
Multiple measures of depression to enhance
validity of major depressive disorder in the UK
Biobank
Kylie P. Glanville, Jonathan R. I. Coleman, David M. Howard, Oliver Pain, Ken B. Hanscombe, Bradley Jermy,
Ryan Arathimos, Christopher Hübel, Gerome Breen, Paul F. O’Reilly and Cathryn M. Lewis

Background
The UK Biobank contains data with varying degrees of reliability
and completeness for assessing depression. A third of partici-
pants completed a Mental Health Questionnaire (MHQ) contain-
ing the gold-standard Composite International Diagnostic
Interview (CIDI) criteria for assessing mental health disorders.

Aims
To investigate whether multiple observations of depression from
sources other than the MHQ can enhance the validity of major
depressive disorder (MDD).

Method
In participants who did not complete the MHQ, we calculated the
number of other depression measures endorsed, for example
from hospital episode statistics and interview data. We com-
pared cases defined this way with CIDI-defined cases for several
estimates: the variance explained by polygenic risk scores (PRS),
area under the curve attributable to PRS, single nucleotide
polymorphisms (SNPs)-based heritability and genetic correla-
tions with summary statistics from the Psychiatric Genomics
Consortium MDD genome-wide association study.

Results
The strength of the genetic contribution increased with the
number of measures endorsed. For example, SNP-based herit-
ability increased from 7% in participants who endorsed only one

measure of depression, to 21% in those who endorsed four or
five measures of depression. The strength of the genetic con-
tribution to cases defined by at least two measures approxi-
mated that for CIDI-defined cases. Most genetic correlations
between UK Biobank and the Psychiatric Genomics Consortium
MDD study exceeded 0.7, but there was variability between
pairwise comparisons.

Conclusions
Multiple measures of depression can serve as a reliable
approximation for case status where the CIDI measure is not
available, indicating sample size can be optimised using the
entire suite of UK Biobank data.
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Background

The emergence of large-scale biobank resources has enabled
genetic association studies of complex human traits to be per-
formed with unprecedented sample sizes, and led to novel
implication of common genetic variants with psychiatric disor-
ders, including major depressive disorder (MDD).1 One of the
analytical challenges in using national biobank resources is
deciding on an approach to define disorder case and control
status using the multiple sources of information available,
each having varying degrees of reliability and completeness.
The UK Biobank contains extensive data items that are relevant
to psychiatric phenotyping, ranging from electronic health
records to self-reported health data, and questionnaires that
rely on retrospective recall of symptoms.2 The extent to which
each source of information accurately classifies cases and con-
trols for a given trait influences any study that is performed,
by affecting power and interpretation of effect sizes.3 In
genetic studies of polygenic traits, large sample sizes are a pre-
requisite for performing a genome-wide association study
(GWAS), but investigators must balance phenotypic rigour
against sample size, and missing data, where individuals do
not meet criteria for either ‘cases’ or ‘controls’. These issues
are particularly salient in disorders such as MDD, which encom-
pass a spectrum of symptom severity and within-disorder
phenotypic heterogeneity.4

Findings from existing GWASs

The impact of sampling decisions, as they relate to the balance
between sample size and misclassification bias, has been demon-
strated in the MDD GWAS literature. The CONVERGE study5

adopted a strategy to reduce phenotypic heterogeneity by recruiting
only patients with recurrent MDD, diagnosed by a health profes-
sional, from a population of Han Chinese females. This was the
first GWAS to identify and replicate genome-wide significant loci,
despite having fewer participants (5303 cases and 5337 controls)
than the largest MDD GWAS at the time (9240 cases and 9519 con-
trols6), indicating the advantage of a comparatively homogeneous
sample.

Other authors have leveraged minimal phenotyping to increase
sample size in MDD GWASs. Using data collected by 23andMe,
Inc., Hyde et al7 identified 75 607 individuals who reported receiv-
ing a clinical diagnosis of depression and 231 747 without a history
of depression, and performed a GWAS in which 15 genome-wide
significant loci were identified. Leveraging data from the UK
Biobank, Howard, et al8 defined ‘broad depression’ as participants
who endorsed ever having seen a general practitioner or psychiatrist
for ‘nerves, anxiety, tension or depression’. This help-seeking
phenotype generated a sample of 113 769 cases and 208 811 controls
in which 14 genome-wide significant loci were identified.

