
JFP 19 (1): 107–142, 2009. c© 2008 Cambridge University Press

doi:10.1017/S0956796808006989 First published online 9 September 2008 Printed in the United Kingdom

107

Type-safe higher-order channels with
channel locality1

SUNGWOO PARK and HYEONSEUNG IM

Department of Computer Science and Engineering,

Pohang University of Science and Technology, Republic of Korea

(e-mail: {gla,genilhs}@postech.ac.kr)

Abstract

As a means of transmitting not only data but also code encapsulated within functions,

higher-order channels provide an advanced form of task parallelism in parallel computations.

In the presence of mutable references, however, they pose a safety problem because references

may be transmitted to remote threads where they are no longer valid. This paper presents

an ML-like parallel language with type-safe higher-order channels. By type safety, we mean

that no value written to a channel contains references, or equivalently, that no reference

escapes via a channel from the thread where it is created. The type system uses a typing

judgment that is capable of deciding whether the value to which a term evaluates contains

references or not. The use of such a typing judgment also makes it easy to achieve another

desirable feature of channels, channel locality, that associates every channel with a unique

thread for serving all values addressed to it. Our type system permits mutable references

in sequential computations and also ensures that mutable references never interfere with

parallel computations. Thus, it provides both flexibility in sequential programming and ease

of implementing parallel computations.

1 Introduction

The advent of multicore processors and the impending demise of free lunch (Sutter,

2005) have changed the conventional wisdom on computer hardware (Asanovic et al.,

2006). There is little room for increasing clock frequency while increasing hardware

parallelism is now the only viable way of improving processor performance. Such

a radical change in the trend of computer hardware has revitalized research on

language support for parallel programming, as evidenced by recent parallel languages

such as X10 (Charles et al., 2005), Fortress (Allan et al., 2007), Chapel (Cray Inc.,

2005), Data Parallel Haskell (Chakravarty et al., 2007), and Manticore (Fluet et al.,

2007).

Depending on the granularity of parallel computations, parallel programming

models are divided into data parallelism or task parallelism. Data parallelism applies

an independent operation to each element of a collection of homogeneous data and

1 This is an extended version of the paper that appeared in The 12th ACM SIGPLAN International
Conference on Functional Programming (Park, 2007).

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

108 S. Park and H. Im

often results in massive parallel computations. A simple case of data parallelism is

flat data parallelism in which the independent operation is sequential. A more sophis-

ticated model called nested data parallelism (Blelloch, 1996) allows the independent

operation itself to be a parallel computation. Task parallelism executes cooperative

threads in parallel which communicate via shared memory or channels in order to

perform synchronization. The use of shared memory simplifies programming tasks,

especially if a high-level abstraction such as software transactional memory (Shavit &

Touitou, 1995) is provided, but it entails the memory consistency problem. The

use of channels empirically requires more effort than programming with shared

memory (Hochstein et al., 2005), but it eliminates the memory consistency problem.

This paper is primarily concerned with an extension of an ML-like language, i.e., a

call-by-value functional language with mutable references, that offers task parallelism

with higher-order channels (but without logically shared memory). Higher-order

channels transmit not only data, such as integers and channel names, but also pieces

of code encapsulated within functions. The capability to transmit code between

threads opens a new range of communication constructs such as futures, remote

evaluation, code on demand, and hot code replacement.

Because of the similarity between task parallelism in parallel computations and

process parallelism in distributed computations, our target language can also be

thought of as a distributed language in which processes share no global memory

and communicate via higher-order channels only. Thus, although our work primarily

aims at designing higher-order channels for parallel languages, it can be equally

applied to distributed languages.

1.1 Type-safe higher-order channels

The main problem with higher-order channels is that in the presence of mutable

references, code containing references may travel between threads, but in the

absence of logically shared memory, a reference created by a thread cannot be

dereferenced at another thread. Previous parallel or distributed languages with

a similar programming model avoid this problem by dispensing with mutable

references altogether, as in Manticore (Fluet et al., 2007), by designing the runtime

system so as to create copies of heap cells whenever their references are transmitted,

as in Facile (Knabe, 1995) and JoCAML (Fournet et al., 2003), or by raising runtime

exceptions when references are transmitted, as in Alice (Rossberg et al., 2005).

This paper takes a different approach by developing type-safe higher-order

channels. The type system ensures that no reference escapes from the thread where

it is created so that all values written to channels remain valid even after being

transmitted to remote threads. To be specific, suppose that a thread is executing a

channel write a!M where a is a channel for a certain type A and M is a term of the

same type A. Evaluating M yields a value V which is then transmitted to another

thread executing a channel read a?. Type safety of channels means that V contains

no references and that V is valid at both threads regardless of its type A.

Conventional type systems, however, are inadequate to guarantee type safety of

channels. The crux of the problem is that a typical typing judgment M : A does not

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 109

indicate whether the result of evaluating M contains references or not. For example,

a term

(λv : int. λx : int. x+ v) 0

of type int → int evaluates to a value containing no reference, but another term

(λr :ref int. λx : int. x+ !r) (ref 0)

of the same type evaluates to a value containing a reference. Therefore, in order to

guarantee type safety of channels, we need at least two kinds of typing judgments:

an ordinary typing judgment asserting that a given term evaluates to a value that

may contain references, or a local value, and another stronger typing judgment

asserting that a given term evaluates to a value containing no references, or a global

value.

The present work is based on the modal type system in our previous work (Park,

2006) which uses two typing judgments and a new modality � to distinguish between

local values and global values in the context of distributed computations. We simplify

the type system by combining the two typing judgments into a single typing judgment

M : A@L where L is a locality indicating whether the value to which M evaluates

is local (L = L) or global (L = G). The connection between two localities L and G

is established by a new construct box M and a modal type �A such that M : A@G

implies box M : �A@L, i.e., if M evaluates to a global value of type A, then box M

has type �A. In order to explicitly bind variables to global values, we use another

construct letbox x=M in N such that letbox x= box M ′ in N evaluates N after

binding variable x to the global value to which M ′ evaluates to.

As our modal type system enables us to express that the result of evaluating a

term is a global value and contains no references, it is straightforward to guarantee

type safety of channels: we simply require that a channel write a!M typecheck only

if M : A@G holds. As a result, a channel read a? always returns a global value and

thus a? : A@G automatically holds.

1.2 Channel locality

The type system developed for higher-order channels makes it easy to achieve

an important feature of task parallelism, channel locality, which states that every

channel is associated with a unique thread for reading off all values sent to it.

Channel locality obviates the need for a sophisticated mechanism in the runtime

system for dynamically determining the destination of each value written to a

channel.

Most of the previous approaches to enforcing channel locality (Fournet et al.,

1996; Amadio, 1997; Yoshida & Hennessy, 1999; Schmitt & Stefani, 2003) have

been developed for calculi for concurrent processes based on the pi-calculus. We

find that these approaches are difficult to apply to our setting which uses as a base

language the simply typed lambda-calculus with mutable references instead of the

pi-calculus or its variant.

The main idea for achieving channel locality in our work is to split channels into

two kinds, read channels and write channels, and treat read channels as local values

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

110 S. Park and H. Im

but write channels as global values. new〈A〉, a construct for creating channels for

type A, evaluates to a pair of read channel ar and write channel aw such that ar

accepts only those values written to aw . Since ar is a local value, channel reads from

ar is allowed only at the thread where ar is created. Howerver, channel writes to

aw is allowed at any thread because aw is a global value. Thus a pair of ar and aw

can open unidirectional communications from any thread to the thread to which ar

belongs.

It is easy to classify read channels as local values and write channels as global

values. First we assign different types, namely read channel types and write channel

types, to read channels and write channels, respectively. Then we treat read channel

types like reference types so that read channels cannot be a part of a global value,

but define write channel types as primitive types whose values are all inherently

global (like integers). For this reason, our decision to distinguish between read

channels and write channels has a different motivation from previous work in

which read channels and write channels are also distinguished, but channel locality

is not enforced (Odersky, 1995) or enforced only syntactically (Zhang & Potter,

2002).

1.3 Contributions

We develop an ML-like parallel language λPC
� which features type-safe higher-

order channels with channel locality. Its type system inherits from the type system

of Park (2006) the ability to distinguish between local values and global values.

Its operational semantics models parallel computations where multiple threads

communicate via higher-order channels. Channel locality is a direct consequence of

assigning different types to read channels and write channels.

Although, λPC
� deals primarily with type safety for task parallelism, providing

type safety for data parallelism is also straightforward by virtue of its ability to

distinguish between local values and global values. As an example, consider a

parallel map construct mapP which applies a function f to each element of an

array in parallel. By requiring that f be a global value so that child threads share

no references, we can prevent mapP from running into the memory consistency

problem. In this regard, λPC
� serves as a unified framework for achieving type

safety for both data parallelism and task parallelism when mutable references are

allowed.

Removing mutable references simplifies the implementation of a parallel language

because lack of mutable references implies automatic data separation in parallel

computations. For example, Manticore (Fluet et al., 2007) excludes mutable refer-

ences from its base language (a subset of Standard ML) in order to simplify its

implementation. Parallel dialects of Haskell, such as pH (Nikhil & Arvind, 2001)

and Data Parallel Haskell (Chakravarty et al., 2007), also benefit from lack of

mutable references. In comparison, λPC
� permits mutable references in sequential

computations, but its type system ensures that mutable references never interfere

with parallel computations. Thus the type system of λPC
� wins us both flexibility in

sequential programming and ease of implementing parallel computations.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 111

Fig. 1. Abstract syntax for λ�.

1.4 Organization of the paper

Section 2 presents the base language λ� for our work. Section 3 discusses the logical

meaning of the modality �. Although, the type system differentiates global values

from local values, λ� is just a sequential language to which global values are of

no use. Hence, we develop a parallel operational semantics for modeling parallel

computations. Section 4 presents the resultant language λP
� which comes with a

new construct spawn {M} for creating new threads. Section 5 extends λP
� with

new constructs for higher-order channels to obtain λPC
� . Section 6 illustrates how to

implement various communication constructs in λPC
� such as futures, bidirectional

communications, shared references, remote evaluation, code on demand, and hot

code replacement. Section 7 discusses two extensions of λPC
� (including type safety

for data parallelism). Section 8 discusses related work, and Section 9 concludes.

Most proofs are given in Appendix.

2 Base language λ�

This section presents the base language λ� which is essentially a reformulation of

the call-by-value language with modal types �A defined in our previous work (Park,

2006).

