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Abstract Let N be a zero-symmetric near-ring with identity, and let I" be a faithful tame N-group.
We characterize those ideals of I' that are the range of some idempotent element of N. Using these
idempotents, we show that the polynomials on the direct product of the finite §2-groups Vi, Va,...,V,
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1. Ideals that are the range of a near-ring element

For the basic notions of near-ring theory, such as near-ring, zero-symmetric, left ideal,
N-group, ideal, we refer to [13].

Let N be a zero-symmetric near-ring with identity id. Then the unital N-group I is
called tame [17] if and only if for all v,2 € I" and n € N there is an element m € N
such that

n-(y+z)—-m-y=m-x.

We write near-ring elements in bold italic and N-group elements in plain italic. Every
N-subgroup of a tame N-group I is an ideal of I'. The lattice of ideals of I" will be
abbreviated by Id I'; the sum of the ideals I and J is written as I V J, their intersection
as I A J. It is well known that for A,B € IdI', a € A, b € B, n € N, the element
n-a+n-b—n-(a+0b) liesin AA B [16, Proposition 1.3]. For two ideals A, B € Id I" with
A < B, we denote the interval {I € IldI" | A< I < B} by I[A, B]. We write A < B (A is
a subcover of B) if and only if A < B and there isno I € Id I with A < I < B. We call
an ideal A of I' join irreducible if and only if A= BV C implies A= Bor A=C.In a
lattice with both chain conditions, the join irreducible element A has a unique subcover;
we abbreviate it by A~. We say that two N-groups G and H are N-isomorphic if and
only if there is a group isomorphism ¢ : G — H with n - ¢(g) = ¢(n - g) for all n € N,
g € G.For A,B in IdI" with A < B, we define the set B/A :={b+ A | b € B}. On this
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set we define addition by (by + A) + (b2 + A) := (b1 + b2) + A, and the operation of N by
n-(b+A):=(n-b)+ A If I' is a tame N-group and A, B are ideals of I" with A < B,
then the N-group B/A is tame, too. If, furthermore, A < B in Id I", then the N-group
B/A has no ideals except 0 = A/A and B/A. We write Ann(B/A) for the annihilator of
B/A, which means
Ann(B/A)={n e N |n-BC A}.

The annihilator Ann(B/A) is an ideal of the near-ring (N, +,0). If the tame near-ring
N has the descending chain condition (DCC) on left ideals (called DCCL from now on),
and if A < Bin Id I, the near-ring N/ Ann(B/A) is 2-primitive. A 2-primitive near-ring
R with identity and DCCL is either the full matrix-ring of k£ x k-matrices over a division
ring, in which case it is simple [8, Theorem (3.1), p. 32], or, if it is not a ring, then it is
a centralizer near-ring. By [3,12], every 2-primitive near-ring with identity and DCCL
which is not a ring is simple. Altogether, N/ Ann(B/A) is simple, and thus Ann(B/A) is
a maximal ideal of N.

Our first result characterizes those N-subgroups of I" that are the range of an idem-
potent element of N.

Theorem 1.1. Let N be a zero-symmetric near-ring with identity, and let I' be a
tame N-group. We assume that N has the DCC on left ideals, and that the ideal lattice
of I' satisfies both the ascending chain condition (ACC) and the DCC. Let H be an
N-subgroup of I'. Then the following are equivalent.

(1) There is an element e € N withe-h=h forallh € H, ande-I' C H.

(2) If A and D are join irreducible ideals in |dI", and if A < H and the N-groups
A/A~ and D/D~ are N-isomorphic, then D < H.

Proof. (1) = (2). We fix two join irreducible ideals A, B € |d I" with A < H such that
AJ/A~ and B/B~ are N-isomorphic. We have (e —id)-a = 0 for all a € A, and therefore
(e—id)-(a+ A7) =0+ A~ for all a € A. Since A/A~ and B/B~ are N-isomorphic,
(e—id) - (b+ B~) =0+ B~ for all b € B. Thus for every b € B, b is congruent to e - b
modulo B~. Since e - b lies in H, we get

forallbe B:be B~ VH.