The Psychiatric Genomics Consortium (PGC) leveraged
minimal phenotyping by combining samples from 23andMe and
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a subset of the UK Biobank, with clinically ascertained cases to gen-
erate a sample of 116 404 cases and 314 990 controls, yielding 44
genome-wide significant loci.1 A meta-analysis of the latter three
GWAS1,7,8 produced a sample size of 246 363 cases and 561 190
controls, revealing 102 genome-wide significant loci.9

Although increasing sample sizes have ostensibly increased
genetic discovery, some authors have argued that the genetic archi-
tecture differs between minimally defined and strictly defined
depression phenotypes, and that the former definition may yield
associations with variants that are not specific to MDD. Cai
et al10 compared the genetic architecture of depression phenotypes
derived from different sources of information in the UK Biobank.
The highest single nucleotide polymorphisms (SNP)-based herit-
ability (h2SNP =∼26%) was observed in participants who met criteria
for lifetime depression according to the Composite International
Diagnostic Criteria Short Form11 (CIDI-SF) that comprised part
of an online Mental Health Questionnaire (MHQ). The observed
h2SNP was comparatively lower in depression phenotypes derived
from other sources of information; touchscreen questionnaires
used to define symptom-based depression12 (h2SNP = 19%) and
‘broad depression’ (h2SNP = 14%), hospital episode statistics coded
as ICD-1013 diagnoses (h2SNP = 12%), and nurse interviews used to
define self-reported depression (h2SNP = 11%). Although a high
degree of shared genetic liability was observed between these
depression phenotypes, pairwise genetic correlations (rG) differed
significantly from 1, suggesting phenotype-specific genetic effects.10

One interpretation of these findings is that the MHQ derivation
of lifetime depression is the gold-standard for depression phenotyp-
ing in the UK Biobank, compared with the other sources of pheno-
typic data available. However, the MHQ was only completed by a
subset of 157 366 UK Biobank participants. It is unclear whether
repeated endorsement of depression, from sources other than the
MHQ, can be used to reduce misclassification in participants who
did not complete the MHQ, and thereby increase the sample size
of credible depression ‘cases’.

Aims

Here, we establish five depression measures available in all UK
Biobank participants and create case groups determined by the
number of depression measures endorsed by individuals who did
not complete the MHQ.We observe the strength of the genetic con-
tribution to each case group by estimating the variance in depres-
sion liability explained by polygenic risk scores (PRS), area under
the curve (AUC) attributable to PRS, and SNP-based heritability.
We compare the strength of the genetic contribution in cases deter-
mined by number of endorsements with MHQ-derived lifetime
depression cases to assess whether sample size can be optimised
using all available phenotyping sources, without substantially
increasing misclassification bias.

The choice of a control group also influences effect size esti-
mates in genetic studies,14 and we additionally explore the use of
partially screened or screened controls. We anticipate that our
approach will encourage researchers to consider the benefit of
using multiple phenotype sources to aid classifying cases and con-
trols, not just for depression, but for the extensive range of
complex human disorders available in the UK Biobank.

Method

Participants and phenotyping

The UK Biobank is a prospective health study of over 500 000 indi-
viduals located across the UK. Participants were aged between 40
and 69 at recruitment (2006–2010) and attended a baseline

assessment where information on health was collected with a
touchscreen questionnaire and verbal interview.2 Subsets of partici-
pants completed repeat assessments:

(a) instance (1) n = 20 335 between 2012–2013;
(b) instance (2) n = 42 961 (interview) and n = 48 340 (touchsc-

reen) in 2014; and
(c) instance (3) n = 2843 (interview) and n = 3081 (touchscreen) in

2019.

Participants with valid email addresses (n = 339 092) were invited to
complete the online MHQ in 2017.15

The UKBiobank received ethical approval from the NorthWest -
Haydock Research Ethics Committee (reference 16/NW/0274). This
study was conducted under application number 18177. Participants
provided electronic signed consent at recruitment.2

We identified six measures for depression phenotyping (sum-
marised below) and tabulated the number of individuals who met
the criteria for each. Full definitions and UK Biobank field codes
are given in Supplementary materials, Section 1, available at
https://10.1192/bjo.2020.145.

Help-seeking

‘Help-seeking’ cases endorsed either of the following questions at
baseline or instance 1 or 2: ‘Have you ever seen a general practi-
tioner for nerves, anxiety, tension or depression?’, and ‘Have you
ever seen a psychiatrist for nerves, anxiety, tension or depression?’.

Self-reported depression

‘Self-reported depression’ cases endorsed having experienced
depression (past or present) during the verbal interview at baseline
or instance 1 or 2.

Antidepressant usage

‘Antidepressant usage’ cases endorsed currently taking antidepres-
sant medications during the verbal interview at baseline or instance
1 or 2.

Depression (Smith)

At baseline, 172 751 participants completed an extended touchsc-
reen questionnaire that was enriched for psychosocial questions
in addition to the help-seeking question. From these data, Smith
et al12 defined three depression phenotypes, all of which required
endorsement for ‘help-seeking’: (a) single episode of probable
major depression, (b) probable recurrent major depression (moder-
ate), and (c) probable recurrent major depression (severe). We refer
to these individuals who endorsed ‘help-seeking’ and also met the
additional criteria defined by Smith et al12 as ‘depression (Smith)’.

