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Treatment for third-order nonlinear differential equations based
on the Adomian decomposition method

Xueqin Lv and Jianfang Gao

Abstract

The Adomian decomposition method (ADM) is an efficient method for solving linear and
nonlinear ordinary differential equations, differential algebraic equations, partial differential
equations, stochastic differential equations, and integral equations. Based on the ADM, a new
analytical and numerical treatment is introduced in this research for third-order boundary-value
problems. The effectiveness of the proposed approach is verified by numerical examples.

1. Introduction

In this paper, we apply the Adomian decomposition method (ADM) to the third-order
nonlinear differential equationu

(3)(x) + h(x)f(u(x)) = g(x), x ∈ [0, 1],

u(0) = α, u(1) = β, u′(0) = γ,

(1.1)

where h(x), f(u(x)) are continuous functions.
The third-order nonlinear differential equation arises in different areas of applied

mathematics and physics. Underground water flow and population dynamics can be reduced
to nonlocal problems with boundary conditions [14, 15, 27]. Moreover, boundary-value
problems (BVPs) with boundary conditions constitute a very interesting and important
class of problems. They include two-, three- and multipoint BVPs as special cases. Therefore,
the problems have attracted much attention and have been studied by many authors. There
are many algorithms to solve the third-order nonlinear differential equation, for example: the
direct block method [25], the Leray–Schauder continuation principle [19], the Green’s function
method [17], the fixed-point theorem in cones [22] and the reproducing kernel method [16, 23].

The Adomian decomposition method and its modification (MADM) [1–6, 8–12, 18, 21,
26, 28–32] have been used to solve effectively and easily a large class of linear and nonlinear
ordinary and partial differential equations. In this paper, the ADM is improved to deal with
third-order nonlinear differential equations. This improvement is based on the ADM and a
modification of Lesnic’s work [20].

2. Improvement of Ebaid’s work

2.1. Ebaid’s work

The differential operator Lx is given by

Lx(·) =
dN (·)
dxN

. (2.1)

Received 11 June 2015; revised 8 June 2016.

2010 Mathematics Subject Classification 34K10 (primary).

The corresponding author for this article is Jianfang Gao.

https://doi.org/10.1112/S1461157017000018 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157017000018


2 x. lv and j. gao

From the formula (2.1), we can get:
• when N = 1, the inverse operator L−1x is

L−1x (·) =

∫x
x0

(·) dk; (2.2)

• when N = 2, the inverse operator L−1xx is

L−1xx (·) =

∫x
x0

dk

∫k
x0

(·) ds; (2.3)

• when N = 3, the inverse operator L−1xxx is

L−1xxx(·) =

∫x
x0

dk

∫k
x0

ds

∫s
x0

(·) dy. (2.4)

In [21], Lesnic proposed the operator

L−1xx (·) =

∫x
x0

dk

∫k
x0

(·) ds− x− x0
1− x0

∫1
x0

dk

∫k
x0

(·) ds (2.5)

to solve the Dirichlet problem for the heat equation ut = uxx, x0 < x < 1, t > 0, under the
boundary conditions

u(x0, t) = f0(t), u(1, t) = f1(t) (2.6)

and the initial condition

u(x, 0) = p(x). (2.7)

Using the definition in (2.5), we note that

L−1xx (u′′(x)) = u(x, t)− u(x0, t)−
x− x0
1− x0

[u(1, t)− u(x0, t)], (2.8)

that is, the boundary conditions can be used directly. However, from (2.5) we note that the
lower bound of all integrations is restricted to the initial point x0. In fact, we can avoid this
restriction by using a new definition of L−1xx which gives the same result as in equation (2.8)
and is given by

L−1xx (·) =

∫x
x0

dk

∫k
c

(·) ds− x− x0
1− x0

∫1
x0

dk

∫k
c

(·) ds, (2.9)

where c is a free lower point. This free point plays an important role if the equation solved has
a singular point.

2.2. Extension of Ebaid’s work

In the extension of Ebaid’s work, we have

L−1xxx(·) =

∫x
a

dk

∫k
c

ds

∫s
g

(·) dy − x2
∫ b
d

dk

∫k
e

ds

∫s
h

(·) dy. (2.10)

In the next section, we will give a theoretical derivation of the operator given by equation (2.10).
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3. Derivation of the proposed operator

First, we define L−1xxx as

L−1xxx(·) =

∫x
a

dk

∫k
c

ds

∫s
g

(·) dy − z(x)

∫ b
d

dk

∫k
e

(·) ds
∫s
h

(·) dy, (3.1)

where z(x) is to be determined such that L−1xxx(u(x)) can be expressed only in terms of the
boundary conditions given in (1.1). With this definition, we easily get

L−1xxx(u(3)(x)) = u(x)− u(a)− xu′(c) + au′(c)− xcu′′(g) + acu′′(g) +
a2

2
u′′(g)− x2

2
u′′(g)