2.1 Definition of λ�

Figure 1 shows the abstract syntax for λ� which is based on the simply typed

lambda-calculus with product types A× A, sum types A+A, reference types ref A,

and the fixed point construct fix x :A.M. Primitive types P are a subset of ordinary

types A whose values are all inherently global. (We will define the set of primitive

types later.) ref M allocates a fresh reference, !M dereferences an existing reference,

and M := N assigns a new value to a reference. A location l, of type ref A, is a

value for a reference. A new construct box M has a modal type �A, and another

new construct letbox x=M in N expects M to be of type �A.

We use a typing judgment Γ | Ψ � M : A@L to mean that under typing context

Γ and store typing Ψ, term M evaluates to a value of type A with locality L. The

resultant value is local if L = L and global if L = G. (That is, L means “here only”

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

112 S. Park and H. Im

Fig. 2. Type system of λ�.

and G “everywhere.”) A binding x : A@L in a typing context Γ means that x holds a

local value of type A if L = L, or a global value of type A if L = G. A store ψ maps

locations to values, and a store typing Ψ maps locations to types of these values.

We assume a relation G < L to reflect the fact that a global value may be used as a

local value, but not vice versa.

Figure 2 shows the type system of λ�. The rule Var uses L � L′ to mean either

L = L′ or L < L′. The rules →I through Loc are all derived from typing rules in

the simply typed lambda-calculus by annotating each typing judgment with “here

only” locality L. In order to relate terms in these rules with “everywhere” locality

G, we need a separate application of the rule GVal or Prim (to be explained later)

which connects the two localities L and G. In contrast, the rules ×I, ×EL, and

×ER for product types use the same unspecified locality L in their premise and

conclusion, which makes sense only because we assume the call-by-value semantics

(where (M,N) is a value only when both M and N are also values). For example, if

both M and N evaluate to global values V and V ′, respectively, we may associate

(M,N) with locality G because (M,N) indeed evaluates to a global value (V , V ′). If

we assume the call-by-name semantics and consider (M,N) as a value for any term

M and N, however, all these rules become invalid when L = G. For example, if both

!l1 and !l2 evaluate to global values such as (), the rule ×I incorrectly deduces that

(!l1, !l2) (which contains two locations and thus is not a global value) is a global

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 113

value. Similarly the call-by-value semantics allows the rules +IL, +IR, and +E for

sum types to use the same unspecified locality L in their premise and conclusion.

The modality � has an introduction rule �I which states that M in box M always

evaluates to a global value. The conclusion of the rule �I uses locality L because

box M itself may not be a global value if M contains references. For example, if l

is a location of type ref int, box !l is not a global value although it has a modal

type �int. The elimination rule �E uses an unspecified locality L in the conclusion

because M in letbox x=M in N does not specify whether N evaluates to a local

value or a global value. That is, regardless of the type of M, the value to which N

evaluates can still be either local or global.

The rule GVal is the main rule for connecting the two localities L and G. Its

premise uses the following definition of ΓG which extracts bindings for variables

holding global values from Γ:

ΓG = {x : A@G | x : A@G ∈ Γ}

Then the premise ΓG | · � V : A@L states that V is a value that uses no local values

(because of ΓG) and no references (because of an empty store typing); hence V is

a global value. Since V is already a value and thus requires no further evaluation,

we may say that V evaluates to a global value, which is expressed in the conclusion

Γ | Ψ � V : A@G.

The rule Prim uses the notion of primitive type to provide another way to connect

the two localities L and G. A type is primitive if all its values are inherently global.

For example, unit is a primitive type because its only value, (), typechecks under

any typing context and store typing, as shown in the rule Unit. (Other examples of

primitive types would be int for integers and bool for boolean values.) Formally, we

define primitive types as follows:

Definition 2.1

P is a primitive type if Γ | Ψ � V : P@L implies ΓG | · � V : P@L.

Then terms of primitive types always evaluate to global values, and Γ | Ψ � M : P@L

automatically implies Γ | Ψ � M : P@G as shown in the rule Prim.

Under the type system in Figure 2, the rule Unit justifies the use of unit as a

primitive type. In addition, P1 × P2 and P1+P2 are primitive types if both P1 and P2

are primitive types, since values of product type P1 × P2 have the form (V1, V2), and

values of sum type P1+P2 have the form inl V or inrV . Thus, we use the following

set of primitive types for λ�:

primitive type P ::= unit | P × P | P+P

Proposition 2.2 justifies the relation G < L.

Proposition 2.2

The rule
Γ | Ψ � M : A@G

Γ | Ψ � M : A@L
Global is admissible.

Proof

By induction on the structure of Γ | Ψ � M : A@G. �

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

114 S. Park and H. Im

Fig. 3. Operational semantics for λ�.

Figure 3 shows the operational semantics for λ�. It uses a reduction judgment

M | ψ → M ′ | ψ′ which means that term M with store ψ reduces to term M ′ with

store ψ′. A β-reduction M →β M
′ uses a capture-avoiding substitution [N/x]M

defined in a standard way. φ[[M]] fills the hole [] in evaluation context φ with term

M. [l 	→ V]ψ replaces l 	→ V ′ in store ψ by l 	→ V . ψ(l) denotes the value to which

l is mapped under ψ; dom(ψ) denotes the set of locations mapped under ψ.

Since letbox x= box φ in N is an evaluation context, letbox x= box M in N

further evaluates M so as to substitute the resultant value for x in N, even though

box M is already a value. Thus, letbox x=M ′ in N first evaluates M ′ to identify

how to obtain a value to be substituted for x, and then obtains such a value by

evaluating M, if M ′ evaluates to box M. Since M evaluates to a global value, all

occurrences of x in N become bound to a global value, as required by the rules �E.

2.2 Examples

We illustrate the use of the modality � with the two examples given in Section 1.1.

We assume a primitive type int, a typing rule Int for integers, and an infix operator

+ for adding two integers.

The first term

M1 = (λv : int. λx : int. x+ v) 0

has type int → int and indeed evaluates to a global value λx : int. x+ 0, but cannot

be used to build a term of type �(int → int):

(no typing rule applicable)

Γ | Ψ � (λv : int. λx : int. x+ v) 0 : int → int@G

Γ | Ψ � box (λv : int. λx : int. x+ v) 0 : �(int → int)@L
�I

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 115

The reason why box M1 fails to have type �(int → int) is that the type of λv :

int. λx : int. x+ v, namely int → (int → int), does not express that a global value of

type int → int is returned. That is, the type system is unaware that the inner λ-

abstraction λx : int. x+ v can be a global value, since a binding v : int@G is not

added to the typing context. In order to build an operationally equivalent term of

type �(int → int), we need to explicitly specify that 0 is a global value as follows:

M ′
1 = letbox v= box 0 in λx : int. x+ v

Note that typechecking box M ′
1 adds a binding v : int@G to the typing context:

Γ | Ψ � 0 : int@L
Int

Γ | Ψ � 0 : int@G
Prim

Γ | Ψ � box 0 : �int@L
�I

.

.

.

ΓG, v : int@G, x : int@L | · � x+ v : int@L

ΓG, v : int@G | · � λx : int. x+ v : int → int@L
→I

Γ, v : int@G | Ψ � λx : int. x+ v : int → int@G
GVal

Γ | Ψ � letbox v= box 0 in λx : int. x+ v : int → int@G
�E

Γ | Ψ � box letbox v= box 0 in λx : int. x+ v : �(int → int)@L
�I

The second term

M2 = (λr :ref int. λx : int. x+ !r) (ref 0)

has type int → int and does not evaluate to a global value. The type system also

prevents M2 from being used to build a term of type �(int → int) because there is

no typing derivation of Γ | Ψ � M2 : int → int@G:

(no typing rule applicable)

Γ | Ψ � (λr :ref int. λx : int. x+ !r) (ref 0) : int → int@G

Γ | Ψ � box (λr :ref int. λx : int. x+ !r) (ref 0) : �(int → int)@L
�I

Rewriting M2 as letbox r= box ref 0 in λx : int. x+ !r does not help because ref 0

does not return a global value.

Note that although M2 does not evaluate to a global value, M2 itself is closed and

contains no free references. Hence, for example, λ :unit.M2 is a global value (where

denotes a fresh variable) and box λ :unit.M2 has type �(unit → (int → int)):

...
ΓG | · � λ :unit. (λr :ref int. λx : int. x+ !r) (ref 0) : unit → (int → int)@L

Γ | Ψ � λ :unit. (λr :ref int. λx : int. x+ !r) (ref 0) : unit → (int → int)@G
GVal

Γ | Ψ � box λ :unit. (λr :ref int. λx : int. x+ !r) (ref 0) : �(unit → (int → int))@L
�I

2.3 Type safety of λ�

The proof of type safety of λ� needs a store typing judgment Ψ � ψ okay which

means that store ψ conforms to store typing Ψ. Ψ(l) denotes the type to which l is

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

116 S. Park and H. Im

mapped under Ψ; dom(Ψ) denotes the set of locations mapped under Ψ.

dom(Ψ) = dom(ψ)

for every l ∈ dom(ψ)

· | Ψ � ψ(l) : Ψ(l)@L

Ψ � ψ okay
Store

The proof of progress (Theorem 2.3) uses a canonical forms lemma, as usual.

The proof of type preservation (Theorem 2.6) uses a substitution theorem (Theo-

rem 2.4). It also uses Lemma 2.5 whose proof uses the definition of primitive types

(Definition 2.1).

Theorem 2.3 (Progress)

Suppose · | Ψ � M : A@L. Then either

(1) M is a value, or

(2) for any store ψ such that Ψ � ψ okay, there exist some term M ′ and store ψ′

such that M | ψ → M ′ | ψ′.

Theorem 2.4 (Substitution)

If Γ | Ψ � N : A@L, then Γ, x : A@L | Ψ � M : C@L implies Γ | Ψ � [N/x]M : C@L.

If ΓG | · � V : A@L, then Γ, x : A@G | Ψ � M : C@L implies Γ | Ψ � [V/x]M : C@L.

Lemma 2.5

If · | Ψ � V : A@G, then · | · � V : A@L.

Proof

By induction on the structure of the proof of · | Ψ � V : A@G. We need to con-

sider the rules Prim, GVal, ×I, +IL, and +IR. In the case of the rule Prim,

· | Ψ � V : A@L holds where A is a primitive type, and · | · � V : A@L follows by

Definition 2.1. �

Theorem 2.6 (Type preservation)

Suppose · | Ψ � M : A@L, Ψ � ψ okay, and M | ψ → M ′ | ψ′. Then there exists a

store typing Ψ′ such that · | Ψ′ � M ′ : A@L, Ψ ⊂ Ψ′, and Ψ′ � ψ′ okay.