Hospital (ICD-10)

Hospital episode statistics contain diagnoses recorded with the
ICD-10.13 We accessed the UK Biobank Data Portal Record
Repository to identify ICD-10 diagnoses recorded between April
1997 to October 2016. ‘Hospital (ICD-10)’ cases were individuals
assigned a primary or secondary diagnosis for depressive episode
(F32–F32.9) or recurrent depressive disorder (F33–F33.9).

Lifetime depression (MHQ)

A total of 157 366 participants completed the MHQ. We identified
individuals with a lifetime history of depression from responses to
the CIDI depression module.11 We adopted scoring criteria previ-
ously defined,15 which is equivalent to the DSM criteria for
MDD.16 We classified ‘lifetime depression (MHQ)’ cases as indivi-
duals meeting those criteria.
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Screening

We defined five potential psychosis phenotypes: ‘self-reported
psychosis’, ‘antipsychotic usage’, ‘bipolar (Smith)’, ‘hospital
(ICD-10) psychosis’, and ‘psychosis (MHQ screen)’. Individuals
meeting the criteria for any psychosis phenotype were excluded
from analysis (n = 5482). The derivation of the psychosis pheno-
types is provided in the Supplementary materials, Section 2.

Depression phenotypes determined by number of observed
depression measures

We split the UK Biobank cohort by MHQ participation. In indivi-
duals who did not participate in the MHQ, we calculated endorse-
ment for five depression phenotypes (‘help-seeking’, ‘self-reported
depression’, ‘antidepressant usage’, ‘depression (Smith)’, or ‘hospital
(ICD-10)’) to derive five independent depression case groups. These
groups are referred to as: ‘one measure’, ‘two measures’, ‘three mea-
sures’, ‘four measures’ and ‘five measures’. We performed the same
exercise in individuals who completed the MHQ to observe the
phenotypic correlation between depression measures (excluding
the MHQ) in those that met the criteria for lifetime depression
(MHQ) and those that did not.

Controls

Two control groups were defined. Controls comprised all UK
Biobank participants who did not meet the criteria for any of the
depression or psychosis phenotypes. MHQ controls were restricted
to those who participated in the MHQ and showed no psychiatric
pathology in the MHQ responses. The criteria for controls and
MHQ controls is provided in Supplementary materials, Section 3.

Genetic quality control

The UK Biobank performed preliminary quality control on genotype
data.2 Using genetic principal components provided by the UK
Biobank, we performed 4-means clustering on the first two principal
components to identify and retain individuals of European ancestry.
Quality control was performed using PLINK v1.917 to remove: var-
iants with missingness >0.02 (before individual quality control), indi-
viduals with missingness >0.02, gender-discordant observations,
variants withmissingness >0.02 (after individual quality control), var-
iants departing from Hardy–Weinberg equilibrium (P < 1 × 10−8),
and variants with minor allele frequency <0.01. Relatedness kinship
estimates provided by the UK Biobank were used to identify related
pairs (KING r2 > 0.044)18 and the GreedyRelated19 algorithm was
used to remove one individual from each pair. FlashPCA220 was
used to generate principal components for the European-ancestry
subset. The UK Biobank imputed genotype data to the Haplotype
Reference Consortium21 and the UK10K Consortium22 using the
IMPUTE4 software.2 We removed imputed variants with INFO
score <0.4 and/or minor allele frequency <0.01.

Statistical analyses

We summarised sociodemographic data taken at baseline assessment:
age, gender, socioeconomic status (SES), body mass index (BMI),
smoking status and self-reported overall health rating, where partici-
pants were asked to rate their overall health on a scale of 1 (excellent)
to 4 (poor). We tested for significant differences in sociodemographic
variables between cases and controls usingWelch Two Sample t-tests
in R v3.6.2.23 To investigate the impact of control sampling, all stat-
istical analyses were performed using controls and MHQ controls.

PRS analyses

The PRSice-2 software24 was used to perform PRS analyses. PRS
were calculated using summary statistics from the latest PGC

MDD GWAS.1 The PGC MDD GWAS was performed on multiple
cohorts with varying phenotyping strategies including self-report
(UK Biobank and 23andMe), electronic medical records and clinical
ascertainment. We compared the predictive utility of PRS calculated
using summary statistics from (a) the full PGC MDD sample
(excluding UK Biobank), and (b) a subset of the PGC MDD
sample with self-reported cases removed (additionally excluding
23andMe). Quality control was performed on summary statistics
to remove variants within the major histocompatibility complex,
and variants in linkage disequilibrium (r2 > 0.1) with the lead
variant within a 250 kb region.

