QUASIPRIMITIVITY AND QUASIGROUPS

J.D. PHILLIPS AND J.D.H. SMITH

It is well known that Q is a simple quasigroup if and only if $\text{Mlt } Q$ acts primitively on Q. Here we show that Q is a simple quasigroup if and only if $\text{Mlt } Q$ acts quasiprimitively on Q, and that Q is a simple right quasigroup if and only if $\text{RMlt } Q$ acts quasiprimitively on Q.

A quasigroup is set with a single binary operation, denoted by juxtaposition, such that in $xy = z$, knowledge of any two of x, y and z specifies the third uniquely. A right quasigroup is a set with a single binary operation whose right translations biject.

The multiplication group, $\text{Mlt } Q$, of a quasigroup Q is the subgroup of the group of all bijections on Q generated by right and left translations, that is $\text{Mlt } Q := \langle R(x), L(x) : x \in Q \rangle$, where $R(x)$ (respectively, $L(x)$) is right (respectively, left) translation by x. The right multiplication group, $\text{RMlt } Q$, of a right quasigroup Q is the subgroup of the group of all bijections on Q generated by right translations, that is $\text{RMlt } Q := \langle R(x) : x \in Q \rangle$. A quasigroup Q is called type 1 if $\text{RMlt } Q = \text{Mlt } Q$. For example, commutative quasigroups are type 1; so too are finite simple Moufang loops [4].

A permutation group G on a set Q acts primitively on Q if the only G-invariant partitions of Q are the two trivial partitions $\{Q\}$ and $\{\{x\} : x \in Q\}$. Of course, if G acts primitively on Q then each nontrivial normal subgroup of G is transitive on Q. In [5], Praeger used this fact to generalise the notion of primitivity: a permutation group G on a set Q acts quasiprimitively on Q if each non-trivial normal subgroup of G is transitive on Q. This definition is useful because, as Praeger proved [5], there is an O'Nan-Scott type theorem classifying all quasiprimitive permutation groups as one of eight types.

Given a quasigroup Q, there exist two binary operations $/\,$, \setminus on Q such that $(xy)/y = x$, $(x/y)y = x$, $x\setminus(xy) = y$, and $x(x\setminus y) = y$. Conversely, an algebra with three binary operations satisfying these four identities is a quasigroup — as defined at the beginning of this paper — under any one of these operations [2]. Similarly, right quasigroups are axiomatised by the first two of the four quasigroup identities above. A
congruence on a (right) quasigroup Q is an equivalence relation V on Q such that if $x_1 V y_1$ and $x_2 V y_2$, then $x_1 x_2 f V y_1 y_2 f$, where f is any one of the (two) three binary operations on Q. Q is simple if its only congruences are the trivial congruence and the improper congruence. We record the following well known fact [2]:

Proposition 1. A quasigroup Q is simple if and only if $\text{Mlt} \, Q$ acts primitively on Q.

Theorem 2. A quasigroup Q is simple if and only if $\text{Mlt} \, Q$ acts quasiprimitively on Q.

Proof: (\implies) Quasiprimitivity is a generalisation of primivity.

(\impliedby) Let V be a nontrivial congruence on Q. There is a corresponding normal subgroup $\text{Nor}(V) := \{g \in \text{Mlt} \, Q : \forall q \in Q, (q, qg) \in V\}$ of $\text{Mlt} \, Q$. Now pick $x \in Q$. The subset $x \text{Nor}(V)$ of Q is contained in the congruence class of x. But since $\text{Mlt} \, Q$ acts quasiprimitively on Q, $x \text{Nor}(V) = Q$. Thus V is improper and Q is simple. □

An important research program from the theory of quasigroups is to determine which permutation group actions are the actions of a multiplication group of a quasigroup, and which permutation groups are not [2, 4]. The following corollary to Theorem 2 advances this program.

Corollary 3. An imprimitive, quasiprimitive action is not a multiplication group action.

For examples of imprimitive, quasiprimitive actions see [5]. While every symmetric group, under its natural action, can be realised as a multiplication group of some quasigroup, [3, Proposition 4.2] shows that the actions of symmetric groups of odd prime power degree bigger than three on unordered pairs cannot be multiplication group actions. Corollary 3 above expands on this theme: it is the first example of a general class of permutation actions — that is, the quasiprimitive, imprimitive actions — that cannot be multiplication group actions. The following result gives a unilateral version of Theorem 2.

Theorem 4. Q is a simple right quasigroup if and only if $\text{RMlt} \, Q$ acts quasiprimitively on Q.

Proof: (\implies) Let N be a non-trivial normal subgroup of $\text{RMlt} \, Q$. The sets $xN, x \in Q$, partition Q. Let Q/N denote the set of equivalence classes. Define a binary operation on Q/N by $(xN)(yN) = (xyN)$. It is easy to check that this operation is well defined and that under this operation Q/N is a right quasigroup [1]. It is also clearly a proper homomorphic image of Q. But Q is simple, so this image must be trivial. That is, there is only one equivalence class, and N is a transitive on Q.

(\impliedby) Given a right quasigroup epimorphism $f : Q \to M$, there is a group epimorphism $F : \text{RMlt} \, Q \to \text{RMlt} \, M$; $R(x) \to R(xf)$. Pick $x \in Q$. The subset $x \text{Ker} \, F$...
is in the congruence (ker \(f \)) class of \(x \). But since \(R\text{Mlt}Q \) acts quasiprimatively on \(Q, x \text{Ker } F = Q \). Hence, ker \(f \) is improper, and \(Q \) is simple. □

Corollary 5. If \(Q \) is a type 1 simple quasigroup, then \(Q \) is a simple right quasigroup.

References

Department of Mathematics
Saint Mary's College
Moraga, CA 94575
United States of America

Department of Mathematics
Iowa State University
Ames, IA 50011
United States of America