− z(x)

[
u(b)− u(d)− bu′(e) + du′(e) + beu′′(h)

− deu′′(h) +
d2

2
u′′(h)− b2

2
u′′(h)

]
= u(x)− u(a)− xu′(c) + au′(c)− z(x)[u(b)− u(d)− bu′(e) + du′(e)]

+u′′(g)

[
c(x− a)− x2 − a2

2

]
− z(x)u′′(h)

[
e(b− d)− b2 − d2

2

]
. (3.2)

Setting d = a, e = c and h = g, we obtain

L−1xxx(u(3)(x)) = u(x)− u(a)− xu′(c) + au′(c) + z(x)[u(a)− u(b)− au′(c) + bu′(c)]

+u′′(g)

{
c(x− a)− x2 − a2

2
+ z(x)

[
c(a− b) +

b2 − a2

2

]}
. (3.3)

In order to express L−1xxx(u(3)(x)) in terms of the three boundary conditions only, we have to
eliminate the coefficients multiplying u′′(g) by setting

u′′(g)

{
c(x− a)− x2 − a2

2
+ z(x)

[
c(a− b) +

b2 − a2

2

]}
= 0. (3.4)

Let a = 0, b = 1, c = 0 and assume that u′′(g) 6= 0; we get

z(x) =
2cx− 2ca− x2 + a2

2cb− 2ca− b2 − a2
= x2. (3.5)

Substituting (3.4) and (3.5) into (3.3), respectively, we obtain

L−1xxx(u(3)(x)) = u(x)− u(0)− xu′(0) + x2[u(0)− u(1) + u′(0)]

= u(x)− α− xγ + x2(α− β + γ). (3.6)

In the next section, we will use the combination of this equation and the decomposition method
to solve the third-order nonlinear differential equation.

4. Analysis of the improved ADM (IADM) for solving third-order nonlinear
differential equations

In this section, the ADM with the modification of Lesnic’s work developed in the previous
section is used to construct algorithms for solving equation (1.1).

https://doi.org/10.1112/S1461157017000018 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157017000018


4 x. lv and j. gao

Now, applying the operator L−1xxx(·) presented in the previous section and given by
equation (3.6) on both sides of equation (1.1), we obtain

u(x) = α+ xγ − x2(α− β + γ)− L−1xxxh(x)f(u(x)) + L−1xxxg(x). (4.1)

The ADM is based on decomposing u and the nonlinear term f(u(x)) as

u =

∞∑
n=0

un and f(u(x)) =

∞∑
n=0

An, (4.2)

where {An}∞n=0 are Adomian’s polynomials for the nonlinear term f(u(x)) and can be found
from the formula

An =
1

n!

[
dn

dλn
f

( ∞∑
i=0

λiui

)]
λ=0

, n > 0. (4.3)

Substituting (4.2) into (4.1) and according to the ADM, the solution u(x) can be elegantly
computed by using the recurrence relation

u0(x) = α+ xγ − x2(α− β + γ) + L−1xxxg(x),

u1(x) = L−1xxx(h(x)A0(x)),

u2(x) = L−1xxx(h(x)A1(x)),

u3(x) = L−1xxx(h(x)A2(x)),

...

un(x) = L−1xxx(h(x)An−1(x)), n > 0

(4.4)

and 

A0 = f(u0),

A1 = u1f
′(u0),

A2 = u2f
′(u0) +

1

2
u21f

′′(u0),

A3 = u3f
′(u0) + u1u2f

′′(u0) +
1

3!
u31f

′′′(u0),

...

An =
1

n!

[
dn

dλn
f

( ∞∑
i=0

λiui

)]
λ=0

, n > 0.

(4.5)

We obtain an approximate solution of the equation

ũm(x) =

m∑
n=0

un(x). (4.6)
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In this work, u(x) is assumed to be bounded for any x ∈ J = [0, 1]. The nonlinear term
f(u) is Lipschitz continuous with |f(u)−f(v)| 6 L|u−v|. In the paper [13], El-Kalla deduced
another programmable formula for the Adomian polynomials:

An = f(Sn)−
n−1∑
i=0

Ai, (4.7)

where the partial sum is Sn =
∑n
i=0 ui(x). The relations above have been obtained with the

assumption of the convergence of the series (4.2). The conditions for such convergence are
discussed in the following theorem.

Theorem 4.1. Suppose 0 < α = MNL < 1 and |u1(x)| < ∞; then the series solution
(4.2) of problem (4.1) using ADM converges, where N = max∀x∈J |h(x)| and, for any u(x) ∈
C[J ],∃M > 0 such that ‖L−1xxxu‖ 6M‖u‖.