We tested for association between PRS calculated at eight
P-value thresholds (PT; 0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1.0)
and case–control status in each UK Biobank depression phenotype
using logistic regressions adjusted for six principal components,
genotyping batch and assessment centre (n = 128 variables). To
control for multiple testing across PT, ten thousand permutations
were performed for each model using linear regression for compu-
tational efficiency.We report observed and empirical P-values at the
optimal PT and the corresponding R2 estimates, transformed to the
liability scale using lifetime risk of 15%.1 To increase sample size,
‘four measures’ and ‘five measures’ cases were combined in subse-
quent analyses. The predictive ability of PRS was assessed using
AUC with the R pROC package.25 We compared AUC for the
null model (six principal components, genotyping batch and assess-
ment centre on depression phenotypes) with the full model with
PRS at the optimal PT, using DeLong’s test for two correlated
receiver operating characteristic (ROC) curves.

SNP-based heritability and genetic correlation analyses

To overcome computational limitations when performing GWASs
with a large number of covariates (n = 128), we regressed six princi-
pal components, genotyping batch and assessment centre on
depression case–control status using logistic regression with the
glm function in R v3.6.2.23 GWASs were performed on residuals
for the five depression groups (one; two; three; four and five
measures combined; and lifetime depression (MHQ)) using
both controls sets. GWASs were performed in BGENIE v1.22

and summary statistics were uploaded to FUMA26 to create
Manhattan and QQ plots.

SNP-based heritabilities were calculated with linkage disequilib-
rium score regression (LDSC v1.0.027,28) using summary statistics
excluding variants with INFO scores <0.9 and pre-computed
linkage disequilibrium scores (1000 Genomes European data).
SNP-based heritabilities were transformed to the liability scale
using lifetime risk of 15%1 and, for comparison across a range of
population prevalences (1% to 60%), using the transformation pro-
posed by Lee et al29 (equation 8).

Genetic correlations (rG) were estimated using LDSC v1.0.0.27,28

The rG between each UK Biobank depression phenotype and PGC
depression phenotype was calculated using summary statistics
from both the full PGC MDD sample (excluding UK Biobank,
116 404 cases and 314 990 controls), and the subset of the PGC
MDD sample with self-reported cases removed (excluding UK
Biobank and 23andMe, 45 591 cases and 97 674 controls).1

The study design is summarised in Fig. 1.

Results

Of individuals who did not participate in the MHQ, 93 414 met the
criteria for at least one other depression phenotype (Table 1). These
cases had poorer sociodemographic characteristics than lifetime
depression (MHQ) cases (n = 28 982) and controls (n = 232 552),
including lower SES, higher current smoking prevalence, higher
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Remove participants with missing data on the MHQ (n = 134)
Remove participants with any indication for psychosis (n = 1659)
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Fig. 1 Study design.

Nine-item Patient Health Questionnaire (PHQ-9) included in theMental Health Questionnaire (MHQ); Section A,MHQ: participants indicated prior diagnosis for any of 16mental health
disorders. Refer to Supplementary section 3.2 for PHQ-9 and MHQ Section A details. a. Controls, UK Biobank (UKB) participants screened for any of the five psychosis and six
depression phenotypes: help-seeking, self-reported depression, antidepressant usage, depression (Smith), hospital (ICD-10) or lifetime depression (MHQ); 162 130 controls are non-
MHQ participants; 70 422 controls areMHQ participants (57 805MHQ controls + 12 617who did notmeet Composite International Diagnostic Criteria Short Form (CIDI-SF) criteria for
lifetime depression (MHQ) but were excluded fromMHQ controls because of psychopathology indicated in MHQ Section A, or above threshold on PHQ-9). QC, quality control; AUC,
area under the curve; GWAS, genome-wide association study; SNP, single nucleotide polymorphism; MDD, major depressive disorder; PRS, polygenic risk score; PGC, Psychiatric
Genomics Consortium.

Table 1 Sociodemographic information for depression cases and controls

n
Age, mean

(s.d.)
Female,

%

Townsend
Deprivation Index,

mean (s.d.)a
Current

smoker, %
Mean BMI

(s.d.)
Health rating,b

mean (s.d.)

Phenotyping in individuals who did not
participate in the MHQ

By source of information
Hospital (ICD-10) 10 198 56.7 (8.09) 62 −0.29 (3.46) 22 29.0 (5.94) 2.7 (0.83)
Self-reported depression 15 091 55.8 (7.88) 65 −0.65 (3.35) 18 28.5 (5.62) 2.6 (0.82)
Depression (Smith) 15 037 56.1 (8.12) 63 −1.00 (2.98) 15 28.0 (5.19) 2.4 (0.77)
Antidepressant usage 20 057 57.0 (7.83) 68 −0.70 (3.35) 18 28.9 (5.68) 2.7 (0.82)
Help-seeking 89 278 56.6 (7.97) 64 −1.02 (3.20) 14 27.9 (5.16) 2.3 (0.77)