3 Logic for λ�

The type system for modal types �A is unusual in that it differentiates values (i.e.,

terms in weak head normal form) from ordinary terms, as shown in the rule GVal.

This differentiation implies that the logic corresponding to the modality � via the

Curry–Howard isomorphism requires a judgment that inspects not only hypotheses

in a proof but also the proof structure itself (e.g., inference rules used in the proof).

Thus, the modality � sets itself apart from other modalities and is not found in any

other logic. Later we will compare the modality � with other modalities in modal

logic.

In the pure fragment of λ� without primitive types and reference types, the

modality � shows similarities with modal possibility � and lax modality © in

Pfenning and Davies (2001). Specifically a proof-theoretic analysis of � gives rise

to a new form of substitution 〈M/x〉N which is defined inductively on the structure

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 117

of the term being substituted (namely M) instead of the term being substituted into

(namely N). Let us interpret a β-reduction as the reduction of a typing derivation

in which an introduction rule is followed by a corresponding elimination rule. For

example, the β-reduction for the connective → may be seen as the reduction of the

following typing derivation in the pure fragment of λ� where we omit following

store typings:

Γ, x : A@L � M : B@L

Γ � λx :A.M : A → B@L
→I

Γ � N : A@L

Γ � (λx :A.M) N : B@L
→E

→β Γ � [N/x]M : B@L

Likewise we obtain a β-reduction for � from the reduction of a typing derivation

in which the introduction rule �I is followed by the elimination rule �E:

Γ � M : A@G

Γ � box M : �A@L
�I

Γ, x : A@G � N : C@L

Γ � letbox x= box M in N : C@L
�E

→β Γ � 〈M/x〉N : C@L

To see why 〈M/x〉N should be defined inductively on the structure of M, observe

that the reduction of letbox x= box M in N requires an analysis of M instead of N.

The reason is that only a value can be substituted for x, but M may not be a value

yet; therefore we have to analyze M to decide how to transform the whole term

so that x is eventually replaced by a value. Conceptually N should be replicated at

those subterms within M that can be taken as the result of evaluating M, so that

M and N are evaluated exactly once and in that order. If M is already a value V ,

we reduce the whole term to [V/x]N. Thus we are led to define 〈M/x〉N as follows:

〈V/x〉N= [V/x]N

〈letbox x′ =M ′ in M ′′/x〉N= letbox x′ =M ′ in 〈M ′′/x〉N

Note that we cannot define 〈M1 M2/x〉N because in the absence of primitive types

and the rule Prim, there is no typing derivation of Γ � M1 M2 : A@G and thus

box M1 M2 cannot be well typed.

In the presence of primitive types, the β-reduction

letbox x= box M in N →β 〈M/x〉N

is no longer valid because letbox x= box M in N may typecheck while 〈M/x〉N
is undefined. For example, M = M1 M2 of type unit satisfies Γ � M : unit@G by

the rule Prim, but 〈M1 M2/x〉N is undefined. Intuitively the rule Prim disguises

an unanalyzable term of a primitive type as an analyzable term. Thus, in order to

reduce letbox x= box M in N, the operational semantics of λ� is forced to reduce

M into a value V first, instead of analyzing M to transform the whole term. Then an

ordinary substitution [V/x]N suffices for the reduction of letbox x= box V in N.

We close this section with a brief discussion of the properties of the modality �.

For a given type in λ�, we give a term of that type if it is inhabited. We ignore the

fixed point construct, in the presence of which all types are inhabited.

• A �→ �A
An ordinary term does not necessarily evaluate to a global value. This implies

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

118 S. Park and H. Im

that � is different from modal possibility � and lax modality © because both

A → � A and A → ©A hold.

• �A → A

λx :�A. letbox y= x in y

A global value is a special case of an ordinary term. A special case ��A → �A
means that � is an idempotent modality.

• �A → ��A
λx :�A. letbox y= x in box box y

A global value itself is global.

• �(A → B) �→ (�A → �B)

A global λ-abstraction does not necessarily return a global value. This implies

that � is different from modal necessity � because �(A → B) → (�A → �B)

holds (Pfenning & Davies, 2001).

• (�A → �B) �→ �(A → B)

A λ-abstraction that accepts and returns global values is not necessarily global.

• �(A× B) → (�A× �B)

λx :�(A× B). letbox y= x in (box fst y, box snd y)

This type is inhabited because the typing rules ×EL and ×ER use an unspecified

locality L instead of a specific locality L or G.

• (�A× �B) → �(A× B)

λx :�A× �B. letbox y1 = fst x in letbox y2 = snd x in box (y1, y2)

This type is inhabited because the typing rule ×I uses an unspecified locality

L.

• �(A+B) → (�A+�B)

λx :�(A+B). letbox y= x in case y of inl z1 ⇒ inl box z1 | inr z2 ⇒ inr box z2
This type is inhabited because the typing rule +E uses an unspecified locality

L.

• (�A+�B) → �(A+B)
λx :�A+�B.
box (case x of inl y1 ⇒ letbox z1 = y1 in inl z1 | inr y2 ⇒ letbox z2 = y2 in inr
z2) This type is inhabited because the typing rules +IL and +IR use an

unspecified locality L.

4 λP
� with a parallel operational semantics

Although, its type system uses localities and modal types to differentiate global

values from local values, λ� is just a base language for sequential computations

to which global values are of no use. That is, its operational semantics focuses

only on the sequential computation at a hypothetical thread and there is no way

to exploit global values for communications between threads. This section extends

λ� with a parallel operational semantics which models multiple threads running

concurrently (but not communicating with each other yet). The resultant language is

called λP
�.

Figure 4 shows the definition of λP
�. At the syntax level, λP

� augments λ� with a

new construct spawn {M}. The typing rule Spawn requires M in spawn {M} to

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 119

Fig. 4. Definition of λP
�.

contain no dangling references so that it is safe to evaluate M at a fresh thread

with an empty store, as shown in the rule Spawn . (It does not matter whether M

evaluates to a global value or not.)

A configuration π, as an unordered set, represents the state of a parallel computa-

tion by associating each thread γ with a term M being evaluated at γ and a store ψ

allocated at γ, written as {M | ψ @ γ}. A configuration typing Π records the type of

the term being evaluated at each thread. The type system of λP
� uses the same typing

judgment as λ�, except that it also uses a configuration typing judgment Π � π okay

to mean that configuration π has configuration typing Π. The rule Conf may be

regarded as the definition of the configuration typing judgment, where dom(Π) and

dom(π) denote the set of threads in Π and π, respectively. For each thread γ such

that {M | ψ @ γ} ∈ π, it checks the existence of a store typing Ψγ whose domain

includes all locations present in M and ψ.

The parallel operational semantics uses a configuration transition judgment π ⇒ π′

to mean that configuration π reduces (by the rule Red) or evolves (by the rule Spawn)

to configuration π′. The rule Red says that a parallel computation consists primarily

of sequential computations performed at individual threads. The rule Spawn starts a

new thread γ′ by evaluating V (). Since box V guarantees that V is a global value, it

is safe to evaluate V () with an empty store at γ′. Note that a configuration transition

is nondeterministic because a configuration may choose an arbitrary thread to which

either rule is applied.

Type safety of λP
� consists of configuration progress (Theorem 4.1) and configuration

typing preservation (Theorem 4.2).

Theorem 4.1 (Configuration progress)

Suppose Π � π okay. Then either

(1) π consists only of {V | ψ @ γ}, or

(2) there exists π′ such that π ⇒ π′.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

120 S. Park and H. Im

Theorem 4.2 (Configuration typing preservation)

Suppose Π � π okay and π ⇒ π′. Then there exists a configuration typing Π′ such

that Π ⊂ Π′ and Π′ � π′ okay.

5 λPC
� with higher-order channels

This section extends λP
� with higher-order channels to obtain λPC

� . In order to achieve

channel locality, λPC
� splits channels into two kinds: read channels and write channels.

A read channel ar is assigned a read channel type 〈A〉r , and is treated as a local

value so that it cannot escape from the thread at which it is created. A write channel

aw is assigned a write channel type 〈A〉w , and is treated as a global value so that it

can be transmitted to another thread. Since values written to write channels travel

between threads, they cannot be local values. That is, only global values are allowed

to be written to write channels, and consequently all values read from read channels

are also global.

Figure 5 shows the definition for λPC
� . A read channel ar of type 〈A〉r receives

a global value of type A from its corresponding write channel aw via a channel

read ar ?. A write channel aw of type 〈A〉w transmits a global value V of type A

to its corresponding read channel ar via a channel write aw !V . A new construct

new〈A〉 dynamically creates a pair of read channel ar and write channel aw to open

unidirectional communications from aw to ar . ar 	→ A in a read channel typing Φr

means that ar has type 〈A〉r ; similarly aw 	→ A in a write channel typing Φw means

that aw has type 〈A〉w .

The type system of λPC
� uses a read channel typing Φr and a write channel typing

Φw in each typing judgment:

Γ | Φw ; Φr ; Ψ � M : A@L

All the previous typing rules are extended in a straightforward way by adding Φr

and Φw to each typing judgment. The only exception is the rule GVal whose premise

(ΓG | Φw ; ·; · � V : A@L) uses an empty read channel typing because read channels

are local values. Accordingly we redefine primitive types as follows:

Definition 5.1

P is a primitive type if and only if Γ | Φw ; Φr ; Ψ � V : P@L implies ΓG|Φw; ·; · � V :

P@L.

Under the new definition of primitive types, a write channel type 〈A〉w becomes a

primitive type (see the rule ChanW):

primitive type P ::= · · · | 〈A〉w

The rule R? uses an unspecified locality L in the conclusion so that Proposition 2.2

continues to hold. The rule W! says that channel writes accept only global values.

The rule Store uses an extended store typing judgment Φw ; Φr ; Ψ � ψ okay to check

that store ψ conforms to store typing Ψ under Φr and Φw .

The rule Conf is of particular importance in λPC
� because it verifies channel locality

in a given configuration. Note that an extended configuration typing judgment

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 121

Fig. 5. Definition of λPC
� .

Φw ; Π � π okay shares a write channel typing Φw for all threads (because write

channels are global values), but does not assume a specific read channel typing.