Proof. Denote (C[J ], ‖ · ‖) as the Banach space of all continuous functions on J with the
norm ‖u(x)‖ = max∀x∈J |u(x)|. Define Sn as the sequence of partial sums. Let Sn and Sm be
arbitrary partial sums with n > m. We are going to prove that Sn is a Cauchy sequence in
this Banach space.

‖Sn − Sm‖ = max
∀x∈J

|Sn − Sm|

= max
∀x∈J

∣∣∣∣ n∑
i=m+1

ui(x)

∣∣∣∣
= max
∀x∈J

∣∣∣∣ n∑
i=m+1

L−1xxx(h(x)Ai−1(x))

∣∣∣∣
= max
∀x∈J

∣∣∣∣ n−1∑
i=m

L−1xxx(h(x)Ai(x))

∣∣∣∣
= max
∀x∈J

∣∣∣∣L−1xxx(h(x)

n−1∑
i=m

Ai(x))

∣∣∣∣.
From (4.7), we have

∑n−1
i=mAi = f(Sn−1)− f(Sm−1), so

‖Sn − Sm‖ = max
∀x∈J

|L−1xxx(h(x)f(Sn−1)− f(Sm−1))|,

according to the boundedness of L−1xxx, h(x) and f(u) is Lipschitz continuous; then

‖Sn − Sm‖ = max
∀x∈J

|L−1xxx(h(x)f(Sn−1)− f(Sm−1))|

6MNL max
∀x∈J

|Sn−1 − Sm−1|

6 α‖Sn−1 − Sm−1‖.

Let n = m+ 1; then

‖Sm+1 − Sm‖ 6 α‖Sm − Sm−1‖ 6 α2‖Sm−1 − Sm−2‖ 6 . . . 6 αm‖S1 − S0‖.
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From the triangle inequality, we have

‖Sn − Sm‖ 6 ‖Sm+1 − Sm‖+ ‖Sm+2 − Sm+1‖+ . . .+ ‖Sn − Sn−1‖
6 (αm + αm+1 + . . .+ αn−1)‖S1 − S0‖
6 αm(1 + α+ α2 + . . .+ αn−m−1)‖S1 − S0‖

6 αm
(

1− αn−m

1− α

)
‖u1‖.

Since 0 < α < 1, we have 1 − αn−m < 1; then ‖Sn − Sm‖ 6 (αm/(1− α)) max∀x∈J ‖u1(x)‖.
As |u1(x)| <∞, as m→∞, ‖Sn−Sm‖ → 0. We conclude that {Sn}∞n=0 is a Cauchy sequence
in C[J ]; this implies that there exists a u(x) ∈ C[J ] such that limn→∞ Sn = u, that is,
u(x) =

∑∞
n=0 un(x). The series converges and the proof is complete.

In the following, we give three examples to demonstrate the effectiveness of the algorithm.

5. Examples

Example 1. Consider the following equation:u
(3)(x)− eu(x)(0.5− eu(x)) = g(x), x ∈ [0, 1],

u(0) = ln(10000), u(1) = ln(10001), u′(0) =
1

10000
,

(5.1)

where h(x) = 1, g(x) = (−2− 1
2

√
x(9998 + x)(10000 + x))/(1000 + x)3; the exact solution is

u(x) = ln(1/(x+ 10000)); by (4.4), (4.5), we select 100 points in [0, 1] and get the approximate

solution ũ5(x) =
∑5
i=0 ui(x); the results are shown in Table 1.

Table 1. Relative error of approximate solutions at m = 5.

Node True solution Approximate solution Relative error

1/100 9.210347 9.210345 2.68994E−08

11/100 9.210355 9.210353 2.95887E−07

21/100 9.210368 9.210363 5.64863E−07

31/100 9.210370 9.210360 8.33828E−07

41/100 9.210380 9.210370 1.10278E−06

51/100 9.210390 9.210380 1.37172E−06

61/100 9.210400 9.210390 1.64066E−06

71/100 9.210410 9.210390 1.90958E−06

81/100 9.210420 9.210400 2.17849E−06

91/100 9.210430 9.210410 2.44738E−06

Example 2. Consider another differential equation, where the nonlinear term is different
from that in Example 1.u

(3)(x)− ln(u(x)) = g(x), x ∈ [0, 1],

u(0) = 1, u(1) =
10001

10000
, u′(0) =

1

10000
,

(5.2)

https://doi.org/10.1112/S1461157017000018 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157017000018


third-order nonlinear differential equations 7

where h(x) = 1, g(x) = − ln(1 + x/10000); the exact solution is u(x) = 1 + x/10000. We
choose 100 points in [0, 1] by making use of (2.10) and get the approximate solution ũ5(x) =∑5
i=0 ui(x); the relative errors are shown in Table 2.

Table 2. Relative error of approximate solutions at m = 5.