By degree of endorsement
One measure 57 321 56.9 (7.96) 63 −1.15 (3.18) 13 27.6 (4.95) 2.3 (0.74)
Two measures 21 468 56.5 (8.08) 64 −0.92 (3.17) 15 28.0 (5.24) 2.4 (0.78)
Three measures 9 738 56.1 (7.90) 66 −0.67 (3.35) 19 28.6 (5.60) 2.6 (0.81)
Four measures 4 245 56.0 (7.88) 67 −0.37 (3.34) 21 29.3 (6.14) 2.8 (0.84)
Five measures 642 56.4 (7.63) 67 −0.47 (3.23) 22 29.4 (5.64) 2.8 (0.83)

Total 93 414 56.7 (7.98) 64 −1.01 (3.21) 14 27.9 (5.17) 2.4 (0.78)
Phenotyping in individuals who participated

in the MHQ
Lifetime depression (MHQ) 28 982 54.3 (7.53) 69 −1.46 (2.95) 9 27.2 (5.04) 2.1 (0.73)
MHQ controls 57 805 56.8 (7.65) 48 −2.02 (2.65) 6 26.5 (4.14) 1.8 (0.62)
Phenotyping in all UK Biobank participants

(screening for any indication of
depression or psychosis)

Controls 232 552 57.1 (8.10) 47 −1.65 (2.89) 9 27.2 (4.53) 2.0 (0.68)

MHQ, Mental Health Questionnaire.
a. Negative scores indicate less deprivation.
b. Health rating was self-reported on a scale of 1 (excellent) to 4 (poor).
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BMI and poorer self-reported health (all P-values <1 × 10−109 in
pairwise comparisons). The magnitude of difference increased
when compared with MHQ controls (n = 57 805), who on average
had more favourable sociodemographic outcomes than the larger
set of controls. Lifetime depression (MHQ) cases also had poorer
sociodemographic characteristics compared with both control
groups (excluding current smoking status and BMI compared
with the larger set of controls), although the magnitude of case–
control differences was attenuated (all P-values <6 × 10−25 in pair-
wise comparisons) from that observed with the 93 414 cases
derived from sources other than the MHQ.

Comparing groups within and outside the MHQ sample, those
who participated in the MHQ (n = 126 261) had more favourable
sociodemographic characteristics than those who did not partici-
pate in the MHQ (n = 259 443), including higher SES, fewer
current smokers, lower BMI and higher self-reported health (all
P-values <3 × 10−89 in pairwise comparisons).

Supplementary Tables 1–11 provide the number of participants
within subcategories (for example by ICD-10 code) for depression
and psychosis in the entire UK Biobank sample.

Figure 2 shows the 93 414 individuals who did not participate in
the MHQ but met the criteria for at least one other depression
phenotype, stratified into independent groups according to the
number of depression measures endorsed. For each stratum, the
number of cases and prevalence as a proportion of controls (n =
232 552) was: one measure n = 57 321 (19.8%); two measures n =
21 468 (8.5%); three measures n = 9738 (4.0%); four measures n=
4245 (1.8%); and five measures n = 642 (0.3%).

Of the 28 982 individuals who met CIDI-SF criteria for lifetime
depression, 9304 (32%) did not endorse any of the five non-MHQ
depression measures and 19 678 (68%) endorsed at least one. Of
the 95 486 MHQ participants who did not meet CIDI-SF criteria
for lifetime depression, 71 848 (75%) did not endorse any of the
five non-MHQ depression measures and 23 638 (25%) endorsed
at least one. Of individuals who did not meet CIDI-SF criteria,
37 681 (39%) were excluded from MHQ controls for

psychopathology indicated within or outside the MHQ as follows:
19 165 excluded for recent depressive symptoms indicated on the
nine-item Patient Health Questionnaire (PHQ-9)30 within the
MHQ; 11 288 excluded for prior diagnosis of mental health disor-
ders indicated in screening section A of theMHQ; 7228 had no indi-
cation of psychopathology according to the MHQ but met the
criteria for at least one of the five non-MHQ depression measures.
The remaining 57 805 participants that did not meet CIDI-SF cri-
teria and endorsed no other measure of depression within or
outside the MHQ were defined as MHQ controls. These data are
summarised in Fig. 3. Supplementary Fig. 1 shows the phenotypic
agreement between each of the five non-MHQ depression measures
within MHQ participants.

The associations between MDD PRS and case–control status of
UK Biobank depression phenotypes were significant (all empirical
P-values = 1 × 10−4) (Fig. 4). The variance in liability (R2) explained
by the PRS ranged between 0.52% (one measure) and 3.54% (four
measures). Across depression phenotypes, R2 increased when
cases were compared with MHQ controls, and when PRS were cal-
culated using summary statistics from the full PGC MDD sample
(excluding UK Biobank), compared with the subset of the PGC
MDD (excluding UK Biobank and 23andMe). Full results of each
test of association are shown in Supplementary Table 12 and
Supplementary Fig. 2. Four and five measures were combined in
subsequent analyses to increase power.