Hence B < B~ V H, and therefore B = B A (B~ V H), and, by the modularity of the
lattice IdI', B = B~ V (B A H). Since B is join irreducible, we obtain B A H = B, and
therefore B < H. This completes the proof of (1) = (2).

(2) = (1). We may assume H # 0. We define a subset B of |d I" by

B:={BeldI'|thereisnop e N with (p—id)-H =0and p- B C H}. (1.1)

Our endeavour will be to show B = (), because then I' ¢ B, which yields a p € N with
p-h=hforallhe H,and p-I' C H. Seeking a contradiction, we suppose B # (). Since
Id I" has the DCC, B has a minimal element, say D. Since 0 ¢ B (take p := id in (1.1)),
we have D # 0. We will now show that

D is join irreducible. (1.2)
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Suppose D = D1V Dy with D1 < D, Dy < D. By the minimality of D, we have D, ¢ B,
Dy & B. Hence there are p1,ps € N with

pl-DlgH, VhGHZPl'h:h,
p2~D2QH, VhEHpgh:h

We define p3 := ps o p1. We have p3 - Dy C H and p3 - Do C H. Let py := p3 o p3. We
show
ps-D CH. (1.3)

We fix d € D. Since Dy V Dy = D, there are di € Dy, do € Dy with d = dy + dy. We
first compute ps - (dy + da). Since p3 - (dy + d2) is congruent to ps - di + p3 - d2 modulo
D1 A Dy, there is an element d3 € D1 A Dy such that

p3 - (dy +d2) = (p3 - d1 + p3 - d) + ds.

Since p3-d; € H and p3-dy € H, there is an element h € H such that ps3-(di+ds) = h—+ds.
Applying p3 again, we obtain

(p3ops)-(di +d2) =p3-(h+ds)
= (p3-h+p3-ds) +d,

where d4 lies in H A (D1 A D). Therefore every summand of ps - h + ps - ds + dy lies in
H, which proves (1.3). Altogether, we have py-h = h for all h € H and py- D C H. This
shows that D is not in B, a contradiction to the choice of D, and completes the proof
of (1.2).

The next step is to show that

forallpe N:p-H=0=p-DC D". (1.4)

We consider the ideals Ann(H) = {n € N | n- H = 0} and Ann(D/D~) = {n €
N | n-D C D7} Since D~ < D in IdI", the N-group D/D~ has no proper N-
subgroups; therefore N/ Ann(D/D~) is 2-primitive on Ann(D/D~), and thus simple.
Hence Ann(D/D™) is a maximal ideal of N. Supposing that (1.4) fails, we have Ann(H) £
Ann(D/D7). By the maximality of Ann(D/D™), this implies

Ann(H) + Ann(D/D™) = N.

Thus there are @ € Ann(H), ¢ € Ann(D/D~) with a + ¢ = id. The element ¢ satisfies
©-DC D  andi-h=(—a+id)-h=—-0+h = hforall h € H. Since D is minimal in B,
we have D~ ¢ B. So there exists p5s € N with p5-h =h for all h € H and p5 - D~ C H.
We consider the element pg € N defined by pg := p5 o 2. It is easy to see that pg-h =h
for all h € H. We also have pg- D =p5 - (¢ - D) C ps - D~ C H. The existence of such a
pe € N implies D ¢ B; this contradiction proves (1.4). We defer the rest of the proof of
Theorem 1.1 to p. 384 because we first need some facts about near-rings. O
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Let N be a near-ring which is tame on I'. In the sequel, we state two conditions on
ideals A, B, C, D with A < B and C < D that imply that the N-groups B/A and D/C
are N-isomorphic. We express the first condition using notions from lattice theory. For
A,B,C,D € IldI" with A < B, C < D, we say that the interval I[A, B] projects up to
I[C, D] if and only if A= BAC and D = BV C, and we write I[A4, B] / I[C, D] or
I[C, D] N\ IA, B]. The smallest equivalence relation that contains ,* will be abbreviated
by . If I[A, B] e~ I[C, D], we say that the two intervals are projective.