Instead, for each thread γ such that {M | ψ @ γ} ∈ π, it infers a unique read channel

typing Φr
γ , in addition to a store typing Ψγ , by typechecking all read channels present

in M and ψ. The uniqueness of Φr
γ for each thread γ, as stated in the third premise,

implies that no two threads share common read channels, and thus amounts to

channel locality in π.

The parallel operational semantics uses the same configuration transition judgment

π ⇒ π′ as in λP
�. The premise of the rule New means that read channel ar and write

channel aw are unique across the entire set of threads. The rule Sync says that a

channel read ar ? and a channel write aw !V occur synchronously. (An asynchronous

version of λPC
� would require a different parallel operational semantics, but the same

type system would continue to work.) The rule Sync is nondeterministic in that it

does not specify how to choose a pair of channels read and write to be synchronized

together.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

122 S. Park and H. Im

As with λP
�, type safety of λPC

� consists of configuration progress (Theorem 5.3)

and configuration typing preservation (Theorem 5.5). Proofs of Theorems 5.3 and 5.5

use type safety for sequential computations in λPC
� (Propositions 5.2 and 5.4). Note

that in Theorem 5.5, a configuration transition π ⇒ π′ preserves channel locality:

Φw ; Π � π okay and Φ′w ; Π′ � π′ okay imply that π and π′ satisfy channel locality,

respectively.

Proposition 5.2 (Progress)

Suppose · | Φw ; Φr ; Ψ � M : A@L. Then either

(1) M is a value,

(2) M = φ[[new〈A〉]],

(3) M = φ[[ar ?]],

(4) M = φ[[aw !V]],

(5) M = φ[[spawn {M}]], or

(6) for any store ψ such that Φw ; Φr ; Ψ � ψ okay, there exist some term M ′ and

store ψ′ such that M | ψ → M ′ | ψ′.

Theorem 5.3 (Configuration progress)

Suppose Φw ; Π � π okay. Then either

(1) π consists only of {V | ψ @ γ}, {φ[[ar ?]] | ψ @ γ}, and {φ[[aw !V]] | ψ @ γ},
or

(2) there exists π′ such that π ⇒ π′.

Proposition 5.4 (Type preservation)

Suppose · | Φw ; Φr ; Ψ � M : A@L, Φw ; Φr ; Ψ � ψ okay, and M | ψ → M ′ | ψ′. Then

there exists a store typing Ψ′ such that · | Φw ; Φr ; Ψ′ � M ′ : A@L, Ψ ⊂ Ψ′, and

Φw ; Φr ; Ψ′ � ψ′ okay.

Theorem 5.5 (Configuration typing preservation)

Suppose Φw ; Π � π okay and π ⇒ π′. Then there exist a write channel typing Φ′w

and a configuration typing Π′ such that Φw ⊂ Φ′w , Π ⊂ Π′, and Φ′w ; Π′ � π′ okay.

6 Examples

This section presents examples of implementing various communication constructs

in λPC
� : futures, bidirectional communications, shared references, remote evaluation,

code on demand, and hot code replacement. Throughout the examples, we use the

following syntactic sugar:

let x = M in N ≡ (λx : . N) M

let (x, y) = M in N ≡ let z = M in

let x = fst z in let y = snd z in N

let rec x = M in N ≡ let x = fix x : .M in N

6.1 Futures

Future (Baker & Hewitt, 1977; Halstead 1985) is a communication construct which

can be thought of as a pointer to a thread. After the thread finishes its computation,

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 123

the pointer is implicitly dereferenced whenever the result is requested. We use read

channels to simulate a restricted variant of the future that should be explicitly

dereferenced by the programmer.

In order to create a future, first we need to evaluate a term M at a fresh thread.

We implement the future with a read channel ar such that the result of evaluating

M is written to the corresponding write channel aw . Since the result of evaluating

M is written to a write channel, M must evaluate to a global value; hence box M

must typecheck:

box M : �A

Moreover, M is to be evaluated at a remote thread and must contain no references.

Hence, box M itself must be a global value, otherwise M cannot be transmitted to

a remote thread

box box M : ��A

Thus future, our construct for futures, expects a value of type ��A and returns a

read channel of type 〈A〉r to which the result of the computation at a fresh thread

is sent

future : ��A → 〈A〉r
@G

future = λx :��A. letbox x′ = x in

let (yr, yw) = new〈A〉 in

letbox y′
w = box yw in

let = spawn {letbox z= x′ in y′
w !z} in

yr

As an example, consider future box box M which evaluates M at a fresh thread.

First x′ is bound to a global value box M, which is then transmitted to the fresh

thread. By evaluating M at the fresh thread, we obtain a global value z, which is

finally written to write channel y′
w . Note that even though yw is actually bound to

a global value (namely a write channel), we need to explicitly mark it as a global

value by introducing another variable y′
w because it is used inside spawn (see the

rule Spawn). Typically we use a term of the form letbox x′ = box x in M to inform

the type system that variable x has a primitive type and is thus bound to a global

value (because the type system does not automatically keep track of the locality of

variables of primitive type).

6.2 Bidirectional communications

Communications from a child thread back to its parent thread are easy to implement

because write channels are global values—we start the child thread by evaluating

a term containing write channels whose corresponding read channels belong to the

parent thread. However, for communications in the other direction, the child thread

needs to somehow return a write channel to the parent thread, which can be done

only via another write channel originating from the parent thread. Thus, in order to

receive a write channel of type 〈A〉w from a child thread, the parent thread creates a

pair of read channel ar of type 〈〈A〉w 〉r and write channel aw of type 〈〈A〉w 〉w . Then

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

124 S. Park and H. Im

the parent thread sends the child thread aw , through which a write channel of type

〈A〉w is sent back to the parent thread.

We design spawnBI, our construct for bidirectional communications (or for

unidirectional communications from a parent thread to a child thread), in such

a way that given a value of type �(〈A〉r → C), say box λxr :〈A〉r .M, it creates a

child thread evaluating M with xr bound to a read channel ar of type 〈A〉r and

returns a corresponding write channel aw to the parent thread

spawnBI : �(〈A〉r → C) → 〈A〉w
@G

spawnBI = λz :�(〈A〉r → C). let (xr, xw) = new〈〈A〉w 〉 in

letbox x′
w = box xw in

letbox z′ = z in

let = spawn{ let (yr, yw) = new〈A〉 in

let = x′
w !yw in

z′ yr}
in

xr ?

Note that even though yw is not marked explicitly as a global value, channel write

x′
w !yw still typechecks by the rule W! because write channels have primitive types.

A minor drawback of spawnBI is that by the rule Sync, the channel write x′
w !yw

blocks the child thread until it synchronizes with the corresponding channel read

xr ?. Thus the evaluation of z′ yr , the core of the child thread, may not start

immediately after new〈A〉 returns a pair of read and write channels. To start the

evaluation of z′ yr immediately, the child thread could delegate the channel write

to another new thread. In general, a channel write M !N can be replaced by the

following term which spawns a new thread for performing the channel write and

returns immediately (unless an evaluation of M or N gets stuck with a channel read

or a channel write):

letbox xM = box M in

letbox xN = box N in

spawn {xM !xN}

The same idea can be applied to all instances of channel writes in the examples

given later.

6.3 Shared references

We implement a shared reference for type A as a thread with two components: a

read channel of type 〈〈A〉w +A〉r , as an interface, and a global value of type A, as

its current content. Any thread may request the current content of the reference

by sending a value inl aw (of type 〈A〉w +A) to the read channel, in which case the

current content is written back to aw . To update the content of the reference, it

sends a value inrV (also of type 〈A〉w +A) to the read channel, in which case the

current content is updated with a new value V .

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 125

As an illustration, we use spawnBI to create a shared reference for type int

initialized with a value 0

let cellw =

spawnBI box λcell r :〈〈int〉w +int〉r . let rec f = λn : int.

case cell r ? of inl chw ⇒ let = chw !n in f n

| inr v ⇒ f v

in

f 0

Then we use a write channel in cellw to implement get , of type unit → int, for

requesting the current content of the reference and set , of type int → unit, for

updating the content of the reference; note that each call to get creates a fresh pair

of read channel and write channel

letbox cell ′
w = box cellw in

letbox get = box λ :unit. let (xr, xw) = new〈int〉 in

let = cell ′
w ! (inl xw) in

xr ?

in

letbox set = box λn : int. cell ′
w ! (inr n) in

(get , set)

Since both get and set are global values, they may be present at any thread, which

means that the reference can be shared by all threads.

6.4 Remote evaluation

Remote evaluation (Stamos & Gifford, 1990) is a mechanism for exploiting a set

of services exported by a server in a flexible way. A client sends to the server

a program whose execution by the server may invoke these services. That is, it

sends not arguments for these services but a program utilizing these services. We

demonstrate how to implement remote evaluation in λPC
� with a server providing a

service for calculating the successor of an integer.

We use a write channel of type 〈int × 〈int〉w 〉w as an interface to the service. The

idea is that the service responds to (n, aw) written to the write channel by writing

n + 1 back to aw . A call to spawnBI with the following global value Vservice as an

argument starts the service and returns its interface:

Vservice : �(〈int × 〈int〉w 〉r → unit)@G

Vservice = box λsr :〈int × 〈int〉w 〉r . let rec f = λ :unit. let (n, ch) = sr ? in

let = ch ! (n+ 1) in

f ()

in

f ()

The following term starts the server and returns its interface which is a write

channel reqw of type 〈〈int × 〈int〉w 〉w → unit〉w . Since reqw is a global value, any

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

126 S. Park and H. Im

client can use the service by sending a global value λs : 〈int × 〈int〉w 〉w .M. Upon

receiving such a global value, the server binds s to the interface to the service and

evaluates M:

let reqw = spawnBI box λreq r :〈〈int × 〈int〉w 〉w → unit〉r .

let sw = spawnBI Vservice in

let rec f = λ :unit. let = (req r ?) sw in f () in

f ()

Here is an example of a client which calculates the successor of the successor of 0.

Note that it sends a global value f to the server only once while the server invokes

the service twice. The client waits for the result by performing a channel read cr ?.

let (cr, cw) = new〈int〉 in

letbox c′
w = box cw in

letbox f= box λs :〈int × 〈int〉w 〉w .

let (chr, chw) = new〈int〉 in

let = s! (0, chw) in

let = s! (chr ?, chw) in

let = c′
w ! (chr ?) in

()

in

let = reqw !f in

cr ?

6.5 Code on demand

Code on demand is the opposite mechanism of remote evaluation in that a client

can download code from a code server instead of sending code to a remote server.