Node True solution Approximate solution Relative error

1/100 1.000000 1.000000 4.95025E−07

11/100 1.000010 1.000020 5.44530E−06

21/100 1.000020 1.000030 1.03956E−05

31/100 1.000030 1.000050 1.53460E−05

41/100 1.000040 1.000060 2.02964E−05

51/100 1.000050 1.000080 2.52469E−05

61/100 1.000060 1.000090 3.01974E−05

71/100 1.000070 1.000110 3.51480E−05

81/100 1.000080 1.000120 4.00986E−05

91/100 1.000090 1.000140 4.50493E−05

Example 3. We consider the following equation for comparing our algorithm with the
existing algorithm [24].u(3)(x)− xu′′(x)− u′(x)− xu(x)− u2(x) = g(x),

u(1) = 0, u′(1) = 0, u′(0) = 0,
(5.3)

where h(x) = 1, g(x) = 18(x− 1)2 + 36(x− 1)x− 2(x− 1)3 + 6x2 − (x− 1)2x2 − (x− 1)3x3 −
(x− 1)6x4−x(2(x− 1)3 + 12x(x− 1)2 + 6(−1 +x)x2); the exact solution is u(x) = x2(x− 1)2.
We select ten points in [0, 1] by making use of (2.10) and get the approximate solution ũ5(x) =∑5
i=0 ui(x); the comparison results are shown in Table 3.

Table 3. Comparison of the relative error at m = 5 in the paper [24].

Node True solution Approximate solution Our algorithm Algorithm in [24]

1/10 0.00108830 0.00108929 9.097650E−04 4.71412E−03

1/5 0.00116726 0.00116800 6.381110E−04 1.23304E−03

3/10 0.00121262 0.00121313 4.247230E−04 1.74306E−03

2/5 0.00121921 0.00121952 2.542720E−04 4.25259E−03

1/2 0.00118380 0.00118394 1.154000E−04 6.10987E−03

3/5 0.00110530 0.00110530 1.034070E−06 7.10274E−03

7/10 0.00098487 0.00098477 1.036380E−04 6.88828E−03

4/5 0.00082595 0.00082579 2.031170E−04 4.62244E−03

9/10 0.00063401 0.00063381 3.191620E−04 3.53199E−03
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Example 4. For comparing our algorithm with the existing algorithm in [7], we consider
the following equation:u

(3)(x) + 2αReu(x)u′(x) + (4−Ha)u′(x) = 0,

u(0) = 1, u(1) = 0, u′(0) = 0,

(5.4)

where Re = 50 and Ha = 1000. The same as in the paper [7], we introduce the error as follows:

Error =

∣∣∣∣Numerical 1−Numerical 2

Numerical 2

∣∣∣∣,
where Numerical 1 denotes the numerical solution of [7] and Numerical 2 denotes the numerical
solution in our algorithm. We select twenty points in [0, 1] by using (2.10) and get the

approximate solution ũ10(x) =
∑10
i=0 ui(x); the comparison results are shown in Table 4 for

α = 5.

Table 4. Comparison of the relative error at α = 5 in the paper [7].

Node Error 1 in [7] Error 2 in [7] Error in our algorithm

0.00 0.00E+00 0.00E+00 0.00E+00

0.05 1.00E−10 1.00E−10 6.66E−11

0.10 1.01E−10 2.02E−10 3.63E−11

0.15 8.18E−10 1.12E−09 1.02E−10

0.20 1.87E−09 6.24E−10 2.16E−11

0.25 2.76E−09 1.28E−09 3.85E−10

0.30 8.09E−09 5.47E−09 8.98E−11

0.35 1.66E−08 1.26E−08 1.24E−10

0.40 1.49E−08 1.28E−08 1.61E−10

0.45 8.29E−09 1.86E−09 2.01E−11

0.50 4.58E−09 3.27E−09 2.40E−11

0.55 2.38E−09 1.16E−08 2.77E−10

0.60 8.32E−09 1.77E−08 3.07E−11

0.65 1.15E−08 2.69E−08 3.28E−11

0.70 1.45E−08 5.40E−09 3.36E−11

0.75 1.59E−08 5.53E−08 3.27E−10

0.80 2.18E−08 4.49E−08 3.01E−09

0.85 2.06E−08 2.16E−08 2.54E−10

0.90 1.97E−08 1.53E−07 2.01E−08

0.95 2.49E−08 5.25E−07 1.87E−09

1.00 0.00E+00 0.00E+00 0.00E+00

6. Conclusions

In this paper, through the three examples, it can be seen that our algorithm is more accurate
than the traditional algorithm. In comparison with other methods, the decomposition method
we put forward is not only more accurate but also needs fewer steps; the process also saves
a lot of time. Through the above numerical examples, we illustrated the practicality of the
decomposition method we put forward for solving third-order nonlinear equations.
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