Lemma 1.2 (cf. [1]). Let N be a zero-symmetric near-ring, let I" be a tame N-group,
and let A, B, C, D be ideals of I' with A < B, C' < D such that the intervals I[A, B]
and I[C, D] are projective. Then the N-groups B/A and D/C are N-isomorphic.

Proof. We assume I[A, B] / I[C, D]. Then every element in d € D can be written as
d=0b+cwithbe€ B, ¢c€ C. The mapping ¢ : D/C — B/A with o((b+¢)+C)=b+ A
is an isomorphism. O

The result is actually well-known as the homomorphism theorem (B 4+ C)/B =y
B/(C N B) [11, Theorem 2.28].

The next method to find isomorphic N-groups is a generalization of the known fact that
for a finite simple ring with unit R, all faithful simple unital R-modules are isomorphic
(cf. [14, Proposition 2.1.15, p. 154], [3, Theorem 4.3]). We need the following lemma.

Lemma 1.3 (cf. Proposition 2.2 of [1], [2] and Theorem 4.56(a) of [13]). Let
N be a zero-symmetric near-ring, let I be an ideal of N, and let I' be an N-group that
satisfies Ann(I") = I and N -~ = I for all v € I" with v # 0. We assume that we have
a left ideal L of N such that L > I and there is no left ideal L' of N with L > L' > I.
Then the N-group I' is N-isomorphic to the N-group L/I.

Proof. Since L £ Ann(I"), we have elements ly € L, v € " with Iy -9 # 0. We
define a mapping ¢ by
po:L—=>IT, I—1 .

It is easy to see that ¢ is an N-homomorphism from the N-group L to the N-group I.
Since ly - v9 # 0, the assumptions on I" yield N -1y -y = I['. Since N -ly C L, we get
L -~y =TI, and hence ¢ is surjective. We take L’ to be the kernel of ¢, i.e.

L'={leL|l-~ =0}

We check that L’ is a left ideal of N. Furthermore, every element of I = Ann(I") lies in
L’. So we have
I<L' <L

Since by the assumptions L covers I, L' has to be either L or I. The element Iy shows
L’ < L, and so L’ = I. The homomorphism theorem yields that the N-group L/ker ¢ =
L/I is N-isomorphic to I. |

If two N-groups are N-isomorphic, they have the same annihilators. Sometimes, the
converse is true.
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Corollary 1.4 (cf. [1]). Let N be a zero-symmetric near-ring with identity, let I’
be a tame N-group, and let A, B, C, D be ideals of I' with A < B, C < D, and
Ann(B/A) = Ann(D/C). If the near-ring N/ Ann(B/A) has a minimal left ideal, the
N-groups B/A and D/C are N-isomorphic.

Proof. Since A < B, and since I is a tame N-group, B/A has no N-subgroups. For
every € B/A, the set N - (8 forms an N-subgroup of B/A, and since for the identity
of id of N we have id-8 = 3, we see N - 3 = B/A for every non-zero § € B/A. The
fact that N/ Ann(B/A) has a minimal left ideal gives us the left ideal L required in the
assumptions of Lemma 1.3. Now the result follows from this Lemma. O

Lemma 1.5 (cf. [2]). Let N be a zero-symmetric near-ring with identity and the
DCC on left ideals, let I' be a tame N-group such that |d I" satisfies both the ACC and
the DCC, and let A, B,C,D € IdI" such that C < D, A < B. We assume that each
p € N with p- D C C satisfies p- B C A. Then there are ideals C', D' in |d I" with
C < C' < D' < D such that D'/C’ and B/A are N-isomorphic.

