The Parabolic Path of a Projectile.

The proof, usually given, that the path of a projectile in vacuo is a parabola, assumes the equivalent of the equation to a parabola referred to a tangent and the diameter through the point of contact as axes.

The following proof * requires only the theorem, $\mathrm{PN}^{2}=4 \mathrm{AS}$. AN .
Let A be the highest point of the path of the projectile.
Let P be the position of the projectile at time t after the moment of projection; Vcosa, Vsina the horizontal and vertical components of the initial velocity.

Let a vertical line through A and a horizontal line through P meet in \mathbf{N}.

Then
vertical component of velocity at time $t=\mathrm{V} \sin \alpha-g t$, and time required to travel the path $A P=\frac{V \sin a-g t}{g}$;

$$
\begin{aligned}
& \therefore \mathrm{PN}=\frac{\mathrm{V} \cos \alpha(\mathrm{~V} \sin \alpha-g t)}{g} \\
& \text { and } \quad \mathrm{AN}=\frac{(\mathrm{V} \sin \alpha-g t)^{2}}{2 g} ; \\
& \therefore \quad \mathrm{PN}^{2}=\frac{2 \mathrm{~V}^{2} \cos ^{2} \alpha}{g} . \mathrm{AN} . \quad \therefore \text { etc. }
\end{aligned}
$$

[^0]
[^0]: * Given to me by J. G. Gibson, one of my pupils.-P.P.

