C, - ) to the representable K-theory RKG{-) denned by Phillips [9] for
G compact. For B a unital o-G-C*—algebra, let M{J(f® B) be the associated
multiplier algebra and let

Q(B) = M(JT® B)/{J(f® B)

be the associated outer multiplier algebra. In this setting J?Tis understood to be
the algebra of compact operators on L2(G) <8> £2 and has the inner action of G
associated to the tensor product of the left regular representation of G on L2(G)
and the trivial representation on I2. For any G-algebra A, write AG for the set
of elements fixed by the G-action and UG(A) for the unitary elements of AG.
Then RKg(B) is defined by

= UG(Q(B))/UG(B)

where UG(B) denotes the connected component of the identity. This extends as
usual to non-unital B and to RKG(B).

THEOREM 7.6. Let Gbea compact group. Then there is a natural isomorph-
ism

rB : RKG(B) -> KKG(C, B)

for all separable nuclear o-G-C*-algebras.

PROOF. It suffices to verify the Theorem for B unital. Let a e RKg(B) be
represented by an element a G M{J€® B) whose image in Q(B) is an invariant
unitary element. The element a may be taken to be invariant by [9, Lemma 5.5].
Let HB be the Hilbert G-module over B given by

HB = L2(G)®i2®B.

Identify

B) ^

X® B £ JT(HB)

by [3, p. 137]. Then we are left with an invariant element a e ^f(HB) which
projects to an invariant unitary a G Q(B). Define S(a) G ^f(HB © HB) by
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Then S(a) is invariant, S(a) e Qc(HB), (S(a) - 5(a*)) e Ic(HB), and
(S(a)2 - 1) € IC(HB). Thus (HB © //B, 1, S(a)) defines a Kasparov pro-C-fi-
G-bimodule, denoted FB(a). If a € £/G(fi) then FB(a) is degenerate. The map
FB is well-defined, by [3, Section 6, Theorem 3] and it is a homomorphism by
standard arguments.

The map FB extends the map of [7, pp. 402-403], hence commutes with Bott
periodicity and yields a natural transformation

TB : RK°(B) -+ KK?(C, B)

which is an isomorphism when B is a unital G-C*-algebra by [7]. For the general
case, write B = limBn as the inverse limit of a sequence of G-C*-algebras. Then
there is a commuting diagram of short exact sequences

_ „ ... —*• 0

(1 Ail ^ I B 4- |l »„! 4"

> l i m /v A , , ( ( L , OjJ • A A (IL, Z>) • U m A A (<L, £JnJ >• U .

The upper row is exact, by [9, p. 473]. The lower row is exact by Theorem 7.1(1).
Each FBn is an isomorphism, so FB is an isomorphism by the Five Lemma.
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