Proof. We take I to be the ideal Ann(B/A) of N. Since A < B in Id I, the near-ring
N/I is 2-primitive on B/A, and thus, as a 2-primitive near-ring with DCCL, simple.
Hence I is a maximal ideal of N.

Let C be any ideal of I' in I|C, D). Let Jy, Ja be the ideals of N defined by

J1:=Ann(Cy/C), Jy := Ann(D/Ch).

‘We show that
JCI or JyClI. (1.5)

Seeking a contradiction, we suppose that both inclusions fail. Since I is a maximal ideal,
we get [ + J; = N and I 4+ J5 = N. Thus there are 21,42 € I and j; € Ji, jo € Jo with
7:1 +]1 =id and ’ig —|—]2 =id. (16)

We observe that ji o jo lies in Ann(D/C) because j; - (j2 - D) C j1 - C1 C C. By the
assumption, j; 0jo therefore lies in I. By (1.6), 1 and j2 are both congruent to id modulo
I. This implies idoid € I, yielding the contradiction id € I, and thus completing the
proof of (1.5). Since every chain in Id I" is finite, repeating this process allows us to obtain
C',D' eldI" with C < C' < D' < D and

Ann(D'/C") < I.
Since C" < D', N/ Ann(D’/C") is 2-primitive with DCCL, and thus simple, and so
Ann(D'/C") is a maximal ideal of N, and therefore equal to I. Since N has the DCCL,
Corollary 1.4 yields that the N-groups D’/C’ and B/A are N-isomorphic. a

We can now resume the proof of Theorem 1.1 suspended on p. 381.
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Continuation of the proof of Theorem 1.1. Having proved (1.4), we can use
Lemma 1.5 to produce ideals 0 < C7; < Cy < H such that C3/Cy and D/D~ are
N-isomorphic. We take A to be minimal in Id I" with A < Cs, A € Cy. Then A is join
irreducible and the interval I[A~, A] projects up to I[Cy, Cs] in Id I'. Thus, by Lemma 1.2,
A/A™ and Cy/Cy are N-isomorphic. Since A < Cy < H, A lies in I[0, H]. Every ideal in
I[0, H] does not lie in B (take p := id in (1.1)), and since D € B, we get D £ H. So A
and D are two join-irreducible ideals of I" such that A/A~ and D/D~ are N-isomorphic,
A < H and D € H, contradicting the assumptions. This completes the proof of (2) = (1)
of Theorem 1.1. O

2. Polynomials on a direct product without skew congruences

We shall now investigate the polynomial functions on an (2-group V which is a direct
product of similar (cf. [10, p. 13]) £2-groups; we do so by applying Theorem 1.1 to the
near-ring Py(V') of zero-preserving polynomial functions on V. For the notion of 2-group,
we refer to [7]; polynomial functions are defined, for example, in [9] or [10, Definition 4.4].
The near-ring operations of Py(V') are pointwise addition of functions, and functional
composition. If V' is a group (without further operations), then this near-ring is more
commonly known as the inner automorphism near-ring (V).

Let R; and Ry be two commutative rings with unit. It is well known that Py(R; X R2)
is isomorphic to Py(R1) x Py(Rz) via a (natural) isomorphism. The same is not true for
groups: let G1 = Go = Zy. We know that |I(Ze x Zs)| = |I(Z2)| = 2, making the desired
isomorphism impossible. However, using Scott’s concept of length [15], it is possible to
show that for finite groups G1, Go we have I(Gy x G2) = I(G1) x I(G2) if and only if
G1 X G4 has no skew congruences. This is the case if and only if every normal subgroup
N of G; x G5 is equal to N1 x Ny for some normal subgroups N7 of G; and Ny of Gs.
The following theorem tells that all {2-groups behave like groups.

Theorem 2.1. Let Vi, Vs, ..., Vi be similar finite {2-groups, and let V := Hle Vi.
Then the following statements are equivalent.

(1) For every ideal I of V there are ideals Iy of Vi, Is of Va, ..., I of V}, such that
I=TI5, 1.