As an example, we implement a code server which, upon request, returns the global

value Vservice of type �(〈int × 〈int〉w 〉r → unit) given in Section 6.4. It expects from

a client a write channel of type 〈�(〈int × 〈int〉w 〉r → unit)〉w , to which Vservice is sent

back:

let reqw = spawnBI box λreq r :〈〈�(〈int × 〈int〉w 〉r → unit)〉w 〉r .

let rec f = λ :unit. let = (req r ?)!Vservice in f () in

f ()

The following client downloads Vservice and starts the service for its own use:

let (cr, cw) = new〈�(〈int×〈int〉w 〉r →unit)〉 in

let = reqw !cw in

let sw = spawnBI (cr ?) in

let (chr, chw) = new〈int〉 in

let = sw ! (0, chw) in

chr ?

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 127

6.6 Hot code replacement

The capability to transmit code between threads enables us to implement a server

whose code can be replaced at runtime without stopping it. The following term

starts a server which accepts a pair of integer n and write channel ch and writes to

ch the result of applying a certain function f to n. Initially f is given as an identity

function, but we can change the behavior of the server at runtime by performing a

channel write sw ! (inr fnew) for a certain global value fnew of type int → int.

let sw = spawnBI box λsr :〈(int × 〈int〉w)+(int → int)〉r .

let rec loop = λf : int → int.

case sr ? of inl (n, ch) ⇒ let = ch ! (f n) in

loop f

| inr fnew ⇒ loop fnew

in

loop (λx : int. x)

7 Extensions to λPC
�

This section discusses two extensions to λPC
� . As it is routine to incorporate these

extensions into the definition of λPC
� , we only sketch the main ideas and omit the

details.

7.1 Local threads

Consider two read channels ar
1 and ar

2 (of the same type 〈A〉r) belonging to different

threads γ1 and γ2, respectively. ar
1 wishes to forward to ar

2 every incoming message V

addressed to it with a channel write aw
2 !V where aw

2 is a write channel corresponding

to ar
2. (As write channels are global values, we assume that aw

2 has already been

transmitted to thread γ1.) An easy solution is to call the following construct forward

with arguments ar
1 and aw

2 at thread γ1:

forward : 〈A〉r → (〈A〉w → unit)@G

forward = λx :〈A〉r . λy :〈A〉w . let rec f = λ :unit. let = y ! (x?) in f () in

f ()

The problem with such a call to forward is that thread γ1 goes into an infinite

loop and degenerates to a trivial thread that only repeats a channel read x? followed

by a channel write y ! (x?). Hence a better solution would be to spawn a separate

thread with a call to the following construct forward′ with arguments ar
1 and aw

2 :

forward′ : 〈A〉r → (〈A〉w → unit)@G

forward′ = λx :〈A〉r . λy :〈A〉w .

letbox x′ = box x in (* does not typecheck *)

letbox y′ = box y in

spawn{ let rec f = λ :unit. let = y′ ! (x′ ?) in f () in

f ()}

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

128 S. Park and H. Im

Fig. 6. Configuration transition rules for local threads.

Unfortunately forward′ fails to typecheck because a read channel of type 〈A〉r cannot

be a global value.

Instead of spawning an ordinary thread, therefore, we spawn a local thread that

starts by evaluating forward ar
1 aw

2 . The underlying assumption is that a thread

consists of one or more local threads running concurrently which share both the

store and read channels. (There arises the memory consistency problem, but it is a

separate issue beyond the scope of this paper.) Hence both references and read

channels can be a part of a term for creating a new local thread. In other words,

as far as creating local threads is concerned, both references and read channels can

be regarded as global values. We do not, however, allow communications of read

channels even between local threads, since the syntax for a channel write aw !V does

not indicate whether the corresponding read channel ar resides at the same thread

(in which case V may be another read channel) or at a remote thread (in which case

V may not be another read channel). Thus channel writes still expect global values

which do not include read channels. Fournet et al. (1996) make a similar assumption

in their study of the distributed join-calculus: every channel has a unique solution

which is essentially a thread in λPC
� , while a solution may run multiple processes

which are essentially local threads in λPC
� ; all these processes can interact with any

message addressed to the channel.

We introduce a new construct lthread {M} for creating a local thread that starts

by evaluating M

term M ::= · · · | lthread {M}
Since local threads running at the same thread share references and read channels,

lthread {M} typechecks whenever M typechecks

Γ | Φw ; Φr ; Ψ � M : A@L

Γ | Φw ; Φr ; Ψ � lthread {M} : unit@L
LThread

Now that a thread may run multiple local threads, the state of a thread

γ is represented by {M1, . . . ,Mn | ψ @ γ} where each term Mi, 1 � i � n,

is being evaluated by a local thread. All the previous rules for configuration

transitions are extended in a straightforward way by rewriting {M | ψ @ γ} as

{M,M1, . . . ,Mn | ψ @ γ}. An exception is the rule Spawn which creates a fresh

thread consisting only of a single local thread, as shown in Figure 6. A new rule

Sync ′ accounts for a channel read and a channel write occurring synchronously

within the same thread γ. Another new rule LThread evaluates lthread {M} to

create a fresh local thread.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 129

Now we rewrite forward by exploiting lthread

forward= λx :〈A〉r . λy :〈A〉w . lthread {let rec f = λ :unit. let = y ! (x?) in f () in

f ()}

Another application of lthread is to simulate channels not subject to channel locality,

i.e., channels that can be read from and written to at any thread. The idea is the

same as in implementing shared references in Section 6.3 except that each channel

read from cell r starts a new local thread. Here is an example of creating such a

channel for type int. We call read for channel reads and write for channel writes,

both of which are global values and thus can be shared by all threads.

let cellw = spawnBI box λcell r :〈〈int〉w +int〉r .

let (cr, cw) = new〈int〉 in

let rec f = λ :unit.

case cell r ? of inl chw ⇒ lthread {chw ! (cr ?)}
| inr v ⇒ lthread {cw !v}

in

f ()

letbox cell ′
w = box cellw in

letbox read = box λ :unit. let (xr, xw) = new〈int〉 in

let = cell ′
w ! (inl xw) in

xr ?

in

letbox write = box λx : int. cell ′
w ! (inr x) in

(read ,write)

7.2 Type-safe data parallelism

The characteristic feature of the type system of λPC
� is to be able to decide whether

a given term evaluates to a global value or a local value. We can exploit this feature

to provide type safety for data parallelism in λPC
� , as follows.

Consider a parallel map construct mapP which applies a function f to each

element of an array e in parallel (where we assume that e consists only of global

values)

mapP f e

The parent thread evaluating mapP f e spawns multiple child threads each of which

applies f to an element of e. In order to avoid the memory consistency problem,

we require that f do not inherit references from the parent thread (because f may

attempt to update such references). On the other hand, in order to provide more

flexibility in programming, we allow f to allocate new references, which cannot be

transmitted among child threads and thus are safe to use.

Checking whether f satisfies the above two conditions is simple: we just test

whether f is a global value or not. Note that although child threads do not share

writable data, they can still share read-only data because variables bound to global

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

130 S. Park and H. Im

values can serve as shared read-only data. That is, if a binding x : A@G is available

at the parent thread, all child threads may read variable x to obtain a global value.

If we want f to protect against not only references but also write channels being

shared by child threads, we can introduce another locality G� with a relation G� < G

and the following typing rule:

ΓG� | ·; ·; · � V : A@L

Γ | Φw ; Φr ; Ψ � V : A@G�
GVal′

where

ΓG� = {x : A@G� | x : A@G� ∈ Γ}.
New constructs and types for G� can be designed in an analogous way to those for

G. Then a typing judgment f : A@G� ensures that f contains neither references nor

write channels.

8 Related work

8.1 Mutable references in parallel or distributed languages

As there is no definitive standard for shared memory model in parallel or distributed

languages, different policies for mutable references or similar constructs have been

proposed. X10 (Charles et al., 2005) permits remote mutable variables belonging to

remote threads, but accessing the contents of a remote mutable variable results in a

runtime exception. Fortress (Allan et al., 2007) permits shared objects accessible to

every thread, but at the cost of implicitly maintaining the sharedness (either local or

shared) of every object. Titanium (Hilfinger et al., 2005), which extends Java, takes a

different approach by allowing shared memory, but also distinguishing between local

references and global references at the type level. UPC (El-Ghazawi et al., 2003),

which extends C, takes a similar approach by using two kinds of pointers: private

pointers and global pointers. Facile (Knabe, 1995) and JoCAML (Fournet et al.,

2003) dispense with remote references by sending copies of heap cells whenever

their references are transmitted to remote threads. Erlang (Armstrong, 1997) and

Manticore (Fluet et al., 2007) do not use mutable references at all. Alice (Rossberg

et al., 2005) raises runtime exceptions when references are transmitted to remote

threads.

λPC
� is similar to Facile and JoCAML in that it permits mutable references but

assumes no shared memory (and also in that it is a dialect of ML). The main

difference is that Facile and JoCAML rely on the runtime system to avoid remote

references whereas λPC
� relies on the type system to forestall remote references.

8.2 Channel locality

The issue of channel locality has been studied mainly for the pi-calculus and

its relatives. Amadio (1997) develops a type system for a fragment of the pi-

calculus in which typing judgments use channels linearly to ensure channel locality.

The distributed join-calculus (Fournet et al., 1996) assumes a syntactic restriction

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 131

to enforce channel locality. Specifically it considers only syntactically well-formed

DRCHAMs (distributed reflexive chemical machines) in which every channel is

defined in at most one RCHAM (reflexive chemical machine), where a DRCHAM

corresponds to a configuration and a RCHAM to a thread in λPC
� . Schmitt and

Stefani (2003) present a higher-order version of the distributed join-calculus which

uses a polymorphic type system to guarantee that the destination for each message

is uniquely determined. It achieves channel locality in a slightly different sense than

that in λPC
� because, for example, a message may be intercepted before reaching its

destination. The dynamic join-calculus (Schmitt, 2002) achieves channel locality in

a similar vein, in which the destination for a message is determined according to its

current position.

