A NOTE ON COMMUTATIVE I-GROUPS

T. P. SPEED and E. STRZELECKI

(Received 25 June 1969)

Communicated by B. Mond

Introduction

Let G be a commutative lattice ordered group. Theorem 1 gives necessary and sufficient conditions under which a^{\perp} with $a \in G$ is a maximal *l*-ideal. A wide family of *l*-groups G having the property that the orthogonal complement of each atom is a maximal *l*-ideal is described. Conditionally σ -complete and hence conditionally complete vector lattices belong to the family. It follows immediately that if a is an atom in a conditionally complete vector lattice then a^{\perp} is a maximal vector lattice ideal. This theorem has been proved in [7] by Yamamuro. Theorem 2 generalizes another result contained in [7]. Namely we prove that if M is a closed maximal *l*-ideal of an archimedean *l*-group G then there exists an atom $a \in G$ such that $M = a^{\perp}$.

1. Notations and supplementary results

In a commutative *l*-group G with $a \in G$, we write G^+ for the set of positive elements; (a) for the *l*-ideal generated by a, i.e. (a) = $\{g \in G : |g| \le n|a| \text{ for some } n\}$; (A) will denote the *l*-ideal generated by a subset A of G. Two elements g_1 , $g_2 \in G$ are said to be disjoint (written $g_1 \perp g_2$) if $|g_1| \wedge |g_2| = 0$. We put $a^{\perp} = \{g \in G : |g| \wedge |a| = 0\}$. It is well known that a^{\perp} is an *l*-ideal. It follows easily that (a) $\cap a^{\perp} = \{0\}$. Further if A is a subset of G then A^{\perp} is defined by $A^{\perp} = \cap \{a^{\perp} : a \in A\}$ and $A^{\perp \perp}$ means $(A^{\perp})^{\perp}$. In case $G = A^{\perp} \oplus A^{\perp \perp}$ the following properties of projections p_1 and p_2 onto A^{\perp} and $A^{\perp \perp}$ respectively are easily proved:

(i) if
$$g \ge 0$$
 then $p_1(g) \ge 0$ and $p_2(g) \ge 0$,

(ii)
$$p_i(a+b) = p_i(a) + p_i(b)$$
 for $i = 1, 2$

and

(iii)
$$p_i(na) = np_i(a), i = 1, 2.$$

To obtain these results it is sufficient to bear in mind that any *l*-group is a distributive lattice and that $g_1 + g_2 = g_1 \vee g_2 + g_1 \wedge g_2$. For other concepts used and not defined we refer to Birkhoff [1].

2. Discrete archimedean elements and maximal *l*-ideals

DEFINITION 1. An element $a \in G$ is said to be discrete [6] if the conditions $0 \leq g_1 \leq |a|, 0 \leq g_2 \leq |a|, g_1 \perp g_2$ imply that at least one of the elements g_1 and g_2 equals zero.

DEFINITION 2. A non-zero element $a \in G$ is said to be archimedean if for any $0 \neq g \in G^+$ there exist natural numbers n_1 and n_2 (depending on g) such that $n_1g \leq |a|$ (n_1g is not less than |a|) and $n_2|a| \leq g$.

REMARK. It is quite obvious that an l-group G is archimedean if and only if each of its non-zero elements is archemidean.

LEMMA 1. The following statements are equivalent:

- (i) $a \in G$ is discrete,
- (ii) if $g_1 \perp g_2$ then at least one of them belongs to a^{\perp} .

PROOF. Let a be discrete and let $g_1 \perp g_2$. In this case $b_1 = |a| \wedge |g_1|$ and $b_2 = |a| \wedge |g_2|$ are disjoint positive elements dominated by |a|. Thus, by definition 1, at least one of them equals zero.

Conversely, suppose that $0 \leq g_1 \leq |a|$, $0 \leq g_2 \leq |a|$ and that $g_1 \perp g_2$. According to (ii), we may assume that e.g. $g_1 \in a^{\perp}$, i.e. $g_1 \wedge |a| = 0$. But $g_1 \wedge |a| = g_1$ since $g_1 \leq |a|$. Thus $g_1 = 0$.