(2) For every j € {1,2,...,k}, the function
e;: V-V, ej(vl,...,vk) = (0,...,0,1)]*,0,...,0)
(with v; standing on the jth place) is in Py(V).

Proof. Let W; be the ideal 0 x --- x 0 x V; x 0 x --- x 0 (V; on the jth place),
i.e. Wj is the intersection of the kernels of the projections to all but the jth component.
Condition (1) is equivalent to

-

For every ideal T of V: I < \/ (I AW). (2.1)

1

J

https://doi.org/10.1017/50013091599001418 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091599001418

Direct products of £2-groups 385

We first prove (2) = (1): we show that (2.1) holds. To this end, let ¢ € I. Since
i= 25:1 e;(i) and e;(4) lies in both W; and I, ¢ also lies in \/le(l AW;).

(1) = (2). We have to show that e; is in Py(V'). For simplicity we assume that j = 1.
Let Wy : =V x0x---x0,and let Ky :=0x Vo x V3 x .-+ x V. We first construct a
polynomial function e with e(V) C W; and e(w;) = w; for all wy € Wy. By Theorem 1.1,
there is such an e € Py(V) if for all join irreducible ideals A, D of V such that A/A~
and D/D~ are Py(V)-isomorphic and A < W7, the ideal D satisfies

D < Wy (2.2)
Suppose D £ W;. By the fact that V' has no skew congruences, we know that
D =(DAW1)V(DAKy).

Since D € Wy, we have D A Wy < D. But D is join irreducible, and thus we get
D = D A Ky, which implies D < K. Let § be the Py(V)-isomorphism from A/A~ to
D/D~. Then we can define a mapping 6 from A to D such that §(a) + D~ = §(a + A7)
for all @ € A. We have

p(d(a)) = d(p(a))(mod D) for all p € Py(V),a € A,
and also

0(ar 4+ a2) = d(a1) + d(az)(mod D7) for all a1, as € A.
We define a subset S of V' by

S::{a+5(a)+a1+d1|a€A, a € A™, d1€D7}.

We will now prove that S is an ideal of V. To this end, we check that for s1,s5 € S and
p € Py(V), we have s1+s2 € S and p(s1) € S. Let a+6(a)+a1+d; and o' +d(a’)+a +d}
(a,a’ € A, ay,a} € A™, dy,d} € D7) be elements of S. We know that

a+d6(a)+ar+di+ad +6(d)+a)+d) (2.3)

is congruent to a + §(a) + o’ + d(a’) modulo A~ VvV D~. Since A A D = 0, and since for
all ideals I, J of V and i € I, j € J, we have i + j = j + i(mod I A J), this is equal to
a+a’'+6(a)+6(a"), which is congruent to a+a’+d(a+a’) modulo D~. These congruences
allow us to write expression (2.3) as a +a’ + d(a + a') + e, where e € A~ vV D™, which
proves that (2.3) lies in S; thus S is closed under +. For computing

pla+d(a) + a1 +di),

we observe that this is congruent to p(a + d(a)) modulo A~ VvV D~. Since AA D =0, we
have p(a + d(a)) = p(a) + p(6(a)), which is congruent to p(a) + é(p(a)) modulo D~.
So we can write p(a + d(a) + a1 + d1) as p(a) + d(p(a)) + €', where ¢’ isin A~ vV D™,
which proves that S is closed under the application of zero-preserving unary polynomial
functions. By [13, Theorem 7.123], S is an ideal of V.
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We compute SAK;. Let s=a+d(a)+a1+dy (a€ A, a1 € A, dy € D7) be an
element of S A K. Since s, 6(a) and d; lie in K7, we obtain a + a1 € K. Since a and
a1 are elements of Wy, we have a + a1 € K1 AWy = 0. Thus a € A, and therefore
d(a) € D~. So all four summands a, §(a), a1, dy lie in A~V D™, which implies

SANKi <A VvD™.

