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Abstract
This study investigates the time-varying effects of international uncertainty shocks. I use a global vec-
tor autoregressive model with drifting coefficients and factor stochastic volatility in the errors to model
the G7 economies jointly. The measure of uncertainty is constructed by estimating a time-varying scalar
driving the innovation variances of the latent factors, which is also included in the conditional mean of
the process. To achieve regularization, I use Bayesian techniques for estimation, and rely on hierarchical
global–local priors to shrink the high-dimensional multivariate system towards sparsity. I compare the
obtained econometric measure of uncertainty to alternative indices and discuss commonalities and dif-
ferences. Moreover, I find that international uncertainty may differ substantially compared to identically
constructed domestic measures. Structural inference points towards pronounced real and financial effects
of uncertainty shocks in all considered economies. These effects are subject to heterogeneities over time
and the cross-section, providing empirical evidence in favor of using the flexible econometric framework
introduced in this study.

Keywords Bayesian state-space models; multi-country; global–local shrinkage prior; factor stochastic volatility in mean

JEL Classfication: C11; C32; C55; E32

1 Introduction
Uncertainty received a substantial amount of attention as a driving force of business cycle fluc-
tuations following the experiences of economists and policymakers in the aftermath of the great
recession. The most recent strand of the respective literature originates with Bloom (2009), and
measuring uncertainty and its impact on the economy have been the subject of numerous articles
since. Such studies usually find that uncertainty shocks can produce large drops in economic activ-
ity, and may simultaneously render counteracting policy measures less effective.1 Transmission
channels not only relate to real phenomena such as distorted private decision-making under
uncertainty, but also disturbances in credit and financial markets.

Many authors define macroeconomic uncertainty as the weighted average of the “volatilit[ies]
of the purely unforecastable component of the future value” of a large set of relevant variables,
following Jurado et al. (2015, JLN). This definition requires two features of the underlying econo-
metric specification. First, one needs to obtain the purely unforecastable component of a series of
interest. This implies that the econometric model used for computing the conditional expectation
of some series at time t + h conditional on time t has to possess most favorable properties in terms
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of predictive accuracy. Second, the measure should reflect the common volatility component of a
large set of variables to reflect aggregate variation in uncertainty.

Researchers usually either follow the JLN approach, or construct proxies for uncertainty (e.g.
by counting the number of uncertainty-related keywords in newspapers).2 These uncertainty
measures are subsequently treated as observed in the context of two-step structural inference.
Conditioning on the unobserved latent process of uncertainty for structural inference, how-
ever, comes with two major caveats. First, using a point estimate of uncertainty rather than its
probabilistic distribution often yields too narrow credible sets for parameter estimates. Second,
systematic measurement errors may introduce biases in structural models, thereby also affecting
higher order functions of the reduced form parameters such as impulse response functions.

To circumvent these inferential issues, several authors propose integrated econometric frame-
works to measure uncertainty and its impacts jointly. The methods employed in this context
are typically variants of medium to large-scale vector autoregressions (VARs) or dynamic factor
models. Uncertainty is then often captured with stochastic volatility processes for the structural
errors, using a factor structure to extract their common component from idiosyncratic volatility
movements. Prominent examples for papers in this spirit are Carriero et al. (2018) and Mumtaz
and Musso (2019). In this study, I pursue a related unified econometric approach to measuring
international uncertainty and its time-varying effects jointly for several economies. The proposed
econometric extensions are designed to fill several gaps regarding empirical regularities in the
literature.

In particular, I introduce a global VAR featuring time-varying parameters (TVP-GVAR) and
factor stochastic volatility in the mean (FSVM). Relying on a multi-economy framework such as
the GVAR is motivated by two aspects from the literature. First, this model class possesses excel-
lent properties in terms of predictive inference (see, e.g. Crespo Cuaresma et al. (2016); Huber
(2016); Koop and Korobilis (2019); Feldkircher et al. (2021)). These gains stem from rich under-
lying information sets, which are crucial to avoid omitted variable biases in a globalized world
economy. This feature is important due to the necessity of constructing accurate conditional fore-
casts for a large set of variables to compute their purely unforecastable component—which is used
to derive an uncertainty measure in line with the JLN definition. Second, using a multi-country
framework allows to conduct structural inference jointly for a cross-section of economies taking
into account static interdependencies, dynamic interdependencies, and spillovers in a wide sense.3
Several authors find that while domestic uncertainty may affect business cycle dynamics, the mag-
nitudes of such effects are usually smaller and sometimes insignificant. International uncertainty
shocks appear to play a more important role (see, e.g. Berger et al. (2016); Beckmann et al. (2020)).

The TVP aspect in the model is again introduced for two reasons. First, TVPs have proven use-
ful in improving predictive inference (see, e.g. D’Agostino et al. (2013); Huber et al. (2020); Yousuf
and Ng (2021)). This again relates to the notion that the measurement of uncertainty follow-
ing JLN requires models that possess excellent predictive capabilities. Second, using TVPs allows
to detect structural breaks in international transmission channels of uncertainty. Such dynam-
ics have been studied by Mumtaz and Theodoridis (2018) for the domestic case of the USA.4
They find that the impact of uncertainty shocks has decreased for some variables but not others.
Empirical evidence from the model proposed in this study sheds light on the question whether
this is a US-specific phenomenon, or whether such parameter change might be spurious and can
be attributed to disregarding international information.

Relying on a factor stochastic volatility (FSV) specification is due to the second part of the defi-
nition of uncertainty, which states that a validmeasure should capture the common volatility com-
ponent of a large number of relevant series. Such models provide a natural way of discriminating
between common and idiosyncratic volatilities, which is described in detail below. Amethodolog-
ical innovation is the inclusion of the common volatility in the mean of the VAR, similar to Crespo
Cuaresma et al. (2020). This is a multivariate extension of the stochastic volatility in mean model
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with TVPs, as proposed by Chan (2017). Note that this setup implies that the contemporaneous
value of uncertainty informs the conditional forecast of all series in the VAR model. The presence
of the volatilities in the mean of the process again improves predictive accuracy, particularly in
conjunction with the TVPs. Another convenient feature of this approach is that the coefficients
associated with the uncertainty measure directly provide the contemporaneous effects of uncer-
tainty on all endogenous variables, which can be exploited to calculate impulse response functions.

The proposed TVP-GVAR-FSVM is thus a highly flexible framework capable of measuring
international uncertainty and its effects on a set of economies jointly, conditional on suitably cho-
sen endogenous variables. However, using both the multi-country framework and the TVPs result
a heavily parameterized model, possibly subject to overfitting concerns and imprecise inference.
To alleviate such concerns, I propose several layers of regularization. The first layer is introduced
by relying on a GVAR rather than an unrestricted panel VAR. This modeling choice introduces
a set of deterministic parametric restrictions without substantial sacrifices to the model fit. Thus,
it greatly reduces the high-dimensional parameter space and decreases the computational burden
such high-dimensional models entail.5 In addition, I adopt Bayesian methods and global–local
priors developed for introducing hierarchical shrinkage in TVP models. Finally, the FSVM spec-
ification not only provides a measure of uncertainty in line with the definition of JLN, but also
regularizes the potentially huge-dimensional covariance matrix by modeling its evolution with a
small number of latent factors.