LEMMA 2. If $a \in G$ is discrete then the l-ideal (a) generated by a is totally ordered.

PROOF. If $g \in (a)$ then g^+ and g^- belong also to (a). But $g^+ \perp g^-$ and so, by lemma 1, at least one of the elements g^+ and g^- belongs to a^{\perp} . If e.g. $g^- \in a^{\perp}$, then $g^- \in (a) \cap a^{\perp}$ and hence $g^- = 0$. Thus, in this case $g = g^+ - g^- = g^+ \ge 0$.

LEMMA 3. If $a \in G$ is a discrete archimedean element then (a) is generated by any of its non-zero elements.

PROOF. Let $g \in (a)$ and $g \neq 0$. Since a is archimedean and |g| > 0, there exists n such that $n|g| \leq |a|$. Since $n|g| \in (a)$ and (a) is totally ordered, by lemma 2, $|a| \leq n|g|$. So $(a) \subseteq (g) \subseteq (a)$ and thus (g) = (a).

LEMMA 4. If $a \in G$ is archimedean and discrete then

$$G = (a) \oplus a^{\perp}.$$

PROOF. Since *a* is archimedean, for any $g \in G^+$ there exists *n* such that $n|a| \leq g$. Consider the elements $b_1 = (n|a|-g)^+$ and $b_2 = (n|a|-g)^-$. Since $n|a| \leq g$, it follows that $b_1 > 0$. On the other hand $b_1 \leq n|a|$ and hence $b_1 \in (a)$. Now $b_1 \in (a)$ and $b_1 \neq 0$ imply that $b_1 \notin a^{\perp}$. Taking into account that $b_2 \perp b_1$ and that *a* is discrete, by lemma 1, we infer that $b_2 \in a^{\perp}$. Thus

A note on commutative *l*-groups

But

[3]

 $n|a|-g = b_1-b_2 \in (a) \oplus a^{\perp}.$ $n|a| \in (a) \subseteq (a) \oplus a^{\perp},$

and so $g \in (a) \oplus a^{\perp}$.

For an arbitrary $g \in G$ we have $g = g^+ - g^-$ with $g^+, g^- \in (a) \oplus a^{\perp}$. Thus $g \in (a) \oplus a^{\perp}$ and so $(a) \oplus a^{\perp} = G$.

THEOREM 1. For an element a belonging to a commutative l-group G the following statements are equivalent:

- (i) a is archimedean and discrete,
- (ii) a^{\perp} is a maximal *l*-ideal.

PROOF OF (i) \Rightarrow (ii). $a \neq 0$, by definition 2, so $a \notin a^{\perp}$ and hence a^{\perp} is a proper *l*-ideal. Suppose that *M* is an *l*-ideal of *G* property containing a^{\perp} . Let $b \in M \setminus a^{\perp}$. Then $b_1 = |b| \in M \setminus a^{\perp}$. Since $b_1 \notin a^{\perp}$, $c = b_1 \wedge |a| > 0$. So, $0 < c \leq |a|$ and thus, by lemma 3 and 4,

$$G = (a) \oplus a^{\perp} = (c) \oplus a^{\perp} \subseteq M.$$

Consequently, M = G and therefore a^{\perp} is maximal.

PROOF OF (ii) \Rightarrow (i). Since a^{\perp} is maximal and thus a proper ideal, it follows immediately that $a \neq 0$. Assume that $g_1 \perp g_2$, $0 < g_1 \leq |a|$ and $0 \leq g_2 \leq |a|$. In this case the *l*-ideal $J = (g_2, a^{\perp})$ generated by g_2 and a^{\perp} is proper because $g_1 \notin J$. Since a^{\perp} is maximal and $a^{\perp} \leq J$, it follows that $J = a^{\perp}$. Consequently, $g_2 \in a^{\perp}$. Hence $g_2 \in (a) \cap a^{\perp}$ and so $g_2 = 0$. Thus a is discrete whenever a^{\perp} is maximal.