Now we compute S A W;. We assume a + d(a) + a1 + d; € Wi. Since a and a; are in A,
which is less than or equal to Wy, we obtain §(a)+d; € Wi. Thus é6(a)+d; € W1 AK; =0,
which implies §(a) € D~. Since § is an isomorphism, we get a € A~. Again, we see that
all four summands are in A~ V D™, and so we get

SAW1 <A VD .

By the fact that V' has no skew congruences, we have S = (S A Wi) V (S A K1), and
therefore S < A~ vV D~. We will infer the contradiction A < A~ from this fact. We fix
a € A. Since a+9(a) € AV D, wegeta € (A-VvD)VvD = A"V D. Thus, we
have A < A~ VvV D. We know that the lattice of ideals of V' is modular; by this fact and
D < Ky,wehave A (A-VD)AW, =A"V(DAW;) = A" v0 = A", a contradiction.
This proves (2.2). So, by Theorem 1.1, there is an e € Py(V) with e(w;) = w; for all
wy € Wi and e(V) C W;. What remains for us to determine is the behaviour of e on
V — Wi. To this end, we compute e(w; + k1) with wy; € Wy, k1 € K;. The difference
e(wy +k1)—e(wy) lies in K7, and since e(V)) C Wy, it also lies in Wy. From Wi A K = 0,
we obtain
e(w1 + kl) = e(wl) = w1.

Thus e is the required polynomial e;. O

We will now study the polynomials on a direct product without skew-congruences. By
Pol,, V', we denote all n-ary polynomial functions from V" to V.

Corollary 2.2. Let Vi, ..., V, be similar finite {2-groups such that V = H?d V; has
no skew-congruences. Then there is a bijective mapping

k k
@ : Pol, [ Vi — [] Poln V-
j=1 j=1

Proof. Let ey, ..., e be the functions in Py(V') produced by Theorem 2.1. We observe
that V; is isomorphic to V/3;, where (; is the congruence corresponding to V3 x - - X
Vic1 X 0 x Vig1 X -+ x V. If v is a congruence of V and v € V| we write v/« for the
congruence class of v modulo «. For a polynomial p € Pol, V and a congruence « of V,
[p]a denotes the function in Pol, V/a defined by [pla(vi/a, ... v /a) := p(v1,...,0,)/c.
We define @ by

k
@ : Pol,, V = [ Poln V/8;
i=1
P ([p]ﬁl? s [p]ﬁk)'
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Since B1 A - -+ A Bk is the equality relation on V', the mapping @ is injective. In order to
show that @ is surjective, we fix

k
(q17 v aqk) € H POlTL V/ﬁz
i=1

Let p1,...,px € Pol,, V be such that [p;]s, = q;. We observe that [e;], = [0]g, for i # j,
whereas [e;]g, = [id]g,. We define

Then for ¢ € {1,...,k}, we obtain

[pls, = {ﬁ:l e; opj]ﬁ .

i

For every congruence « of V', the mapping p — [p]s is a homomorphism with respect to
+ and o, and thus we get

This proves that @ is indeed surjective. (|

Remarks

For every (2-group W, the set of mappings Pol,, W is closed under the pointwise appli-
cation of the operations of W. To these pointwise operations, we add the n + l-ary
operation o of composition defined by

Joo(fi,- oy fo)(wr, ... ;wy) = fo(fr(wi,...,wn), ..., Falwi, ... wy)).

Under the assumptions of Corollary 2.2, the bijective mapping @ is then even an isomor-
phism with respect to these operations.

For the case of groups (without further operations), Theorem 2.1 can also be derived
from Scott’s results about polynomial functions on groups in [15]. In contrast to the
methods applied in the present paper, Scott makes use of the term representation of a
polynomial function, and uses this term representation to define a concept of ‘degree’ for
polynomial functions on groups, called length. The concept of length was generalized to
£2-groups in [4], but we do not see how to derive Theorem 2.1 from their results.
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