I apply the TVP-GVAR-FSVM to data for the G7 economies ranging from 1995:01 to 2019:12.
A thorough analysis of the resulting international measure of uncertainty and impulse response
functions provides several novel economic insights. In particular, I compare the obtained econo-
metric measure of uncertainty to several proxies and discuss commonalities and differences.
While peaks and troughs often coincide (depending on the type of uncertainty captured by
the respective index), econometric measures of uncertainty lack upward trending behavior usu-
ally found in proxies. Moreover, I compare the econometric international uncertainty measure
to domestic variants estimated using restricted (nested) versions of the multi-country model.
Uncertainty in globally dominant countries like the USA exhibit a substantial degree of comove-
ment with the international measure. However, domestic uncertaintymay also differ substantially,
governed by country-specific circumstances and events. Structural inference shows that the pro-
posed measure of uncertainty produces economically meaningful results. I find that uncertainty
shocks produce contractionary real and financial effects in all considered economies, albeit with
nuanced heterogeneities over time and the cross-section. The results provide empirical evi-
dence in favor of using a sophisticated econometric framework equipped with several layers of
regularization, to avoid potential biases arising from overly simplistic specifications.

The article is organized as follows. Section 2 proposes the TVP-GVAR-FSVM. Section 3
presents the data, motivates choices regarding endogenous variables, and discusses particulars
of the model specification. Section 4 investigates the uncertainty measure and provides a discus-
sion of the empirical results. Section 5 concludes. An Appendix provides further details on the
Bayesian econometric framework, sampling algorithm, and collects additional empirical results.

2 Econometric framework
2.1 Amulti-country model with drifting coefficients and volatility in the mean
Let yit denote a k× 1 vector of endogenous variables for t = 1, . . . , T specific to country
i= 1, . . . ,N. Collecting country-specific endogenous variables yields the K × 1 vector yt =
(y′

1t , . . . , y′
Nt)′ with K = kN, while the reduced form shocks to yit are stacked in a K × 1 vector

εt = (ε′
1t , . . . , ε

′
Nt)′. Consider a FSV model for these errors:

εt = Lf t + ηt , f t ∼N (0, exp(ht)× �), ηt ∼N (0,�t). (1)
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Here, f t is a vector of d × 1 common static factors (with d �K), and ηt is an idiosyncratic
white noise shock vector of dimension K × 1. The latent factors are linked to the reduced form
errors by the K × d factor loadings matrix L.6 The factors f t are Gaussian with zero mean and
common time-varying volatility exp(ht), scaling a diagonal matrix � = Id, with Id referring to a
d-dimensional identity matrix. The idiosyncratic errors ηt follow a Gaussian distribution centered
on zero with K ×K time-varying covariance matrix �t = diag(exp(ω1t), . . . , exp(ωKt)).

I assume a random walk law of motion for ht and ωij,t :

ht = ht−1 + ξt , ξt ∼N (0, σ 2
h )

ωij,t = ωij,t−1 + ζt , ζt ∼N (0, σ 2
ωij), for i= 1, . . . ,N and j= 1, . . . , k,

with σ 2
h and σ 2

ωij denoting the state-equation innovation variances. This establishes a conventional
stochastic volatility framework, see Jacquier et al. (2002).

Note that Var(εt)= exp(ht)LL′ + �t , where the factor loadings in L determine the covariance
structure. Time variation in the covariance matrix thus arises from two sources: country- and
variable-specific shocks reflected in ωij,t ; and a common volatility component across all variables
and economies, encoded in ht . Following the definition of uncertainty in Jurado et al. (2015),
this suggests an interpretation of ht as a natural measure of international uncertainty, since it is
based on many variables across a set of economies. The preceding equations define the contem-
poraneous relationships between countries, and provide an econometric measure of international
uncertainty. It remains to specify the conditional mean of this system. In what follows, I provide
an econometric framework which allows for estimating the time-varying impact of uncertainty
shocks, and how such shocks propagate internationally.

The conditional mean of yit is governed by a vector autoregressive (VAR) process with drifting
coefficients and features the common volatility of the factors ht in the mean:

yit = αit +
P∑

p=1
Aip,tyit−p︸ ︷︷ ︸
domestic

+
Q∑

q=1
Biq,ty∗

it−q︸ ︷︷ ︸
non-domestic

+β itht + εit . (2)

Define the k× 1 intercept vector αit and k× k coefficient matrices Aip,t (p= 1, . . . , P) that
govern domestic macroeconomic dynamics. To establish dynamic interdependencies between
economies in the spirit of the GVAR (see Pesaran et al. (2004)), that is, cross-country lagged
relationships between countries i and j, I construct k× 1-vectors y∗

it =
∑N

j=1 wijyjt . The wij’s
denote prespecified weights (subject to the restrictions wii = 0, wij ≥ 0 and

∑N
j=1 wij = 1 for

i, j= 1, . . . ,N) that capture the strength of the linkages between economies. The process in equa-
tion (2) is augmented by Q lags of these nondomestic cross-sectional averages y∗

it , with k× k
coefficient matrices Biq,t (q= 1, . . . ,Q).7 The parameter vector β it associated with the log of the
factor volatility, ht , is of dimension k× 1.

β it measures the contemporaneous impact of uncertainty ht on the endogenous variables of
country i. The structure set forth in equations (1) and (2) implies that shocks to ht affect both the
first and second moments of the system based on common shocks captured in f t .8 This may be
exploited for calculating impulse response functions or other types of structural inference, relating
to recursive identification schemes that order uncertainty indices first (see, e.g. Bloom (2009)). In
general, structural identification of uncertainty shocks is a challenging task due to various reasons,
as suggested in Ludvigson et al. (2019). Empirical evidence for the credibility of the identifying
assumption I use in this paper is provided by Carriero et al. (2019), who find little evidence for
endogenous responses of macroeconomic uncertainty. 9
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2.2 Rewriting the multi-country model
For simplicity of exposition, I rewrite the full model defined in equations (1) and (2) more
compactly:

yit =Citxit + εit , (3)

with xit =
(
1, {y′

it−p}Pp=1, {y∗′
it−q}Qq=1, ht

)′
and Cit =

(
αit , {Aip,t}Pp=1, {Biq,t}Qq=1, β it

)
. It is conve-

nient to consider the jth equation of country i in equation (3) given by

yij,t =C′
ij,txit + εij,t .

Here, Cij,t refers to the jth row of the matrix Cit , a vector of dimension K̃ × 1 with
K̃ = k(P +Q)+ 2. This state vector is assumed to follow a random walk process:

Cij,t =Cij,t−1 + ut , ut ∼N (0,�ij), (4)

with diagonal K̃ × K̃ variance–covariance matrix �ij = diag(θij,1, . . . , θij,K̃). If θij,l = 0 in
equation (4), the respective coefficient is constant over time. To test this restriction, I rely on
the noncentered parameterization introduced by Frühwirth-Schnatter and Wagner (2010). This
approach splits the model coefficients into a constant and a time-varying part.

Using a K̃ × 1-vector containing the square root of the state innovation variances in

equation (4) denoted
√

�ij = diag
(√

θij,1, . . . ,
√

θij,K̃

)
, the reparameterized equation is

yij,t =C′
ij,0xit + C̃′

ij,t

√
�ijxit + εij,t . (5)

Let c̃ijl,t denote a typical element of C̃ij,t , then the transformation cijl,t = cijl,0 +√
θij,l c̃ijl,t yields the

corresponding state equation

C̃ij,t = C̃ij,t−1 + vt , vt ∼N (0, IK̃),

with C̃ij,0 = 0K̃ . This procedure moves the square root of the innovation variances to the states
into equation (5). The resulting representation has the property that the

√
θij,l’s can be treated as

regression coefficients.