Let us assume now that there exists an element $0 < g \in G^+$ such that ng < |a| for each natural *n*. It is easy to see that the ideal $J = (g, a^{\perp})$ generated by g and a^{\perp} is a proper ideal $(a \notin J)$ properly containing $a^{\perp} (g \in J)$, but $g \notin a^{\perp}$. This is impossible, since a^{\perp} is maximal.

Finally, suppose that there exists $g \in G^+$ such that n|a| < g for all natural n. In this case again we obtain a contradiction because the ideal (a, a^{\perp}) generated by a and a^{\perp} is a proper ideal properly containing a^{\perp} . Hence a is archimedean whenever a^{\perp} is maximal.

3. Applications

DEFINITION 3. A commutative *l*-group G is said to be Stone if $G = g^{\perp} \oplus g^{\perp \perp}$ for any $g \in G$.

DEFINITION 4. An element $a \in G$ is said to be an atom [7] if the conditions: $|a| = g_1 + g_2$, $g_1 \perp g_2$, $g_1, g_2 \in G^+$ imply that one of elements g_1, g_2 equals zero. REMARK (i). Observe that the element 0 satisfies both the definitions of a discrete element and of an atom – this seems unnecessary, but we do not wish to cause confusion by deviating from the definitions in [6] and [7].

REMARK (ii). Comparing definitions 1 and 4 we conclude that every discrete element $a \in G$ is an atom. The converse is in general not true (see example 1 in the last part of the paper). Nevertheless if G is Stone then the following holds:

LEMMA 5. An element a of a Stone l-group G is an atom if and only if a is discrete.

PROOF. According to the preceding remark it suffices to prove that if a is atomic and G is Stone then a is discrete. Since a is discrete whenever |a| is discrete, we may restrict ourselves to the case when a > 0.

Suppose that $g_1, g_2 \in G^+$, $g_1 \perp g_2, g_1 > 0$ and both are dominated by an atomic element a. G is Stone, and so, by definition 3, $G = g_1^{\perp} \oplus g_1^{\perp \perp}$. Let p_1 and p_2 denote the projections on $g_1^{\perp \perp}$ and g_1^{\perp} respectively. We have then $a = p_1(a) + p_2(a)$ with $p_1(a) \perp p_2(a)$ and since a > 0, $p_1(a), p_2(a) \in G^+$. Thus definition 4 implies that either $p_1(a) = 0$ or $p_2(a) = 0$. But $0 < g_1 \leq a$ and thus, by the properties of projections, $0 < g_1 = p_1(g_1) \leq p_1(a)$. Therefore $p_2(a) = 0$. On the other hand in view of $g_2 \perp g_1$ we obtain $0 \leq g_2 = p_2(g_2) \leq p_2(a) = 0$. So $g_2 = 0$. Consequently, a is a discrete element as required.

As a consequence of lemma 5 and theorem 1 we obtain

THEOREM 2. If a is a non-zero archimedean atom of a Stone l-group G then a^{\perp} is a maximal l-ideal of G.

THEOREM 3. Every σ -complete (and a fortiori every complete) l-group G is archimedean Stone l-group.

PROOF. A direct proof of Theorem 3 will be given soon in [5]. It can also be easily deduced from known results.

Combining theorems 2 and 3 we obtain

COROLLARY. If a is a non-zero atom of a complete vector lattice E then a^{\perp} is a maximal l-ideal.

This proposition has been proved by S. Yamamuro in [7]. Lemma 3 of the same paper states that if M is a closed maximal ideal of a complete vector lattice E, then there exists an atomic element $a \in E$ such that $M = a^{\perp}$. This statement may be essentially generalised. Namely we are able to prove:

THEOREM 4. If M is a closed maximal l-ideal of an archimedean l-group G then there exists an atom $a \in G$ such that $M = a^{\perp}$.

PROOF. The fact that M is closed *l*-ideal in an archimedean *l*-group implies, by Johnson and Kist [3] (see also Conrad and McAllister [2]) that $M = M^{\perp \perp}$.