Yoshida and Hennessy (1999) present a calculus similar to λPC
� in that it uses a type

system to enforce channel locality. It combines the call-by-value lambda-calculus and

a higher-order extension of the pi-calculus, and allows processes themselves to be

transmitted via channels. The type system introduces sendable types whose values can

be transmitted between processes without destroying channel locality, and exploits

a subtyping relation to enforce channel locality. The type system, however, is not a

general solution applicable to our setting for two reasons. First, there is a semantic

restriction on function types which severely limits the generality of the calculus: for

a function type τ → σ, if σ is sendable, τ must also be sendable, in which case τ → σ

is also automatically regarded as sendable. In our setting, such a restriction means,

for example, that no term of type ref int → int or 〈int〉r → int is even allowed and

that every function of type int → int must be global, neither of which is the case in

λPC
� . Second, the type system ignores the call-by-value semantics of the underlying

lambda-calculus. Specifically it includes a typing rule (Terml) assigning a sendable

type to a term whenever it typechecks under a typing context using sendable types

only. In our setting, the typing rule would correspond to the following rule which

fails to comply with the call-by-value semantics:

ΓG | Φw ; ·; · � M : A@L

Γ | Φw ; Φr ; Ψ � M : A@G
(wrong)

In comparison, λPC
� imposes no syntactic or semantic restriction on function types

and properly accounts for the call-by-value semantics in the presence of mutable

references.

8.3 Splitting channels

The idea of using two kinds of channels, namely read channels and write channels

(or input channels and output channels), is not new. For example, the type system

of Pierce and Sangiorgi (1993) can effectively distinguish between read channels and

write channels because every channel is assigned a tag indicating its usage (read,

write, or both). The polarized pi-calculus (Odersky, 1995) syntactically distinguishes

between read channels and write channels. In the polarized pi-calculus, using

read channels for channel writes or write channels for channel reads results in

no reaction with other processes. The polar pi-calculus (Zhang & Potter, 2002)

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

132 S. Park and H. Im

also syntactically distinguishes between read channels and write channels with an

additional requirement that only write channels can be transmitted via channels.

λPC
� is different from previous work in that it assigns different types to different

kinds of channels and exploits these types, instead of the syntax, to enforce channel

locality. In fact, such notions as local values, global values, and primitive types, all

established in the base language λ�, have naturally led to the main idea for achieving

channel locality in λPC
� . Thus our decision to distinguish between read channels and

write channels has a different motivation from previous work.

8.4 Modal types for parallel and distributed computations

There are a few distributed languages whose type systems are based on the spatial

interpretation of modal logic.

Borghuis and Feijs (2000) present a typed lambda-calculus MTSN (Modal Type

System for Networks) which assumes stationary services (i.e., stationary code) and

mobile data. An indexed modal type �ω(A → B) represents services transforming

data of type A into data of type B at node ω. MTSN is a task description language

rather than a programming language, since services are all “black boxes” whose

inner workings are unknown. For example, terms of type tex → dvi all describe

procedures to convert tex files to dvi files. Thus reduction on terms is tantamount

to simplifying procedures to achieve a certain task.

Jia and Walker (2004) present a modal language λrpc which is based on hybrid

logic (Braüner, 2004) as every typing judgment explicitly specifies the node where

typechecking takes place. The modalities � and � are used for terms that can be

evaluated at any node and at a certain node, respectively.

Murphy et al. (2004) present a modal language Lambda 5 which addresses both

code mobility and resource locality. It is based on modal logic S5 where all judgments

are relativized to nodes as in Simpson (1994). A value of type �A contains a term

that can be evaluated at any node, and a value of type �A contains a label, a

reference to a local resource. A label may appear at remote nodes, but the type

system guarantees that it is dereferenced only at the node where it is valid. Murphy

et al. (2007) later developed Lambda 5 into a distributed language ML5 whose

type system also prevents local resources from being used at remote nodes while

their references may travel between nodes. ML5 uses a typing judgment M : A@w to

mean that M is a term of type A for locality w. As it permits not only constants but

also variables as localities, the type system of ML5 is expressive enough to encode

modalities � and � both.

Our previous work (Park, 2006) was the first departure from the typical spatial

interpretation of modal logic in that it uses a new modality � to focus on values

rather than terms. In our previous work, we used two separate typing judgments

to distinguish between local values and global values: an ordinary typing judgment

M : A to mean that M evaluates to a local value, and a stronger typing judgment

M ∼ A to mean that M evaluates to a global value. The base language λ� in the

present work combines the two typing judgments into a single typing judgment

M : A@L where locality L, either L or G, indicates whether M evaluates to a local

value or a global value. This simplification of typing judgments is essential to

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 133

maintaining the complexity of the type system at a manageable level. For example,

the introduction of sum types requires eight new typing rules in the previous work

whereas λ� uses only three typing rules.

In comparison with previous work whose type system relativizes typing judgments

to nodes, the type system of λPC
� lacks the expressive power necessary for allowing

references to escape from their host threads, even if it is known that they are not

dereferenced at remote threads. This is essential because its typing judgment relies

only on two fixed localities: every value is associated with either locality L, meaning

that it is valid “here only,” or locality G, meaning that it is valid “everywhere.” As a

result, the type system cannot distinguish remote threads particularly relevant to the

current thread (e.g., parent threads or child threads) from remote threads irrelevant

to the current thread, and every value traveling between threads must prove to be

global regardless of its destination thread. We leave it to the future work to relax

this limitation by further extending the type system.

9 Conclusion and future work

We present an ML-like parallel language λPC
� which features type-safe higher-order

channels with channel locality. Sequential programming in λPC
� may exploit mutable

references as usual, since the type system ensures that mutable references never

interfere with parallel computations. Thus, implementing the parallel operational

semantics of λPC
� is no more complicated than implementing a similar parallel

language without mutable references.

Our long-term goal is to build a programming system that supports three levels of

parallelism within a unified framework. At the highest level, it implements distributed

computations taking place in a network of nodes. Each node performs a stand-alone

computation and also communicates with other nodes via higher-order channels.

(Hence there is no distributed shared memory.) The next level implements task

parallelism in parallel computations with higher-order channels as in λPC
� . At the

lowest level, multiple local threads with shared memory run within each thread. Task

parallelism with shared memory as well as data parallelism can be implemented at

this level. Then the type system of λPC
� can be extended to provide type safety at all

the three levels.

Acknowledgements

The authors are grateful to the anonymous reviewers for their helpful comments. This

work was supported by the Korea Science and Engineering Foundation (KOSEF)

grant funded by the Korea government (MOST) (No. R01-2007-000-11087-0).

References

Allan, Eric, Chase, David, Hallet, Joe, Luchangco, Victor, Maessen, Jan-Willem, Ryu,

Sukyoung, Steele, Jr., Guy L. & Tobin-Hochstadt, Sam (2007) The Fortress Language

Specification Version 1.0Beta. Technical Report, Sun Microsystems Inc.

Amadio, Roberto (1997) An asynchronous model of locality, failure, and process mobility. In

Proceedings of the Second International Conference on Coordination Languages and Models,

LNCS 1282. Berlin, Germany: Springer-Verlag, pp. 374–391.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

134 S. Park and H. Im

Armstrong, Joe (1997) The development of Erlang. In Proceedings of the Second

ACM SIGPLAN International Conference on Functional Programming. Amsterdam, The

Netherlands: ACM Press, pp. 196–203.

Asanovic, Krste, Bodik, Ras, Catanzaro, Bryan Christopher, Gebis, Joseph, Husbands, Parry,

Keutzer, Kurt, Patterson, David, Plishker, William, Shalf, John, Williams, Samuel & Yelick,

Katherine (December 2006). The Landscape of Parallel Computing Research: A View From

Berkeley. Technical Report No. UCB/EECS-2006-183, EECS Department, University of

California, Berkeley.

Baker, Jr., Henry & Hewitt, Carl (1977) The incremental garbage collection of processes.

Sigplan Notice 12(8), 55–59.

Blelloch, Guy (1996) Programming parallel algorithms. Commun. ACM 39(3), 85–97.

Borghuis, Tijn & Feijs, Loe (2000) A constructive logic for services and information flow in

computer networks. Comput. J. 43(4), 275–289.

Braüner, Torben (2004) Natural deduction for hybrid logic. J. Logic Comput. 14(3), 329–353.

Chakravarty, Manuel, Leshchinskiy, Roman, Peyton Jones, Simon, Keller, Gabriele & Marlow,

Simon (2007) Data Parallel Haskell: A status report. In Proceedings of the ACM SIGPLAN

Workshop on Declarative Aspects of Multicore Programming. Nice, France: ACM, pp. 11–18.

Charles, Philippe, Grothoff, Christian, Saraswat, Vijay, Donawa, Christopher, Kielstra, Allan,

Ebcioglu, Kemal, von Praun, Christoph & Sarkar, Vivek (2005) X10: An object-oriented

approach to non-uniform cluster computing. In Proceedings of the 20th ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications. San

Diego, CA: ACM, pp. 519–538.

Cray Inc. (2005) The Chapel Language Specification Version 0.4. Technical Report.

El-Ghazawi, Tarek, Carlson, William & Draper, Jesse (2003) UPC Language Specifications,

v1.1.1

Fluet, Matthew, Rainey, Mike, Reppy, John, Shaw, Adam & Xiao, Yingqi (2007) Manticore:

A heterogeneous parallel language. In Proceedings of the ACM SIGPLAN Workshop on

Declarative Aspects of Multicore Programming. Nice, France: ACM, pp. 25–32.

Fournet, Cédric, Gonthier, Georges, Lévy, Jean-Jacques, Maranget, Luc & Rémy, Didier

(1996) A calculus of mobile agents. In CONCUR: Seventh International Conference on

Concurrency Theory, LNCS 1119. Pisa, Italy: Springer, pp. 406–421.

Fournet, Cédric, Le Fessant, Fabrice, Maranget, Luc & Schmitt, Alan (2003) JoCaml: A

language for concurrent distributed and mobile programming. In Advanced Functional

Programming, Fourth International School, 2002, LNCS 2638, Jeuring, Johan, & Peyton

Jones, Simon (eds). Oxford, UK: Springer-Verlag, pp. 129–158.

Halstead, Jr., Robert (1985) MULTILISP: A language for concurrent symbolic computation.

ACM Trans. Program. Lang. Syst. 7(4), 501–538.

Hilfinger, Paul, Bonachea, Dan, Datta, Kaushik, Gay, David, Graham, Susan, Liblit,

Benjamin, Pike, Geoffrey, Su, Jimmy & Yelick, Katherine (November 2005) Titanium

Language Reference Manual, Version 2.19. Technical Report No. UCB/EECS-2005-15,

EECS Department, University of California, Berkeley.