2.3 Prior distributions
The parameter space of the proposed model is high-dimensional. Consequently, I use Bayesian
methods for estimation and inference to impose shrinkage. Before proceeding, I stack the coeffi-
cients using ci = vec(C′

i1,0, . . . ,C′
ik,0), collect the square roots of the innovation variances

√
θij,l in√

θ i = (
√

θi1,1, . . . ,
√

θi1,K̃ , . . . ,
√

θik,1, . . . ,
√

θik,K̃)
′, and index the jth elements by cij and

√
θij,

respectively, with j= 1, . . . , kK̃. I propose to use a horseshoe (HS) prior (see Carvalho et al.
(2010)) on various parts of the parameter space to achieve regularization, thereby selecting impor-
tant domestic and cross-country coefficients while shrinking unimportant ones to zero. The HS is
chosen due to its excellent theoretical and empirical shrinkage properties and its simplicity, since
it has no additional tuning or hyperparameters.10

For the constant part of the coefficients, the HS prior is given by:

cij|μcj, τcj, λc ∼N (μcj, τ 2cijλ
2
c ), τcij ∼ C+(0, 1), λc ∼ C+(0, 1),

with C+( • ) referring to the half-Cauchy distribution. The country-specific coefficients are pushed
towards the prior meanμcj. The prior meanμcj = 0 for all coefficients. It is worthmentioning that
one may set specific elements μcj = 1 (e.g. those associated with the first own lag of the respective
endogenous variable per equation) to mimic a conventional Minnesota-type prior. The overall
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degree of shrinkage is determined by a global shrinkage parameter λc serving as a general indicator
of sparsity pooled over the cross-section and variable types. Flexibility for individual coefficients
is provided by local scaling parameters τcij.

Shrinkage on the innovation variances of the states in equation (4) is introduced in similar
vein. Frühwirth-Schnatter and Wagner (2010) show that a Gamma prior on the state innovation
variances is equivalent to imposing a Gaussian prior on their square root:√

θij|τθ ij, λθ ∼N (0, τ 2θ ijλ
2
θ ), τθ ij ∼ C+(0, 1), λθ ∼ C+(0, 1).

All variances are pushed towards zero a priori. This feature selects which coefficients are constant,
and which of them vary over time. The global parameter λθ again pools information about sparsity
over the cross-section and variable types, while the local scalings τθ ij are variable- and country-
specific.

It remains to specify prior distributions on the factor loadings in L. I stack the free elements in
a vector l with typical element lj for j= 1, . . . , R (R=Kd − [d(d + 1)/2]) and impose

lj|τLj, λL ∼N (0, τ 2Ljλ
2
L), τLj ∼ C+(0, 1), λL ∼ C+(0, 1).

Chan (2021) notes that choosing underfitting factor models carries a much larger penalty than
using an overfitting specification in terms of model selection criteria. Consequently, it is possible
to set the number of factors d to a comparatively large value, and the shrinkage prior on the
factor loadings serves to achieve a data-driven selection of an adequate number of factors, see also
Kastner (2019).

The state innovation variance for the common volatility process of ht is assigned an inverse
Gamma prior distribution, with σ 2

h ∼ G−1(a, b). The hyperparameters a and b are chosen such
that the prior has a mean of 0.2 with variance 1. For the idiosyncratic stochastic volatility innova-
tion variances, I choose a set of independent Gamma priors, σ 2

ωij ∼ G(1/2, 1/2). Using a Gamma
rather than an inverse Gamma prior has the advantage that nomass is bound away from zero a pri-
ori. This specification corresponds to a Gaussian prior on σωij with zero mean and unit variance,
see Frühwirth-Schnatter and Wagner (2010). The independent prior models for the idiosyncratic
stochastic volatilities are thus centered on the homoscedastic case.

2.4 Posterior simulation
Full conditional posterior distributions obtained from combining the likelihood function with
the priors and the corresponding estimation algorithm are discussed in detail in Appendices A
and B. Most distributions are of well-known form, allowing for a simple Markov chain Monte
Carlo (MCMC) algorithm to obtain draws from the joint posterior using a Gibbs sampler.

The full history of the TVPs can be drawn by using a FFBS algorithm (Carter and Kohn (1994);
Frühwirth-Schnatter (1994)). A similar algorithm is employed for the idiosyncratic stochastic
volatilities, conditional on a mixture approximation of the corresponding state, and measurement
equations (see Kim et al. (1998)). This mixture approximation is inapplicable for sampling the
stochastic volatility path of the common factors due to the presence of this volatility in the mean
of the measurement equation. Here, I use a random walk Metropolis–Hastings algorithm as an
alternative (see also Jacquier et al. (2002)).

3. Data andmodel specification
The dataset consists of monthly data for the period ranging from 1995:01 to 2019:12 for the
G7 economies: Canada (CA), France (FR), Germany (DE), Italy (IT), Japan (JP), the United
Kingdom (UK), and the USA.11 The set of endogenous variables by country is dictated by the
requirement of consistent availability over time and the cross-section, and patterned to provide a
realistic probabilistic model of domestic and international macroeconomic dynamics.
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In terms of the real economy, the dataset features series on industrial production (INP,
as monthly indicator of economic activity), the unemployment rate (UNR) and year-on-year
consumer price inflation (CPI). Motivated by recent findings on the importance of financial con-
ditions in the transmission of uncertainty shocks (see, e.g. Alessandri andMumtaz (2019)) and the
overall importance of the financial sector for the real economy, this set is extended with several
financial quantities. I include short-term (SIR) and long-term interest rates (LIR) based on their
importance for the conduct of both conventional and unconventional monetary policy by central
banks, and to reflect changes in borrowing conditions in light of international finance. Moreover,
I use equity prices (EQP) and a measure of overall financial/credit market conditions (FCI). The
FCI measure is included based on a recent strand of literature focusing on potentially nonlin-
ear effects of financial stress on economic activity, which is linked to episodes of uncertainty (see
Adrian et al. (2019)).

INP and EQP enter the model in natural logarithms (to be interpreted as percent). UNR, year-
on-year CPI, SIR, and LIR are included in levels (to be interpreted as percentage points). The
data except the FCI’s are downloaded from the FRED database of the Federal Reserve Bank of St.
Louis (online at fred.stlouisfed.org), which collects them from the OECD’s main economic indi-
cator database. As financial stress measures, I use the composite indicator of systemic stress for
the continental European economies and the UK provided by the European Central Bank, the
Federal Reserve Bank of Chicago National Financial Conditions Index for the USA, the Canadian
Financial Stress Index for Canada, and the Japan Center for Economic Research Financial Stress
Index for Japan. To make the scales of these indices comparable, they are standardized such that
their range lies in the unit interval prior to estimation (i.e. zero and one mean minimal and
maximal financial stress over the sampling period, respectively). To construct the cross-sectional
weights for establishing links between economies, I rely on bilateral annual trade flows averaged
over the sample period.

A chart of the included variables is provided in Appendix D. All data are standardized to have
zero mean and unit variance prior to estimation to avoid numerical instabilities from different
scalings. The impulse responses are transformed back to the original scale afterwards. All dimen-
sions of the involved vectors are given based on k= 7 and N = 7. I choose P =Q= 3 lags and
d = 15 factors. Varying the number of factors and lags and re-estimating the model over a grid
does not qualitatively alter the results. This suggests that the shrinkage priors perform well for
selecting important parameters from an a priori overfitting specification.

4. Empirical results
4.1 Themeasure of uncertainty
The resulting posterior median estimate of uncertainty alongside 50 and 68% posterior credible
sets is shown in Figure 1. The vertical lines indicate events commonly associated with uncertainty
shocks. These events are the 1997 Asian financial crisis, the Russian crisis, and the bankruptcy of
the hedge fund Long-Term Capital Management (LTCM) in late 1998, the burst of the dot-com
bubble in early 2000 (which saw substantial stock market declines following a bullish market for
technology related equities), the 9/11 terror attacks in September 2001 and the subsequent Gulf
War II in 2003. Moreover, I indicate the collapse of the US investment bank Lehman Brothers
at the onset of the global financial crisis in late 2008 and the European sovereign debt crisis mid
2011. I also indicate the European immigration crisis which reached its peak in 2015. The final
uncertainty-related events are the Brexit referendum and the election of Donald J. Trump as 45th
president of the USA in mid/late 2016.