The differences in AUC between null and full models were signifi-
cant for each depression phenotype (maximum P-value = 2 × 10−25).
The increase in AUC attributable to PRS for models including con-
trols ranged between 1.41% (one measure) and 3.01% (three mea-
sures). For models including MHQ controls, the increase in AUC
attributable to PRS ranged between 1.29% (one measure), and
3.60% (lifetime depression (MHQ)). AUC attributable to PRS gen-
erally increased with the number of depression measures endorsed,
maximising in lifetime depression (MHQ) when compared with
MHQ controls (Fig. 5). Supplementary Figure 3 shows ROC
curves for null and full models across depression phenotypes.
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Fig. 2 Number of depression measures observed in participants who did not complete the Mental Health Questionnaire (MHQ).

To the left of the main graph the horizontal green bars indicate the number of individuals who met the criteria for any of the corresponding depression phenotypes. Vertical bars
indicate the number of individuals endorsing combinations of the five depression phenotypes. Vertical bars are coloured by the number of depressionmeasures endorsed (see key).
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Assuming a population prevalence of 15% across depression phe-
notypes, SNP-based heritability (h2SNP) estimates ranged between 7%
(s.e. = 0.005) in one measure and 21% (s.e. = 0.029) in four and five
measures combined when GWAS were performed using controls
(Fig. 6). h2SNP increased when GWASwere performed withMHQ con-
trols, ranging between 17% (s.e. = 0.009) in onemeasure to 33.6% (s.e.
= 0.034) in four and five measures combined. Supplementary Figs 4–8
show Manhattan and QQ plots, Supplementary Table 13 shows
FUMA references for each GWAS performed, and Supplementary
Tables 14 and 15 show the full results from BGENIE and LDSC.

Across a range of population prevalences between 1% and 60%,
higher h2SNP was observed for models including MHQ controls

compared with controls (Fig. 7). In GWAS using controls, the
lowest h2SNP across the range of population prevalences was in one
measure, followed by two measures, lifetime depression (MHQ),
three measures, and four and five measures combined. We observed
near complete overlap in h2SNP estimates between two measures and
lifetime depression (MHQ), and between the three measures and
the four and five measures combined. In GWAS using MHQ con-
trols, the lowest h2SNP across the range of population prevalences
was in lifetime depression (MHQ), followed by one measure, two
measures, four and five measures combined, and three measures.
Near complete overlap in h2SNP estimates was also observed
between three measures and four and five measures combined.
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responses), individuals that did not meet Composite International Diagnostic Criteria Short Form (CIDI-SF) criteria but had other indications for psychopathology within theMHQ (i.e.
nine-item Patient Health Questionnaire (PHQ-9) or Screening Section A). Excluded (non-MHQ measures), individuals that did not meet CIDI-SF criteria and had no indication for
psychopathology within the MHQ, but met the criteria for at least one of the five non-MHQ depression measures.
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The genetic correlations (rG) between UK Biobank depression
phenotypes and PGC depression phenotypes were between 0.62
and 0.90 (P-value <6 × 10−25 across all tests for the null hypothesis

that rG = 0) (Fig. 8). The lowest estimate of rG was observed between
three measures (compared with MHQ controls) and the PGC
sample including 23andMe (rG = 0.62, 95% CI: 0.57–0.67). For the
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measures of depression, genetic correlations were highest for GWAS
using controls, and with summary statistics excluding 23andMe. For
Lifetime depression (MHQ), the highest genetic correlations were
for GWAS using MHQ controls, and with the PGC sample exclud-
ing 23andMe (rG = 0.90, 95% CI: 0.80–1.00). Supplementary
Table 16 and Supplementary Fig. 9 show estimates of rG between
all UK Biobank depression phenotypes.

Discussion

Main findings

We examined whether multiple endorsements of depression can
reduce misclassification and increase the sample of depression
cases in the UK Biobank. Our investigation took an approach to
classifying depression that aims to fully utilise the UK Biobank by
incorporating all sources of information. We found that including
at least two measures of depression can serve as a reliable approxi-
mation where the MHQmeasure is not available and improve case–
control classification. Further, increasing the number of measures
provides an increasingly reliable approximation.

The results followed from defining independent groups of
depression cases according to the number of depression measures
endorsed in sources other than the MHQ. We compared cases
defined using this approach with CIDI-defined cases for the follow-
ing: variance explained by PRS, AUC attributable to PRS and SNP-
based heritability. We further explored how these differ using par-
tially screened controls compared with fully screened MHQ
controls.

Our conclusion is based on three key observations.

(a) We observed higher values of genetic estimates (variance
explained by PRS, AUC attributable to PRS and SNP-based
heritability) with increasing endorsement of depression
measures.

(b) When cases were defined by two or more measures of depres-
sion, these genetic estimates approximated or exceeded those
observed in lifetime depression (MHQ).

(c) Control sampling resulted in substantial differences between
genetic estimates, which were higher when analyses were per-
formed with MHQ controls.