Hochstein, Lorin, Carver, Jeff, Shull, Forrest, Asgari, Sima, Basili, Victor, Hollingsworth,

Jeffrey & Zelkowitz, Marvin (2005) Parallel programmer productivity: A case study

of novice parallel programmers. In Proceedings of the 2005 ACM/IEEE Conference on

Supercomputing. Seattle, WA: IEEE Computer Society, pp. 35–43.

Jia, Limin & Walker, David (2004) Modal proofs as distributed programs (extended abstract).

In Pages 219–233 of: Proceedings of the European Symposium on Programming, LNCS 2986.

Barcelona, Spain: Springer.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 135

Knabe, Frederick (1995) Language Support for Mobile Agents. Ph.D. Thesis, Department of

Computer Science, Carnegie Mellon University.

Murphy, VII, Tom, Crary, Karl & Harper, Robert (November 2007) Type-safe distributed

programming with ML5. In Trustworthy Global Computing 2007. Sophia-Antipolis, France:

Springer.

Murphy, VII, Tom, Crary, Karl, Harper, Robert & Pfenning, Frank (2004) A symmetric modal

lambda calculus for distributed computing. In Proceedings of the 19th IEEE Symposium on

Logic in Computer Science. Turku, Finland: IEEE Press, pp. 286–295.

Nikhil, Rishiyur & Arvind (2001) Implicit Parallel Programming in pH. San Francisco, CA:

Morgan Kaufmann.

Odersky, Martin (1995) Polarized name passing. In Proceedings of the 15th Conference

on Foundations of Software Technology and Theoretical Computer Science, LNCS 1026.

Bangalore, India: Springer-Verlag, pp. 324–337.

Park, Sungwoo (2006) A modal language for the safety of mobile values. In Proceedings of the

Fourth Asian Symposium on Programming Languages and Systems, LNCS 4279, Kobayashi,

Naoki (ed). Sydney, Australia: Springer, pp. 217–233.

Park, Sungwoo (2007) Type-safe higher-order channels in ML-like languages. In Proceedings

of the 12th ACM SIGPLAN International Conference on Functional Programming. Freiburg,

Germany: ACM, pp. 191–202.

Pfenning, Frank & Davies, Rowan (2001) A judgmental reconstruction of modal logic. Math.

Struct. Comput. Sci. 11(4), 511–540.

Pierce, Benjamin & Sangiorgi, Davide (1993) Typing and subtyping for mobile processes. In

Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science. Montreal,

Canada: IEEE Computer Society, pp. 376–385.

Rossberg, Andreas, Botlan, Didier Le, Tack, Guido, Brunklaus, Thorsten & Smolka, Gert

(2005) Alice ML through the looking glass. In Trends in Functional Programming, Hans-

Wolfgang Loidl (ed), München, Germany: vol. 5. Intellect Books, pp. 79–96.

Schmitt, Alan (2002) Safe dynamic binding in the join calculus. In TCS ’02: Proceedings of the

IFIP 17th World Computer Congress—TC1 Stream/Second IFIP International Conference

on Theoretical Computer Science. Montréal, Quebéc, Canada: Kluwer, B.V, pp 563–575.

Schmitt, Alan & Stefani, Jean-Bernard (2003) The M-calculus: A higher-order distributed

process calculus. In Proceedings of the 30th ACM SIGPLAN–SIGACT Symposium on

Principles of Programming Languages. New Orleans, LA: ACM, pp. 50–61.

Shavit, Nir & Touitou, Dan (1995) Software transactional memory. In Proceedings of the 14th

ACM Symposium on Principles of Distributed Computing. Ottawa, Ontario, Canada: ACM,

pp. 204–213.

Simpson, Alex K. (1994) The Proof Theory and Semantics of Intuitionistic Modal Logic. Ph.D.

Thesis, Department of Philosophy, University of Edinburgh.

Stamos, James & Gifford, David (1990) Remote evaluation. ACM Trans. Program. Lang. Syst.

12(4), 537–564.

Sutter, Herb (2005) The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s J. 30(3).

Yoshida, Nobuko & Hennessy, Matthew (1999) Subtyping and locality in distributed

higher order processes (extended abstract). In CONCUR: 10th International Conference

on Concurrency Theory, LNCS 1664. Eindhoven, The Netherlands: Springer-Verlag,

pp. 557–572.

Zhang, Xiaogang & Potter, John (2002) Responsive bisimulation. In Pages 601–612 of:

Proceedings of the Second IFIP International Conference on Theoretical Computer Science.

Montréal Québec, Canada: Kluwer, B.V., pp. 601–612.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

136 S. Park and H. Im

Appendix

A Proofs about λ�

To simplify proofs, we omit product types, sum types, and the fixed point construct.

Lemma A.1 (Canonical forms)

If V is a value of type

unit

A → B

ref A

�A

,

then V is

()

λx :A.M

l

box M

.

Proof

By case analysis of V . �

Proof of Theorem 2.3

By induction on the structure of · | Ψ � M : A@L.

If M is already a value, we need no further consideration. Therefore we assume

that M is not a value. The cases for those constructs available in the simply typed

lambda-calculus remain the same except that we use a judgment · | Ψ � M : A@L.

The case for the rule Prim follows immediately from induction hypothesis on the

premise. Therefore the only interesting case is the rule �E.

Case D ::
· | Ψ � M : �A@L x : A@G | Ψ � N : C@L

· | Ψ � letbox x=M in N : C@L
�E

Subcase 1: M is a value

M = box M ′ from · | Ψ � M : �A@L and Lemma A.1

D ::

· | Ψ � M ′ : A@G

· | Ψ � box M ′ : �A@L
�I · | Ψ � N : C@L

· | Ψ � letbox x= box M ′ in N : C@L
�E

because only the rule �I is applicable to deduce · | Ψ � box M ′ : �A@L.

Subcase 1-1: M ′ is a value

letbox x= box M ′ in N | ψ → [M ′/x]N | ψ

Subcase 1-2: M ′ is not a value

Ψ � ψ okay assumption

M ′ | ψ → M ′′ | ψ′ by induction hypothesis on · | Ψ � M ′ : A@G

letbox x= box M ′ in N | ψ → letbox x= box M ′′ in N | ψ′

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 137

Subcase 2: M is not a value

Ψ � ψ okay assumption

M | ψ → M ′ | ψ′ by induction hypothesis on · | Ψ � M : �A@L

letbox x=M in N | ψ → letbox x=M ′ in N | ψ′ �

Proof of Theorem 2.4

By induction on the structure of Γ, x : A@L | Ψ � M : C@L and Γ, x : A@G | Ψ � M :

C@L.

All rules except Var and GVal share the property that typing contexts are not

used in premises or that typing contexts in premises extend typing contexts in the

conclusion. We consider the rules Var and GVal as follows:

Case
y : C@L′ ∈ Γ L � L′

Γ, x : A@L′′ | Ψ � y : C@L
Var where y �= x and L′′ = G or L′′ = L

Γ | Ψ � y : C@L from y : C@L′ ∈ Γ and the rule Var

Γ | Ψ � [N/x]y : C@L from [N/x]y = y

Case
L � L

Γ, x : A@L | Ψ � x : A@L
Var

Γ | Ψ � N : A@L assumption

Γ | Ψ � [N/x]x : A@L from [N/x]x = N

Case
L � G

Γ, x : A@G | Ψ � x : A@L
Var

ΓG | · � V : A@L assumption

Γ | Ψ � V : A@G by the rule GVal

Γ | Ψ � [V/x]x : A@G from [V/x]x = V

Γ | Ψ � [V/x]x : A@L by Proposition 2.2

Case
ΓG | · � V ′ : C@L

Γ, x : A@L | Ψ � V ′ : C@G
GVal

ΓG | · � [N/x]V ′ : C@L from x is not a free variable in V ′ and [N/x]V ′ = V ′

Γ | Ψ � [N/x]V ′ : C@G by the rule GVal

Case
ΓG, x : A@G | · � V ′ : C@L

Γ, x : A@G | Ψ � V ′ : C@G
GVal

ΓG | · � V : A@L assumption

ΓG | · � [V/x]V ′ : C@L by induction hypothesis

Γ | Ψ � [V/x]V ′ : C@G by the rule GVal �

Corollary A.2

If Γ | Ψ � V : P@L and Γ, x : P@G | Ψ � M : C@L, then Γ | Ψ � [V/x]M : C@L.

Proof

By Theorem 2.4 and Definition 2.1. �

Proposition A.3

If · | Ψ � (λx :A.M) V : C@L, then · | Ψ � [V/x]M : C@L.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

138 S. Park and H. Im

Proof

By induction on the structure of · | Ψ � (λx :A.M) V : C@L. The proof uses Theo-

rem 2.4 and the inversion property of λ�. �

Proposition A.4

If · | Ψ � letbox x= box V in M : C@L, then · | Ψ � [V/x]M : C@L.

Proof

By induction on the structure of · | Ψ � letbox x= box V in M : C@L. The proof

uses Theorem 2.4 and Lemma 2.5 and the inversion property of λ�. �

Proof of Theorem 2.6

By induction on the structure of M | ψ → M ′ | ψ′. �

B Proofs about λP
�

Proposition B.1 (Progress)

Suppose · | Ψ � M : A@L. Then either

(1) M is a value,

(2) M = φ[[spawn {N}]], or

(3) for any store ψ such that Ψ � ψ okay, there exist some term M ′ and store ψ′

such that M | ψ → M ′ | ψ′.

Proof

By induction on the structure of · | Ψ � M : A@L. If M is already a value, we

need no further consideration. Assume that M is not a value. The cases for those

constructs available in λ� remain the same, and the case for the rule Spawn is

trivial: M = spawn {N} = φ[[spawn {N}]] where φ = []. �

Proof of Theorem 4.1

By the case analysis of Π � π okay.

By Proposition B.1, there are only three cases for every {M | ψ @ γ} ∈ π. If π

consists only of {V | ψ @ γ}, we are done. Assume that π contains {M | ψ @ γ}
such that M is not a value. Then either M is φ[[spawn {N}]], or there exist some

term M ′ and store ψ′ such that M | ψ → M ′ | ψ′ where Ψ � ψ okay. We analyze

these two cases.

Case π = π1, {φ[[spawn {N}]] | ψ @ γ}
Let π′ = π1, {φ[[()]] | ψ @ γ}, {N | · @ γ′} where γ′ is a fresh node

π ⇒ π′ by the rule Spawn

Case π = π1, {φ[[M]] | ψ @ γ} where M | ψ → M ′ | ψ′

Let π′ = π1, {φ[[M ′]] | ψ′ @ γ}
π ⇒ π′ by Red �

Theorem B.2 (Substitution)

If Γ | Ψ � N : A@L, then Γ, x : A@L | Ψ � M : C@L implies Γ | Ψ � [N/x]M : C@L.