Inspecting Figure 1 in more detail, it is worth mentioning that there are periods of persistently
high and low uncertainty, but with several high-frequency spikes. High-uncertainty episodes are
present between 1999 and 2003, and 2007 and 2009. The first period is characterised mainly by the
occurrence of many uncertainty-related events. Three of these events are of financial nature: the
1997 Asian crisis, the Russian crisis and subsequent collapse of LTCMand the burst of the dot-com
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Asian crisis
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Fig. 1. The uncertainty measure ht .
Notes: The solid black line depicts the posterior median estimate of the uncertainty measure over time. The blue shaded
areas refer to the 50% and 68% posterior credible sets. The vertical lines indicate events commonly associated with
uncertainty shocks.

bubble. On the other hand, the 9/11 terror attacksmaterialize as a prominent local peak, while Gulf
War II appears as a more gradual and slightly more persistent uncertainty episode. Following this
tumultuous period, between 2004 and 2007, international uncertainty is at a comparatively low
level. Initial increases associated with the second high-uncertainty period surrounding the global
financial crisis emerged in late 2007.

The measure peaks in September 2008, coinciding with the collapse of Lehman Brothers. This
global maximum is in line with expectations. Troubling dynamics in the US financial sector spilled
over to the real economy across countries, simultaneously provoking a set of counteracting policy
measures—thereby affecting both real and financial quantities resulting in substantial comove-
ments in all endogenous variables. Uncertainty declined after 2009. However, there are two local
peaks in late 2010 and early 2011, associated with the emergence of the European sovereign
debt crisis. The lowest level of uncertainty is detected around 2014. Afterwards, shocks and high
levels of uncertainty appear around the European immigration crisis around 2015, the Brexit
referendum and the 2016 US presidential election. Until the end of the sample, I detect several
high-frequency spikes, which can be linked to tensions in US/China trade relations.

Figure 2 offers a comparison of my endogenous measure of uncertainty with several promi-
nent proxies in the literature. This exercise serves to identify commonalities and differences
with respect to the econometric measurement of uncertainty rather than using alternatives such
as the newspaper-based approaches. In particular, I consider the geopolitical risk (GPR) index
described in Caldara and Iacoviello (2018), the global policy uncertainty (GEPU) and the world
uncertainty index (WUI). The latter index is provided in several variants. I use the global index
(averaged across all countries), the corresponding measure using weights reflecting the countries’
contribution to global GDP, and an average measure tracking only advanced economies.12

Comovements of the endogenous measure are apparent particularly with GEPU, with many
peaks coinciding. This provides empirical evidence that the proposed measure captures a diverse
set of uncertainty-related aspects with respect to economic policy. The least association is apparent
with the GRP index (particularly during the period from 2007 to 2013), which can be explained
by noting that this index mainly tracks political events such as military-related, nuclear, or war
and terror-related threats. However, I find that particularly the peaks associated with such events
(e.g. the 9/11 terror attacks and Gulf War II) are accurately captured in ht . These findings are
reassuring, given that I intend to provide a measure of uncertainty in line with the JLN definition,
which captures uncertainty not only in a selected number of cases, but one that is common to
many economic and financial series and based on the unforecastable component of these variables.

Perhaps more interestingly, there are at least two key differences between the newspaper-based
approach to measuring uncertainty and its econometric measurement. First, none of the proxies
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Fig. 2. Comparison of international uncertainty measures.
Notes: To make the measures comparable in scale, I standardize all uncertainty measures to lie in the unit interval by sub-
tracting the respective minimum and dividing by the maximum value over time. The solid black line shows the posterior
median estimate of ht . Other uncertaintymeasures are geopolitical risk (GPR), global policy uncertainty (GEPU), and variants
of the world uncertainty index (WUI). The vertical lines indicate events commonly associated with uncertainty shocks.

detects uncertainty during the period from 1997 to 2001 which comprises several events that are
commonly associated with uncertainty shocks. Second, all proxies show upward trending behavior
towards the end of the sample. While high-frequency dynamics between ht and the other indices
often are comparable, ht lacks such low frequencymovements. These empirical features of the esti-
mated ht are in line with similar econometric approaches to measuring uncertainty. Indeed, the
measure obtained in this study shows roughly the same dynamics as those in Carriero et al. (2020)
or Mumtaz and Musso (2019). This finding provides evidence for the robustness of the results in
earlier econometric papers—the proposed model is more flexible and offers several novel inferen-
tial possibilities such as assessing time variation in impulse responses and tracing the effects of an
uncertainty shock in a multi-country model; however, key dynamics of the uncertainty measure
are robust to these extensions.

I conjecture that the differences between proxies and the econometric measurement of uncer-
tainty in line with the JLN definition, particularly after 2011, are due to the following reasons.
First, uncertainty has received a substantial amount of attention from policymakers after the Great
Recession. In conjunction with the explosion of uncertainty-related research following Bloom
(2009), this may have resulted in increased public and media awareness of the role of uncertainty
in policy decisions and business cycle fluctuations. Consequently, this increased awareness may
be reflected also in newspaper articles, which proxies in the spirit of Baker et al. (2016) are based
upon, thereby “endogenously” increasing mentions of uncertainty related keywords and the cor-
responding index. However, the period starting 2016 has arguably been tumultuous and featured
many potential uncertainty shocks. Thus, it is perhaps an impossible task to isolate and decompose
such dynamics. Second, the JLN definition requires uncertainty measure to be based on the purely
unforecastable component of an economic or financial variable. While it may well be the case that
the overall level of uncertainty has increased since 2016, economic agents likely adjusted their
expectations to this. The proposed model reflects this by including the contemporaneous measure
of uncertainty, which informs the forecasts of all other endogenous variables. When uncertainty
has predictive power, which several papers suggest to be the case, this decreases the unforecastable
component inmagnitude, and thereby also its volatility (which is the measure of uncertainty). The
proxies do not have this property.

4.2 Comparing domestic and international measures of uncertainty
The previous subsection discusses the international measure of uncertainty and compares it
to several proxies. In the following, I further extend this discussion and assess comovements
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Table 1. Correlation of international uncertainty and country-specific uncertainty.

Int. CA FR DE IT JP UK

CA 0.17∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FR 0.69∗∗∗ 0.18∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DE 0.62∗∗∗ 0.15∗∗ 0.58∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IT –0.18∗∗∗ –0.03 –0.09 0.03
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JP 0.61∗∗∗ 0.02 0.66∗∗∗ 0.51∗∗∗ –0.28∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

UK 0.63∗∗∗ 0.14∗∗ 0.63∗∗∗ 0.53∗∗∗ –0.08 0.68∗∗∗
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

US 0.72∗∗∗ 0.23∗∗∗ 0.80∗∗∗ 0.51∗∗∗ 0.09 0.68∗∗∗ 0.62∗∗∗

Notes: Pairwise correlation matrix of the posterior medians of country-specific uncertainty measures hit and ht . ‘Int.’ refers to the
internationalmeasure ht , country-codes indicate country-specificmeasures hit for i ∈ {US,CA,UK,DE,FR,IT}. Statistical significance
is indicated by asterisks, p-values: ∗ < 0.1, ∗∗ < 0.05 and ∗∗∗ < 0.01.

and differences between country-specific econometric measures of uncertainty and interna-
tional uncertainty. For this purpose, I obtain an uncertainty measure, hit , using the proposed
model framework by country (ruling out static and dynamic interdependencies) for countries
i= 1, . . . ,N. For specifics of the country-specific VAR models, see Appendix C. Note that using
the identified factor model allows for a one-to-one comparison of domestic and international
uncertainty with respect to its level in a way that other approaches using proxies cannot.

The first set of results is summarized in the form of a correlation matrix in Table 1. The
strongest comovement of international with domestic uncertainty is present for France and the
USA. Pairwise correlations are highly statistically significant, and have a correlation coefficient
of about 0.7. Correlations are also high for the cases of Germany, Japan, and the UK. Domestic
uncertainty in Canada is only modestly related to international uncertainty, with a correlation of
0.11. The most interesting case is Italy, with a statistically significant negative correlation to the
international measure. I discuss the sources of this disconnect below when assessing differences
of domestic and international uncertainty over time.