Thus $M^{\perp} \neq \{0\}$ and there is an a > 0 in M^{\perp} . For this a we have $a^{\perp} \supseteq M^{\perp \perp} = M$ with $a \notin a^{\perp}$. Thus the maximality of M implies $a^{\perp} = M$. So, by Theorem 1 a is discrete and hence *a* is an atom.

Repeating the reason from [7], we obtain

COROLLARY. If G is an archimedean Stone l-group then G is atomic (the set of atoms is dense in G) if and only if the intersection of all closed maximal l-ideals of G equals zero, and G is non-atomic (there exist no atoms in G) if and only if there exist no closed maximal l-ideals in G.

4. Examples

1. Let E = C[0, 1]. The function $a \in E$:

$$a(t) = \begin{cases} 0 & \text{for } 0 \le t \le \frac{1}{2}, \\ t - \frac{1}{2} & \text{for } \frac{1}{2} < t \le 1 \end{cases}$$

is an atom but it is not a discrete element. Thus, according to theorem 1, a^{\perp} is not maximal. Since C[0, 1] is archimedean, theorem 2 implies that C[0, 1] is not Stone.

2. Consider R^2 'lexicographically' ordered, e.g. $(x, y) \ge 0$ iff (i) x > 0 or (ii) $x = 0, y \ge 0$. This space is totally ordered and hence every element $a \in \mathbb{R}^2$ is an atom. On the other hand for any $0 \neq a \in \mathbb{R}^2$ we have $a^{\perp} = \{0\}$ and thus for no atom a of R^2 is a^{\perp} maximal. This is so since no $a \in R^2$ is archimedean. The space in question is a Stone (non-archimedean) *l*-group. The ideal $M = \{(x, y) \in I\}$ $R^2: x = 0$ is a maximal closed *l*-ideal, but as it was mentioned there exists no atom $a \in \mathbb{R}^2$ such that $M = a^{\perp}$. This example shows that the condition that G is archimedean is essential in theorem 4.

3. Let $E = C[0, 1] \times R \times R^2$ with R^2 ordered as in example 2. An element $(x, y, z) \in E$ (with $x \in C[0, 1]$, $y \in R$ and $z \in R^2$) is said to be positive iff $x \ge 0$, $y \ge 0, z \ge 0$. E is non-Stone and non-archimedean vector lattice. Nevertheless the element (0, a, 0) with a > 0 is an atom of E and $(0, a, 0)^{\perp} = \{(x, 0, z):$ $x \in C[0, 1], z \in \mathbb{R}^2$ is a maximal *l*-ideal of *E*. This is so because (0, a, 0) is a discrete archimedean element of E.

4. Let S be the l-group (in fact vector lattice) of all equivalence classes of simple functions defined on a totally σ -finite measure space (X, \mathcal{X}, μ) . Then results of Masterson [4] pp. 469–470 imply that S is an archimedean Stone *l*-group which is not σ -complete.

This example shows that theorem 2 is an essential generalization of theorem 2 in [7].

73

References

- [1] G. Birkhoff, Lattice Theory (American Mathematical Society, Providence, Rhose Island 1967). Colloquium Publication, 25.
- [2] P. F. Conrad and D. McAllister, 'The completion of a lattice ordered group', J. Aust. Math. Soc. 9 (1969), 182-208.
- [3] D. Johnson and J. Kist, 'Complemented ideals and extremally disconnected spaces', Arch. Math. 12 (1961), 349-354.
- [4] J. J. Masterson, 'Structure spaces of a vector lattice and its Dedekind completion', Proc. Kon. Ned. Akad. v. Wet. 71 (1968), 468-478.
- [5] T. P. Speed, 'On commutative *l*-groups' (to appear).
- [6] B. Z. Vulikh, Introduction to the theory of partially ordered spaces (Wolters-Noordhoff Scientific Publications, Groningen, 1967).
- [7] S. Yamamuro, 'A note on vector lattices', J. Aust. Math. Soc. 7 (1967) 32-38.