If ΓG | · � V : A@L, then Γ, x : A@G | Ψ � M : C@L implies Γ | Ψ � [V/x]M : C@L.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 139

Proof

By induction on the structure of Γ, x : A@L | Ψ � M : C@L and Γ, x : A@G | Ψ � M :

C@L.

The proof extends the proof of Theorem 2.4 with a new case for the rule Spawn. �

Proposition B.3 (Type preservation)

Suppose · | Ψ � M : A@L, Ψ � ψ okay, and M | ψ → M ′ | ψ′. Then there exists a

store typing Ψ′ such that · | Ψ′ � M ′ : A@L, Ψ ⊂ Ψ′, and Ψ′ � ψ′ okay.

Proof

By induction on the structure of M | ψ → M ′ | ψ′. The proof is the same as the

proof of Theorem 2.6 except that it uses Theorem B.2 instead of Theorem 2.4 for

the substitution property. �

Proof of Theorem 4.2

By the case analysis of π ⇒ π′. We show the case for the rule Red only which uses

Proposition B.3.

Case
M | ψ → M ′ | ψ′

π1, {M | ψ @ γ} ⇒ π1, {M ′ | ψ′ @ γ} Red

where π = π1, {M | ψ @ γ} and π′ = π1, {M ′ | ψ′ @ γ}
· | Ψ � M : A@L and Ψ � ψ okay and γ : A ∈ Π from Π � π okay

M | ψ → M ′ | ψ′ assumption

· | Ψ′ � M ′ : A@L and Ψ ⊂ Ψ′ and Ψ′ � ψ′ okay for some store typing Ψ′

by Proposition B.3

γ : A � {M ′ | ψ′ @ γ} okay by the rule Conf

Π1 � π1 okay where Π = Π1, γ : A from Π � π okay

Π1, γ : A � π1, {M ′ | ψ′ @ γ} okay from Π1 � π1 okay and

γ : A � {M ′ | ψ′ @ γ} okay

Π′ � π′ okay from Π′ = Π1, γ : A and π′ = π1, {M ′ | ψ′ @ γ}
Π ⊂ Π′ from Π = Π′ �

C Proofs about λPC
�

Lemma C.1 (Canonical forms)

If V is a value of type

〈A〉r

〈A〉w ,

then V is

ar

aw .

Proof

By the case analysis of V . �

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

140 S. Park and H. Im

Proof of Proposition 5.2

By induction on the structure of · | Φw ; Φr ; Ψ � M : A@L.

If M is already a value, we need no further consideration. Assume that M is not

a value. The cases for the constructs available in λP
� remain the same except that we

use · | Φw ; Φr ; Ψ � M : A@L in place of · | Ψ � M : A@L. The case for the rule New

is trivial: M = new〈A〉 = φ[[new〈A〉]] where φ = []. Therefore the only interesting

cases are the rules R? and W!. To illustrate the need for induction on the structure

of · | Φw ; Φr ; Ψ � M : A@L, we show the case for the rule R?. The case for the rule

W! is similar.

Case
· | Φw ; Φr ; Ψ � N : 〈A〉r

@L

· | Φw ; Φr ; Ψ � N ? : A@L
R? where M = N ?

Subcase 1: N is a value

N = ar where ar 	→ A ∈ Φr

because only the rule ChanR is applicable to deduce · | Φw ; Φr ; Ψ � N : 〈A〉r
@L

M = φ[[ar ?]] where φ = []

Subcase 2: N is written as φ[[new〈B〉]], φ[[ar ?]], φ[[aw !V]], or φ[[spawn {N ′}]]
N ? is written as φ′[[new〈B〉]], φ

′[[ar ?]], φ′[[aw !V]], or φ′[[spawn {N ′}]] where

φ′ = φ?

Subcase 3: N | ψ → N ′ | ψ′

Φw ; Φr ; Ψ � ψ okay assumption

N ? | ψ → N ′ ? | ψ′ �

Proof of Theorem 5.3

By the case analysis of Φw ; Π � π okay.

By Proposition 5.2, there are only six cases for every {M | ψ @ γ} ∈ π. If π

consists only of {V | ψ @ γ}, {φ[[ar ?]] | ψ @ γ}, or {φ[[aw !V]] | ψ @ γ}, we are

done. (If π happens to include both {φ[[ar ?]] | ψ @ γ} and {φ′[[aw !V]] | ψ′ @ γ′}
for the same channel identifier a, a communication between nodes γ and γ′ occurs

by the rule Sync.)

If there exists {M | ψ @ γ} ∈ π such thatM = φ[[spawn {N}]] orM | ψ → M ′ | ψ′

for some term M ′ and store ψ′, the proof follows the same pattern as in λP
�. Therefore

we consider the case in which there exists {φ[[new〈A〉]] | ψ @ γ} ∈ π.

Case π = π1, {φ[[new〈A〉]] | ψ @ γ}
Let π′ = π1, {φ[[(ar , aw)]] | ψ @ γ} where ar and aw are fresh

π ⇒ π′ by the rule New �

Theorem C.2 (Substitution)

If Γ | Φw ; Φr ; Ψ � N : A@L,

then Γ, x : A@L | Φw ; Φr ; Ψ � M : C@L implies Γ | Φw ; Φr ; Ψ � [N/x]M : C@L.

If ΓG | Φw ; ·; · � V : A@L,

then Γ, x : A@G | Φw ; Φr ; Ψ � M : C@L implies Γ | Φw ; Φr ; Ψ � [V/x]M : C@L.

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

Type-safe higher-order channels with channel locality 141

Proof

By induction on the structure of Γ, x : A@L | Φw ; Φr ; Ψ � M : C@L and

Γ, x : A@G | Φw ; Φr ; Ψ � M : C@L. The proof extends the proof of Theorem B.2 by

replacing each judgment of the form Γ | Ψ � M : A@L by Γ | Φw ; Φr ; Ψ � M : A@L.

Among new cases in λPC
� , the cases for the rules New, ChanR, and ChanW are

trivial because substitutions do not change terms. The cases for the rules R? and W!

are also trivial because typing contexts are the same in both the premise and the

conclusion. We consider the case for the rule GVal.

Case
ΓG | Φw ; ·; · � V ′ : C@L

Γ, x : A@L | Φw ; Φr ; Ψ � V ′ : C@G
GVal

ΓG | Φw ; ·; · � [N/x]V ′ : C@L from x is not a free variable in V ′ and [N/x]V ′ = V ′

Γ | Φw ; Φr ; Ψ � [N/x]V ′ : C@G by the rule GVal

Case
ΓG, x : A@G | Φw ; ·; · � V ′ : C@L

Γ, x : A@G | Φw ; Φr ; Ψ � V ′ : C@G
GVal

ΓG | Φw ; ·; · � V : A@L assumption

ΓG | Φw ; ·; · � [V/x]V ′ : C@L by induction hypothesis

Γ | Φw ; Φr ; Ψ � [V/x]V ′ : C@G by the rule GVal �

Proof of Proposition 5.4

By induction on the structure of M | ψ → M ′ | ψ′. The proof is the same as the

proof of Proposition B.3 except that we use · | Φw ; Φr ; Ψ � M : A@L in place of

· | Ψ � M : A@L. The proof uses Theorem C.2. �

Proof of Theorem 5.5

By the case analysis of π ⇒ π′.

The cases for the rules Red and Spawn are the same as in Theorem 4.2 except

that we use Φw ; Π � π okay in place of Π � π okay. Thus, we analyze the cases for

the rules New and Sync. The proof uses a similar strategy as in Theorem 4.2 except

that it frequently uses weakening, so we highlight only important points.

Case
fresh (ar , aw)

π1, {φ[[new〈A〉]] | ψ @ γ} ⇒ π1, {φ[[(ar , aw)]] | ψ @ γ} New

where

{
π = π1, {φ[[new〈A〉]] | ψ @ γ}
π′ = π1, {φ[[(ar , aw)]] | ψ @ γ}{

γ : C ∈ Π

· | Φw ; Φr ; Ψ � φ[[new〈A〉]] : C@L
from Φw ; Π � π okay

Let

⎧⎨
⎩

Π = Π1, γ : C

Φ′w = Φw , aw 	→ A

Φ′r = Φr , ar 	→ A

From these assumptions, we can prove Φ′w ; Π1, γ : C � π1, {φ[[(ar , aw)]] | ψ @ γ} okay

which simplifies to Φ′w ; Π′ � π′ okay where Φw ⊂ Φ′w and Π = Π′.

Case π1, {φ1[[a
r ?]] | ψ1 @ γ1}, {φ2[[a

w !V]] | ψ2 @ γ2} ⇒
π1, {φ1[[V]] | ψ1 @ γ1}, {φ2[[()]] | ψ2 @ γ2}

Sync

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

142 S. Park and H. Im

where

{
π = π1, {φ1[[a

r ?]] | ψ1 @ γ1}, {φ2[[a
w !V]] | ψ2 @ γ2}

π′ = π1, {φ1[[V]] | ψ1 @ γ1}, {φ2[[()]] | ψ2 @ γ2}

For this case, the proof exploits ar 	→ B ∈ Φ1
r and aw 	→ B′ ∈ Φw .

{
γ1 : A1 ∈ Π

· | Φw ; Φ1
r ; Ψ1 � φ1[[a

r ?]] : A1@L
from Φw ; Π � π okay

· | Φw ; Φ1
r ; Ψ1 � ar ? : B@L by the rule R? and ar 	→ B ∈ Φ1

r{
γ2 : A2 ∈ Π

· | Φw ; Φ2
r ; Ψ2 � φ2[[a

w !V]] : A2@L
from Φw ; Π � π okay

· | Φw ; Φ2
r ; Ψ2 � aw !V : unit@L by the rule W! and aw 	→ B′ ∈ Φw

Let Π = Π1, γ1 : A1, γ2 : A2

From these assumptions, we can prove

Φw ; Π1, γ1 : A1, γ2 : A2 � π1, {φ1[[V]] | ψ1 @ γ1}, {φ2[[()]] | ψ2 @ γ2} okay

which simplifies to Φ′w ; Π′ � π′ okay where Φw = Φ′w and Π = Π′. �

https://doi.org/10.1017/S0956796808006989 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006989