In terms of domestic correlations, several interesting patterns are noteworthy. Canadian uncer-
tainty exhibits the largest and statistically significant correlation with the USA, albeit measured
at a comparatively low 0.23. Uncertainty in Germany and France exhibits substantial comove-
ment. While the correlation between Germany and France is largest from a German perspective,
French uncertainty has the highest pairwise correlation with the domestic measure for the USA.
Interestingly, the UK uncertainty measure is most correlated with Japanese uncertainty. The
maximum correlation between two domestic measures is the one between USA and French uncer-
tainty. Interestingly, Italian uncertainty shows a statistically significantly negative correlation with
Japan at−0.28, and those with other domestic measures are either slightly positive or negative but
all insignificant.

To assess when differences in domestic and international uncertainty occur, the left panels of
Figure 3 show the posterior median of the country-specific uncertainty measure hit alongside 50%
and 68% posterior credible sets in blue. The 68% posterior credible set of the international uncer-
tainty measure ht is depicted as grey-shaded area. The right panel shows the posterior distribution
of the difference between domestic and international uncertainty, hit − ht . Positive values indicate
that domestic uncertainty was higher than international uncertainty in the respective periods and
vice versa.

Figure 3 shows significant differences between both the level and dynamics of the international
versus domestic uncertainty measure. Moreover, I detect a substantial amount of heterogeneity
over the cross-section. The preceding analysis of pairwise correlations indicates that comovement
between the domestic and international measure is most pronounced for the USA, UK, Germany,
France, and Japan. The domestic measures for these countries reflect most peaks and troughs in
the international metric. Canada, and Italy in particular, however, exhibit striking differences.
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Fig. 3. Differences between country-specific and international uncertainty.
Notes: The left panels show the posterior median of the country-specific uncertainty measure hit alongside 50 and 68%
posterior credible sets in blue. The posterior 68% credible set of the international uncertainty measure ht is depicted as grey
area. The right panel shows the posterior distribution of the difference between domestic and international uncertainty,
hit − ht . Positive values indicate domestic uncertainty was higher than international uncertainty in the respective periods
and vice versa.

The most prominent difference for these two countries is present around the Great Recession.
Domestic uncertainty increases moderately during this period in both Canada and Italy, but
far from the increases visible in the international measure or the other domestic metrics.
Interestingly, Canadian uncertainty is higher than international uncertainty for most of the
sample (the right panel of the figure indicates a significant positive difference). Such positive dif-
ferences for Canada are most pronounced early in the sample, during the comparatively calm
economic period between 2005 and the Great Recession, and at the end of the sample. It is worth
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mentioning that these patterns are roughly in line with domestic newspaper-based measures of
uncertainty. The peak difference towards the end of the sample coincides with the Brexit refer-
endum, and is economically reasonable since the UK is an important trade partner of Canada.
For Italy, differences are less systematic. Notable country-specific peaks are present during the
European sovereign debt crisis, which appears reasonable with Italy being affected severely due
to high precrisis government debt levels. An interesting episode for Italy is visible during the
late 1990s and early 2000s, where Italian uncertainty is consistently lower than the international
measure.

Turning to the economies where domestic uncertainty exhibits higher correlations with the
international measure, several findings are worth noting. First, apart from Japan, all other coun-
tries typically show statistically significantly lower levels of domestic uncertainty, with a minor
number of positive differences (that are insignificant in all cases). Largest (negative) differences
materialize in Germany, particularly during the tranquil period between 2005 and the Great
Recession. A similar pattern is visible for the case of the USA, albeit with smaller differences.
In addition, domestic uncertainty in the USA around 2000 (the burst of the dotcom-bubble)
is lower than the international measure. This can be explained by the domestic VAR classify-
ing the collapse of technology-related stock prices as an idiosyncratic financial shock rather than
an economy-wide phenomenon. By contrast, linkages in international financial markets result in
elevated international uncertainty when using the GVAR framework. Another country-specific
increase in uncertainty worth mentioning for the UK is the one occurring around the Brexit refer-
endum. A different pattern over time is visible in Japan. Early in the sample, during the 1997 Asian
financial crisis, domestic Japanese uncertainty is higher than international uncertainty, which can
be explained by the closer geographic and economic proximity of Japan with the countries pri-
marily affected by this crisis. Interestingly, Japan also exhibits higher uncertainty compared to the
international measure just prior to the peak of the European sovereign debt crisis and around the
Brexit referendum.

Summing up, while many peaks between econometric and proxymeasures of uncertainty coin-
cide (depending on the respective index), there are pronounced differences particularly towards
more recent periods.Moreover, I detect substantial differences between several domesticmeasures
and international uncertainty. These differences not only concern both the level of uncertainty,
but also idiosyncratic dynamics. These findings corroborate and extend those of preceding econo-
metric studies with respect to country coverage and by enabling a direct comparison of domestic
and international uncertainty.

4.3 Dynamic responses to uncertainty shocks
The previous section is concerned with discussing empirical features of the proposed approach
to measuring uncertainty. In the following, I discuss the macroeconomic and financial conse-
quences of shocks to the international measure of uncertainty. It is worth reiterating that the
proposed TVP-GVAR-FSVM provides a probabilistic measure of uncertainty, thereby allowing
for more accurate inference compared to proxy-based two-stage approaches. Moreover, the model
takes international spillovers and higher order effects across countries into account. Earlier papers
focused mainly on a few key indicators such as output growth. The results discussed in the follow-
ing provide amore nuanced empirical characterization of themacroeconomic and financial effects
of uncertainty shocks. Figure 4 shows the posterior median of cumulative 1-year ahead responses
across countries and variable types, alongside 50% posterior credible intervals. Additional empiri-
cal results such as posterior median impulse responses over time for an impulse response horizon
up to 36 months (3 years) and other horizons for the cumulative responses are provided in
Appendix D.

From an econometric perspective, it is worth mentioning that most parts of the parameter
space are shrunk heavily towards time-invariant parameters, with some exceptions. This appears
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Fig. 4. Cumulative one-year ahead response to an international uncertainty shock.
Notes: The solid red horizontal line marks zero, the solid black line is the posterior median estimate of the cumulative one-
year ahead response. The blue shaded area covers the 50% posterior credible interval.

sensible for a model of this size. Notable examples for responses featuring abrupt changes over
time are UNRs, SIRs, and INP for some countries, while I detect minor gradual adjustments for
EQPs.While some variables exhibit time-varying behavior on impact (captured by β it), the shapes
of impulse responses also exhibit signal-varying degrees of persistence of the shock. In addition
to heterogeneity over time, a substantial degree of heterogeneity over the cross-section is present.
These empirical findings emphasize the need for sophisticated econometric methods. Using, for
instance, a conventional panel VARwith a cross-sectional homogeneity restriction would produce
an average response across countries, which clearly misses nuanced country-specific dynamics.
Moreover, disregarding time variation not only would affect both the measure of uncertainty (by
disregarding parameter change that helps producing a more accurate unforecastable component
required by the definition of uncertainty), but also would result in a time average of the impulse
responses that neglects changes in the impact and persistence of the shocks. In what follows, I
discuss impulse response functions by variable type.