PRS analyses showed the variance in depression liability increased
with the number of measures endorsed, indicating increasing
genetic similarity with the PGC MDD sample. The variance
explained by PRS was comparable between one measure and life-
time depression (MHQ), although interpretation depends on popu-
lation prevalence, which is difficult to estimate. By contrast, AUC
allows comparisons that are independent of population prevalence.
The highest AUC attributable to PRS was observed in lifetime
depression (MHQ) and was more than double the estimate in
one-measure cases. These results indicate that between-group dif-
ferences in the variance explained by PRS on the liability scale
may be masked by equivalent prevalence assumptions across the
groups.

However, we found that SNP-based heritability estimates were
approximately equivalent for lifetime depression (MHQ) and two
measures across a range of population prevalences between 1%
and 60%. Assuming lifetime risk of 15%, h2SNP for lifetime depres-
sion (MHQ) ranged between 11% and 13%, depending on the
control group. This range is notably different to the h2SNP estimate
of 26% reported by Cai et al10 for the corresponding phenotype
named ‘lifetimeMDD’. Much of the difference is accounted for by
methodology and lifetime risk assumptions. Cai et al10 used pheno-
type correlation–genotype correlation (PCGC) software31 and the
observed prevalence of ‘lifetimeMDD’ in the UK Biobank (24%)
to determine liability scale h2SNP. Using LDSC and lifetime risk of
15%, Cai et al10 report h2SNP of 16% for ‘lifetimeMDD’, which is
modestly higher than our estimate, likely because of minor differ-
ences in the derivation of lifetime depression (MHQ). Notably,
LDSC provides a lower bound of h2SNP compared with other
methods, thus our h2SNP estimates would increase using other soft-
ware packages.32 However, for computational efficiency and con-
sistency with the published literature, we used LDSC and lifetime
risk of 15% to calculate h2SNP. Our estimate for lifetime depression
(MHQ) broadly aligns to the aforementioned GWASs of depression
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that have adopted the same approach. Using LDSC and lifetime risk
of 15%, Hyde et al,7 Howard et al,8 Wray et al1 and Howard et al9

reported liability h2SNP of 6%, 10%, 9% and 9% for their respective
definitions of depression.

SNP-based heritability increased with the number of measures
endorsed, and we posit this results from increasing phenotypic
homogeneity within depression case groups. Onemeasure was com-
prised mainly of help-seeking, but also included ostensibly stricter
phenotypes including antidepressant usage, hospital (ICD-10) and
self-reported depression (no participants had a single measure for
depression (Smith) since it requires the endorsement of help-
seeking). However, single observations may reflect indications
other than depression. For example, help-seeking also captures indi-
cations for anxiety, and antidepressants can be prescribed for pain
management. We therefore regard the number of endorsed mea-
sures as more important for phenotypic validity than the specific
measure endorsed – those with only one measure are less likely to
represent clinical populations than those with multiple measures.

The precision of h2SNP estimates declines in the smaller samples
with three or more endorsements, however, the confidence internals
in these groups showed little or no overlap with cases defined by
fewer endorsements or with lifetime depression (MHQ), indicating
significantly higher h2SNP across a range of population prevalences.
Multiple endorsements may also represent greater severity, but
this is not easily demonstrable in the current study because we
have not directly measured severity. Cai et al10 observed higher
h2SNP (32%) in the subset of ‘lifetimeMDD’ who met more stringent
criteria for recurrent MDD. Further work is needed to explore dis-
order severity and SNP-based heritability, which may be possible in
the UK Biobank using features such as length of episode and level of
impairment.

The pattern of pairwise correlations with the PGC MDD varied
across UK Biobank depression phenotypes and was highest with
lifetime depression (MHQ) (rG = 0.9). However, in cases deter-
mined by one, two, four or five measures of depression, genetic cor-
relations with the PGC MDD were almost as high, ranging between
0.84 and 0.86. Across UK Biobank depression phenotypes, genetic
correlations with the PGC MDD excluding 23andMe were higher
than with the PGC MDD including 23andMe. This result indicates
greater similarity with the clinically ascertained PGC sample, which
may lend support to the validity of UK Biobankmeasures in general.

We observed lower genetic correlations with PGC MDD when
GWAS of cases defined by number of endorsements were per-
formed with MHQ controls. Recent work has demonstrated that
estimates of genetic parameters increase when sampling controls
from the left tail of an underlying liability distribution.14 We posit
that MHQ controls represent the left tail of the liability distribution
and this is supported by the observation that MHQ controls were
healthier than controls for health indicators correlated with depres-
sion prevalence. That is, MHQ controls had higher SES, fewer
smokers, lower BMI and better self-reported health ratings than
controls. Our results also revealed larger effect sizes across PRS,
AUC and SNP-based heritability analyses when using MHQ con-
trols, compared with controls. MHQ control characteristics may
make the UK Biobank dissimilar to the PGC, thus reducing the
observed genetic correlation. However, we note that this is not uni-
versally supported in the analysis; with lifetime depression (MHQ)
we observed higher genetic correlations with PGC phenotypes when
models included MHQ controls.