Industrial production (INP). Related studies usually find strong decreases of economic activity
(measured in this paper by INP as amonthly indicator) following an uncertainty shock. My results
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signal that this depends on the respective country. The time profile of the cumulative response for
the USA and Canada is roughly comparable, with an uncertainty shock decreasing INP between
0.5% and 1% after 1 year. The responses indicate that the effects of uncertainty shocks increase
over time, contrary to the findings of Mumtaz and Theodoridis (2017) for the case of the USA.
This empirical finding points towards the importance of considering international information
in a multi-country model, and decreases in the effects of uncertainty shocks may be an arte-
fact of omitted variable bias in small domestic information sets. The responses for Germany and
France show a similar pattern over time, with smaller negative effects early and late in the sample,
but pronounced decreases in INP around the European sovereign debt crisis. Interestingly, the
responses for the UK and Italy are insignificant. This finding can be explained by closer inspec-
tion of the shapes of the impulse responses using the results in Appendix D. The impact response
in both countries is negative, but there is a strong rebound after several months. The response
for Japan shows substantial and abrupt movements over time. While responses during the Asian
financial crisis of 1997 and the Great Recession are substantial and negative, there are periods
of insignificant 1-year ahead responses. Effects tend to become stronger towards the end of the
sample.

Unemployment rate (UNR). Turning to the UNR, I detect a substantial degree of heterogene-
ity over the cross-section and over time. Interestingly, while the unemployment responses for the
USA, Canada, and France are roughly constant over time, this is not the case in the UK, Germany,
and Japan. An international uncertainty shock increases the UNR in the former three countries by
approximately one percentage point.While responses for Italy are similar in size, they are insignif-
icant throughout the sampling period. The magnitudes of the responses for Japan, on the other
hand, are much smaller, and insignificant early in the sample. In the UK, I detect distinct periods
of large and small effects. Labormarkets in the UKwere less affected in the period surrounding the
Great Recession, with cumulative 1-year ahead responses of about one percentage point (in line
with the other countries). Earlier in the sample, and after the Great Recession, the corresponding
effects are almost two percentage points. Another interesting case is Germany. The responses are
insignificant early in the sample, but range up to 2.5 percentage points after 2005. This increase in
the effects of uncertainty shocks coincides with changes in legislation in Germany resulting in less
rigid labor markets after 2005, which clearly affects the transmission of international uncertainty.

Consumer price inflation (CPI). The cumulative 1-year responses are insignificant for all coun-
tries apart from Italy. This finding can be explained by two counteracting forces identified in the
structural model developed by Fernández-Villaverde et al. (2015). The channels are, on the one
hand, the aggregate demand channel, which states that households reduce consumption after an
uncertainty shock and thereby put downward pressure on prices. On the other hand, there is also
the upward-pricing bias channel, which yields increases in inflation based on profit maximization
concerns by firms. The empirical response is thus a mixture of these two counteracting forces, and
their relative strength is determined by the respective demand elasticity in a given country and the
stickiness of prices. For the case of Italy, the upward-pricing channel clearly dominates (indicat-
ing comparatively flexible prices), with cumulative increases in inflation of about 0.75 percentage
points after 1 year. Albeit the response is insignificant, the aggregate demand channel appears
to be stronger in the case of Germany, with some posterior mass of the responses shifted towards
lower prices. For the other countries, the 1-year cumulative responses are closely centered on zero.
Regarding time variation, my findings indicate that the effects of uncertainty on consumer prices
are rather constant over time.

Interest rates (SIR/LIR). I measure statistically significant increases in long-term rates for all
countries apart from the UK. In this case, there may again be two counteracting forces. First,
debt-financed fiscal policy measures targeting contractionary effects of international uncertainty
shocks increase the amount of government debt, which implies higher interest rates on bonds.
Second, investors typically resort to safer assets in times of uncertainty, where increased demand
lowers prices and thus increases rates (see, e.g. Caballero et al. (2017)). This line of reasoning may
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on the one hand be invoked to explain insignificant responses for USA and UK government bonds
throughout the sampling period. Italy, on the other hand, is less fiscally conservative than most
other countries, and entertains a high level of government debt, which requires substantial risk
premia for additional emission of bonds. Consequently, international uncertainty shocks imply
larger responses in long-term yields for the case of Italy, of about six basis points. A slight grad-
ual increase of the effects of uncertainty shocks on long-term rates over time is visible across all
countries. Short-term rates appear to follow this pattern, with increases following an uncertainty
shock. This finding relates to tighter credit market conditions, with lenders requiring an increased
risk premium. Interestingly, I detect non-negligible time variation in the responses of US short-
term rates. Differentials across countries can be explained by central banks counteracting such
pressures via expansionary monetary policies.

Equity prices. Consistent with the related literature, an international uncertainty shock
decreases EQPs. Theoretically, the uncertainty shock decreases expected dividends while increas-
ing the volatility surrounding such expectations. Jointly with previously discussed increases in
interest rates (reducing the present value of expected dividends) and depending on the risk aver-
sion of investors, this yields decreases in EQPs. A related channel is again the so-called “flight
to safety” towards safer assets (such as government bonds) during uncertain economic episodes,
further decreasing EQPs. Strongest effects with decreases of up to 6% are present in the USA.
Interestingly, the posterior median response is rather constant over time, again contrasting the
findings by Mumtaz and Theodoridis (2017) who disregard an international information set. For
the other economies, effects typically are around −0.5% to −1.5%, apart from Japan, with smaller
effects of about half of a percent.

Financial conditions. International uncertainty shocks lead to tighter financial conditions in
domestic credit markets across all countries. Interestingly, the responses appear to be roughly
constant over time, with a slight trend towards larger effects later in the sample. Consistent
with increases in interest rates, an international uncertainty shock leads to more careful lending
behavior, thereby tightening credit markets which exacerbate the effects of the uncertainty shock
for longer horizons. It is also worth noting that tighter financial conditions often coincide with
recessions.

5. Concluding remarks
In this study, I propose a global vector autoregressive model with time-varying parameters and
factor stochastic volatility in themean (TVP-GVAR-FSVM) tomeasure uncertainty and its impact
on a set of economies. The econometric framework is designed to fulfill the definition of uncer-
tainty proposed by Jurado et al. (2015). Relying on a multi-country model allows for including
a large number of countries and variables (within a regularized framework), thereby capturing a
truly international form of uncertainty. Moreover, the model allows to assess the effects of uncer-
tainty in a unified framework for a panel of countries. Introducing drifting coefficients is due to
the excellent predictive performance of such specifications and the possibility of detecting struc-
tural breaks in transmission channels of uncertainty shocks. The FSVM specification implies a
low-dimensional representation of the full-system variance–covariance matrix, with the common
volatility providing a natural measure of international uncertainty.

I apply the model to a dataset consisting of the G7 economies with time series ranging from
1995 to 2019. I discuss differences and commonalities of the resulting international measure of
uncertainty with several other approaches commonly encountered in the literature. Moreover, I
find that domestic measures of uncertainty often differ substantially from international metrics.
A structural analysis based on impulse response functions shows that the proposed model pro-
duces sensible responses. A key finding different to preceding studies is, however, that using a
large international dataset yields different patterns of time variation in the responses than domes-
tic approaches. Moreover, there is substantial heterogeneity in variable-specific responses across
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countries. My results provide evidence for the need of flexible econometric methods to measure
international uncertainty and its effects. While I detect some differences, the results also suggest
that previous attempts at the econometric measurement of uncertainty are comparatively robust
to introducing several types of heterogeneities.

Notes
1 An incomplete survey of related contributions includes Caldara et al. (2016); Basu and Bundick (2017); Fajgelbaum et al.
(2017); Schaal (2017); Bloom et al. (2018); Alessandri and Mumtaz (2019); Bertolotti and Marcellino (2019), and Ludvigson
et al. (2019).
2 JLN uncertainty measures are available online on the website of Sydney Ludvigson: sydneyludvigson.com. The newspaper-
based framework for measuring uncertainty has been proposed by Baker et al. (2016). They collect and publish uncertainty
measures, following their methodology, across a diverse set of countries online at policyuncertainty.com.
3 Most studies in the related literature focus on single economies, often using US data. Exceptions are Berger et al. (2016),
Mumtaz and Theodoridis (2017), Carriero et al. (2020), Ozturk and Sheng (2018), Mumtaz and Musso (2019), Crespo
Cuaresma et al. (2020), Beckmann et al. (2020), or Bhattarai et al. (2020). Ozturk and Sheng (2018) construct a survey-
based proxy of global uncertainty, while Mumtaz and Theodoridis (2017) and Bhattarai et al. (2020) focus on spillovers in a
narrow sense (e.g. measuring the effects of an uncertainty shock in the USA on other economies). Mumtaz andMusso (2019)
compute international measures of uncertainty without assessing their effects. Beckmann et al. (2020) use proxies to assess
international spillovers of uncertainty, while Berger et al. (2016) and Carriero et al. (2020) rely on a comparatively small
country-specific information set. Crespo Cuaresma et al. (2020) disregard time-varying international transmission channels.
The proposed model is more general and higher dimensional, allowing for various types of heterogeneities, than those in the
latter two papers in this respect.
4 Structural applications of TVPmodels are also common in the literature on assessing the effects of monetary policy shocks,
see Cogley and Sargent (2005); Primiceri (2005), and Paul (2020).
5 For details and a comparison of unrestricted panel and GVARs, see Feldkircher et al. (2020).
6 The sign and scale of the factors is econometrically identified using common normalization restrictions in the upper d × d
block of the loadings matrix. For details on FSV models in general, see Aguilar and West (2000); see Kastner and Huber
(2020) for FSV in the VAR context.
7 This specification is similar to the TVP-GVAR of Crespo Cuaresma et al. (2019), but differs in terms of the full-system
covariance structure and by including volatilities in the mean.
8 This is a multivariate extension the the conventional stochastic volatility in mean model with TVPs (see Chan (2017) and
Huber and Pfarrhofer (2021)).
9 The proposed setup would also allow to impose zero restrictions on the contemporaneous responses of, for example, low-
frequency real macroeconomic quantities. In the empirical application, I refrain from doing so and leave it up to the data
whether the variables respond contemporaneously to uncertainty shocks.
10 An earlier version of this paper featured a two–stage hierarchical prior, additionally pooling information over the cross–
section (introducing shrinkage towards homogeneity and sparsity). The empirical results are not sensitive to this alternative
prior choice, since the common mean of the previous specification was shrunk heavily towards sparsity. Thereby, the two–
level pooling prior resulted in a similar—very sparse—prior specification on the lowest level of the prior hierarchy, but at
a greater computational burden. Note that any hierarchical Gaussian shrinkage prior can be used on the coefficients (see
Cadonna et al. (2020), for a detailed review of related global–local shrinkage priors).
11 The dataset ends before the global Covid–19 pandemic for two reasons. First, systematic measurement errors in initial
releases of statistical agencies during this period may potentially bias structural inference when based on these early vintages
of the data. Second, several authors suggest a difference between purely “economic” uncertainty and the pandemic induced
uncertainty, and the latter must be viewed in light of unprecedented lockdown measures (see, e.g. Altig et al. (2020)). This is
outside the scope of this study.
12 These series are based on the framework proposed in Baker et al. (2016) and downloaded from policyuncertainty.com.
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Appendices
A: Posterior distributions
Constant coefficients and state innovation variances
The full model for country i= 1, . . . ,N is given by:

yit = αit +
P∑

p=1
Aip,tyit−p +

Q∑
q=1

Biq,ty∗
it−q + β itht + Lf t + ηt ,

f t ∼N (0, exp(ht)× Id), ηt ∼N (0,�t).

Using xit =
(
1, {y′

it−p}Pp=1, {y∗′
it−q}Qq=1, ht

)′
and Cit =

(
αit , {Aip,t}Pp=1, {Biq,t}Qq=1, β it

)
, it can be

written in more compact notation, as discussed in Section 2.2. Conditional on {f t}Tt=1 and
the loadings L, the full system of equations reduces to K unrelated regression models with
heteroscedastic errors. This allows for estimation of the system equation-by-equation, greatly
reducing the computational burden. To see this, define ỹt = yt − Lf t and refer to the jth variable
of country i by ỹij,t . As discussed in Section 2.2, I split the TVPs into a time-varying and constant
part to obtain a simple regression model with heteroscedastic errors:

ỹij,t =C′
ij,0xit + C̃′

ij,t

√
�ijxit + ηij,t .
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Moreover, conditional on {C̃ij,t}Tt=1, the innovation variances in
√

�ij can be treated as standard
regression coefficients. Define the vector dij = (C′

ij,0,
√

θij,1, . . . ,
√

θij,K̃)
′. Let • refer to condi-

tioning on all the other parameters, latent states of the model, and the data; then the posterior
distribution of dij is a multivariate Gaussian,

dij|• ∼N (μ̃ij, Ṽij). (A.1)

The posterior moments are Ṽ ij = (X̃′
ijX̃ij +V−1)−1 and μ̃ij = Ṽ ij(X̃

′
ijỸ ij +V−1μ), with

prior moments μ = (μc1, . . . ,μcK̃ , 0, . . . , 0)
′ and V = diag

(
λ2c × (τ 2ci1, . . . , τ

2
ciK̃), λ

2
θ×

(τ 2θ i1, . . . , τ
2
θ iK̃)

)
. The matrix X̃ij is of dimension T × 2K̃, with the tth row given by

[x′
it , C̃

′
ij,t 
 x′

it] exp(− ωij,t/2), Ỹ ij is T × 1 with tth element ỹij,t exp(− ωij,t/2). This nor-
malization enables to draw the coefficients from standard posterior quantities for the parameters
of a linear regression model with standard normal errors.

Factor model for the reduced form shocks
With a similar normalization based on the elements collected in �t , equation (1) can be used to
sample the free elements of the loadings matrix L—given the prior variances λ2L × (τ 2L1, . . . , τ

2
LR)

—and the latent factors f t conditional on each other. Note that the prior variances of the factors
are determined by exp(ht)× �, and posterior moments for the Bayesian linear regression model
apply for sampling the factors t-by-t.

The horseshoe prior
The horseshoe (HS) prior of Carvalho et al. (2010) is used for several parts of the parameter space
(the constant part of the regression coefficients, the state innovation variances and the factor load-
ings). Below, I present a stylized version of the prior and resulting posteriors which is universally
applicable. For a generic parameter bi with prior mean bi for i= 1, . . . ,K, the HS prior is given
by:

bi|ci, d ∼N (bi, c
2
i d

2), ci ∼ C+(0, 1), d ∼ C+(0, 1).
I rely on this prior in its auxiliary representation as in Makalic and Schmidt (2015) for efficient
sampling of the local (ci) and global (d) shrinkage parameters:

c2i |ei ∼ G−1(1/2, 1/ei), d2|f ∼ G−1(1/2, 1/f ), ei ∼ G−1(1/2, 1), f ∼ G−1(1/2, 1).
Here, G−1 denotes the inverse Gamma distribution. This setup yields the following conditional
posterior distributions:

c2i |bi, d, ei ∼ G−1
(
1,

1
ei

+ (bi − bi)2

2d2

)
, d2|bi, ci, f ∼ G−1

(
K + 1
2

,
1
f

+
K∑
i=1

(bi − bi)2

2c2i

)
,

ei|ci ∼ G−1
(
1, 1+ c−2

i

)
, f |d ∼ G−1 (1, 1+ d−2) .

B: MCMC algorithm
The full MCMC algorithm cycles through the following steps:

1. The constant part of the coefficients and the process variances of the coefficients are
simulated equation-by-equation using equation (A.1), discussed in detail in Appendix A.
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2. For {C̃ij,t}Tt=1, I rely on a forward-filtering backward-sampling (FFBS) algorithm (see
Carter and Kohn (1994); Frühwirth-Schnatter (1994)). Conditional on all other param-
eters of the model and the constant part of the parameters, this involves Kalman filtering
the states forward in time to obtain the respective conditional distributions. Subsequently,
a simulation smoother is used to adjust the states based on full-sample information. For a
textbook introduction, see Kim and Nelson (1999).