Of participants who met CIDI-SF criteria, 32% would have
otherwise gone undetected as cases of depression as they did not
endorse any of the five non-MHQ measures of depression.
Further, of participants who completed the MHQ and did not
meet CIDI-SF criteria for lifetime depression, 39% were excluded

from MHQ controls because they had some other indication for
psychopathology within or outside the MHQ, for example
roughly half were excluded because of recent depressive symptoms
indicated on the PHQ-9, but did not fulfil CIDI-SF diagnostic cri-
teria. This is consistent with the view that a percentage of cases
would go undiagnosed in primary settings as they never sought
help, and a percentage of those who sought help do not fulfil diagnos-
tic criteria for MDD. This highlights the advantage of having both
MHQ and non-MHQ sources of information to cross-validate
depression phenotypes. Using both sources of information allowed
us to define ‘super healthy’MHQcontrols, screened for subdiagnostic
depressive symptoms. Although improving the definition of controls
may increase power to detect genetic effects, the use of ‘super healthy’
controls omits the intermediate portion of the genetic liability distri-
bution, which can increase SNP-based heritability estimates in the
absence of a liability scale correction.14 We therefore regard the
SNP-based heritabilities calculated using controls as the more accur-
ate of the estimates reported here. Future studies with the main
objective of genetic discovery may derive power benefits from strict
control screening, such as used here to define MHQ controls.

Implications

Our results converge on the conclusion that repeated measures of
depression may be used to reduce misclassification of depression
cases and controls and increase the sample size of credible depres-
sion cases in addition to those defined using the MHQ. Cai et al10

compared depression phenotypes derived from different sources
of information in the UK Biobank and showed that the strength
of the genetic contribution was highest in CIDI-defined cases. We
propose that our findings build upon this work by considering
that the number of endorsed measures of depression can be used
to decrease misclassification by identifying those participants who
perhaps had a single mild episode of depression but would not
meet the CIDI diagnostic criteria.

This study enhances the choices available for depression pheno-
typing in the UK Biobank. The appropriate balance between maxi-
mising sample size and minimising misclassification depends
naturally on the study to be performed. For GWASs, two measures
showed a high genetic correlation with PGC MDD summary statis-
tics, and individuals with two or more measures would contribute
36 093 cases that could be combined with 28 982 lifetime depression
(MHQ) cases. Amid increasing use of biobank resources for highly
powered psychiatric studies, our study presents a framework that
can be adopted for assessing mental health disorders in any
biobank that contains multiple sources of information with
varying degrees of validity and completeness.

Limitations

Representativeness is a noted limitation of UK Biobank phenotyp-
ing. A healthy volunteer bias has been observed in the UK
Biobank,33 although it has been proposed that this bias does not
invalidate exposure–outcome relationships, but may result in atte-
nuated association.34 However, this selection bias extends to
MHQ participation, where we observed more favourable sociode-
mographic characteristics in MHQ participants compared with
non-participants. The differences that we observed in the genetic
architecture of depression defined within and outside of the MHQ
sample may be influenced by the polygenic basis of MHQ participa-
tion, which has been shown to correlate negatively with psychiatric
phenotypes.35 A further limitation of the ability to extrapolate our
results is the lack of representation in individuals of diverse ances-
tries. The literature has demonstrated attenuation in prediction
between training and target samples of different ancestry,36
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highlighting the need to build training data in varied ancestral
populations.

A further relevant limitation relates to the completeness of the
data, and to the opportunity individuals have to endorse specific
measures. For example, the extended touchscreen questionnaire
used to define ‘depression (Smith)’ was only available to approxi-
mately a third of the UK Biobank cohort. Regional, procedural or
other criteria may have influenced the ability of all measures to be
generically applied to the UK Biobank data-set. For instance,
recording of data within Scotland excludes linkage to psychiatric
hospital episode data. As a result, the reported number of measures
may be lower than identified.

In conclusion, using a simple phenotyping approach, we created
independent groups of depression cases determined by the number
of depression measures endorsed in the UK Biobank. Our results
indicate that two or more endorsements of depression can be
used to reduce misclassification between cases and controls, often
yielding genetic estimates that approximate, or exceed, the gold-
standard CIDI criteria included in the MHQ. Although this study
has not considered the relative benefit of considering one specific
measure over another, the findings of the study highlight that any
combination provides a good approximation of depression where
the MHQ is not available. With the recent addition of primary
care data for approximately half of UK Biobank participants,
there is an opportunity to integrate this additional source of infor-
mation to identify more credible depression cases. We anticipate
that this phenotyping approach can be used across other complex
traits, to fully utilise the UK Biobank resource.
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