3. Conditional on the country-specific coefficients and state innovation variances, it is
straightforward to obtain a draw for the prior variances determined by the HS prior using
formulae stated in Appendix A.

4. Simulation of {ωij,t}Tt=1 is carried out using the algorithm set forth in Kastner and
Frühwirth-Schnatter (2014), implemented in the R-package stochvol. The package more-
over draws the innovation variances of the stochastic volatility processes.

5. Given {f t}Tt=1, the factor loadings in L can be sampled based on the moments found in the
context of a conventional linear regression model. Conditional on a draw of L, I obtain the
corresponding HS prior variances. Moreover, the factors can be sampled conditional on L
and ht on a t-by-t basis.

6. The full history for {ht}Tt=1 is sampled via a random walk Metropolis–Hastings algorithm
(Jacquier et al. (2002)). This algorithm establishes conditional priors for each point in
time based on the state equation which defines the joint distribution of ht and ht−1. A
candidate value is proposed from h∗

t ∼N (ht , κh), with κh denoting a tuning parameter
(calibrated such that the acceptance rate lies around 0.25). Combining the conditional
prior at time t with the likelihood of the model allows for computing the acceptance
probability. Conditional on {ht}Tt=1, the innovation variance σ 2

h can be sampled from a
conventional inverse Gamma distributed posterior based on the moments found in the
context of the Bayesian linear regression model.

For the empirical application, I iterate through this algorithm 12,000 times and discard the
initial 2000 draws as burn-in. I consider each fourth draw of the remaining 8000 resulting in
a set of 2000 draws for posterior inference. It is worth mentioning that the algorithm exhibits
satisfactory convergence properties for most parts of the parameter space.

C: Country-specific VARmodels
The country-specific TVP-VAR-FSVM models are defined analogously to the multi-country
framework set forth in equations (1) and (2), subject to several restrictions that rule out spillovers
and joint dynamics. Let εit denote the reduced form shocks to the endogenous variables yit . The
model for country i= 1, . . . ,N is defined as:

yit = αit +
P∑

p=1
Aip,tyit−p + β ithit + εit ,

εit = Lif it + ηit , f it ∼N (0, exp(hit)× Id), ηit ∼N (0,�it).

Different to the multi-country framework, the common uncertainty measure hit is thus defined
specific to the domestic variables. Moreover, this specification rules out both static and dynamic
interdependencies, since Li only loads on a country-specific factor f it and there are no cross-
country lagged relationships between variables (corresponding to Biq,t = 0). I estimate these mod-
els using the same priors and sampling algorithm, with P = 3 and d = 4 on a country-by-country
basis.
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D: Additional empirical results
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Fig. 5. Endogenous variables.
Notes: Time series of the endogenous variables in black. The grey line is the cross-sectional average by variable type. Variable
types in columns, countries in rows.
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Fig. 6. Posterior median of impulse responses to an uncertainty shock over time.
Notes: The lines indicate the posterior median impulse response function; they are colored with respect to time. Gradient
from 1995:04 [red], 2007:08 [light blue], 2019:12 [dark blue].
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Fig. 7. Impact response to international uncertainty shocks.
Notes: The solid red horizontal linemarks zero, the solid black line is the posteriormedian estimate of the contemporaneous
impact response β it . The blue-shaded area covers the 50% posterior credible interval.

https://doi.org/10.1017/S1365100521000663 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000663


Macroeconomic Dynamics 793

−8
−6
−4
−2

0

1996 2019

CA: INP

−3

−2

−1

0

1996 2019

FR: INP

−2
−1

0
1

1996 2019

DE: INP

−1

0

1

1996 2019

IT: INP

−2

−1

0

1996 2019

JP: INP

−0.5
0.0
0.5
1.0
1.5
2.0
2.5

1996 2019

UK: INP

−6

−4

−2

0

1996 2019

US: INP

0

2

4

6

1996 2019

CA: UNR

0

2

4

6

1996 2019

FR: UNR

−10

0

10

1996 2019

DE: UNR

0

2

4

6

1996 2019

IT: UNR

0

2

4

6

1996 2019

JP: UNR

0.0

2.5

5.0

7.5

10.0

1996 2019

UK: UNR

0

2

4

6

1996 2019

US: UNR

−1.0
−0.5

0.0
0.5

1996 2019

CA: CPI

−1.0
−0.5

0.0
0.5
1.0

1996 2019

FR: CPI

−1.0

−0.5

0.0

1996 2019

DE: CPI

0
1
2
3
4
5

1996 2019

IT: CPI

−2

−1

0

1

1996 2019

JP: CPI

−1

0

1

2

1996 2019

UK: CPI

−1
0
1
2

1996 2019

US: CPI

0.0
2.5
5.0
7.5

1996 2019

CA: SIR

−3
−2
−1

0
1
2
3

1996 2019

FR: SIR

−4

−2

0

1996 2019

DE: SIR

0

2

4

6

1996 2019

IT: SIR

0.0

0.5

1.0

1996 2019

JP: SIR

0
2
4
6

1996 2019

UK: SIR

0

5

10

15

1996 2019

US: SIR

0

2

4

6

1996 2019

CA: LIR

0

2

4

6

8

1996 2019

FR: LIR

0
1
2
3
4
5

1996 2019

DE: LIR

0

4

8

12

16

1996 2019

IT: LIR

0

2

4

6

1996 2019

JP: LIR

0
1
2
3
4
5

1996 2019

UK: LIR

0

2

4

6

1996 2019

US: LIR

−5
−4
−3
−2
−1

0

1996 2019

CA: EQP

−4

−3

−2

−1

0

1996 2019

FR: EQP

−3

−2

−1

0

1996 2019

DE: EQP

−3

−2

−1

0

1996 2019

IT: EQP

−3

−2

−1

0

1996 2019

JP: EQP

−3

−2

−1

0

1996 2019

UK: EQP

−15

−10

−5

0

1996 2019

US: EQP

−0.5

0.0

0.5

1.0

1996 2019

CA: FCI

0.0

0.5

1.0

1.5

1996 2019

FR: FCI

0.0

0.5

1.0

1.5

1996 2019

DE: FCI

0.0

0.5

1.0

1.5

2.0

1996 2019

IT: FCI

0.0
0.5
1.0
1.5
2.0

1996 2019

JP: FCI

0.0

0.5

1.0

1996 2019

UK: FCI

−1

0

1

2

1996 2019

US: FCI

Fig. 8. Cumulative 3-year ahead response to international uncertainty shocks.
Notes: The solid red horizontal line marks zero, the solid black line is the posterior median estimate of the cumulative three-
year ahead response. The blue shaded area covers the 50% posterior credible interval.

Cite this article: Pfarrhofer M (2023). “Measuring International Uncertainty Using Global Vector Autoregressions with
Drifting Parameters.”Macroeconomic Dynamics 27, 770–793. https://doi.org/10.1017/S1365100521000663

https://doi.org/10.1017/S1365100521000663 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100521000663
https://doi.org/10.1017/S1365100521000663

	
	Introduction
	Econometric framework
	A multi-country model with drifting coefficients and volatility in the mean
	Rewriting the multi-country model
	Prior distributions
	Posterior simulation

	Data and model specification
	Empirical results
	The measure of uncertainty
	Comparing domestic and international measures of uncertainty
	Dynamic responses to uncertainty shocks

	Concluding remarks
	Appendices
	Posterior distributions
	Constant coefficients and state innovation variances
	Factor model for the reduced form shocks
	The horseshoe prior

	MCMC algorithm
	Country-specific VAR models
	Additional empirical results


