FUNCTION SPACES CONTINUOUSLY PAIRED BY OPERATORS OF CONVOLUTION-TYPE

BY
R. A. KERMAN

Abstract

Certain operators essentially defined by convolution are considered. Their possible domain and range spaces are determined; then conditions are given under which the construction of the optimal continuous partner may be carried out for a suitable domain or range. Special cases of operators of convolution-type are useful in studying the boundedness properties of conjugate function operators and, more generally, classes of operators satisfying restricted weak-type conditions.

1. Introduction. In this paper we fix on a positive operator T of convolution-type and give conditions under which one can construct with respect to it an optimal continuous partner for a proposed domain or range. Such a T has the form

$$
\begin{equation*}
(T f)(t)=\int_{0}^{\infty} a(s) f(s t) d s, \quad t>0 \tag{1.1}
\end{equation*}
$$

the domain consists of all functions f in the class of Lebesgue-measurable functions on $(0, \infty)$, denoted by $M(0, \infty)$, for which the integral exists a.e.; the kernel $a(t)$ is a nonnegative function in $M(0, \infty), a(t) \not \equiv 0$. Motivation for the term "convolution-type" may be found in [5] and references cited there.

It has been shown that the boundedness of certain conjugate function operators between a pair of rearrangement invariant function spaces is equivalent to that of a T with kernel

$$
\begin{equation*}
\min \left[t^{1 / p-1}, t^{1 / q-1}\right] \quad 1 \leq p<q \leq \infty . \tag{1.2}
\end{equation*}
$$

The first theorem of this kind was proved in Boyd [3] for the Hilbert transformation. Further results and references are given in [7]. Such operators also play a special role in the theory of operators of restricted weak-type. See Calderón [6]-in particular the discussion of optimal pairs in section 3-and Boyd [4]; also [8].

Theorems 2.2 and 2.2^{\prime} give the conditions for the construction of optimal continuous partners. These apply, in particular, to T having kernels (1.2). The continuous pairs thus determined are the same as those for the conjugate function operators mentioned above.

As shown in Theorem 2.1 there is a maximum domain and a minimum range for the T of the above two results; Theorems 2.3 and 2.3^{\prime} describe their optimal partners when T has a kernel (1.2).

Background material on rearrangement invariant spaces and convolutiontype operators may be found in [4] and [5]. We will use the notation [X, Y] for the space of linear operators bounded from X to Y, abbreviating $[X, X]$ by [X]. Finally, if T is a positive operator of convolution-type with kernel $a(t)$, the operator T^{\prime} with kernel $(1 / t) a(1 / t)$ will be called its associate operator if

$$
\begin{equation*}
\int_{0}^{\infty} f(t)(T g)(t) d t=\int_{0}^{\infty} g(t)\left(T^{\prime} f\right)(t) d t \tag{1.3}
\end{equation*}
$$

for all nonnegative $f, g \in M(0, \infty)$.
2. Continuous Pairs. If a postitive T of convolution-type is in $[X, Y], X$ and Y being rearrangement invariant with respect to Lebesgue's measure m on $(0, \infty)$, then $T \chi_{(0,1)}$ must be locally integrable. It is then a consequence of Theorem 2.1 below that should T be bounded between a pair of rearrangement invariant spaces there will exist two Lorentz spaces, one of which is the largest possible domain space for T; the other, the smallest possible range space. As is well-known, given a nonegative, nonincreasing function ϕ on $(0, \infty)$ with

$$
\begin{equation*}
\Phi(t)=\int_{0}^{t} \phi(u) d u<\infty, \quad t>0 \tag{2.1}
\end{equation*}
$$

the (rearrangement invariant) Lorentz spaces $\Lambda(\phi)$ and $M(\phi)$ have their norms given at nonnegative $f \in M(0, \infty)$ by

$$
\begin{equation*}
\sigma(f)=\int_{0}^{\infty} f^{*}(t) \phi(t) d t \tag{2.2}
\end{equation*}
$$

and

$$
\sigma^{\prime}(f)=\sup _{t>0} \int_{0}^{t} f^{*}(u) d u / \Phi(t)
$$

respectively. Here f^{*} is the nonincreasing rearrangement of f. Further, as the notation in (2.2) suggests, $M(\phi)$ is the space associate to $\Lambda(\phi)$.

Theorem 2.1. Suppose T is a positive operator of convolution-type with associate T^{\prime}. Let $\phi=T_{\chi_{(0,1)}}$ and $\psi=T^{\prime} \chi_{(0,1)}$. It follows that
(i) If σ_{1} is a rearrangement invariant norm on $M(0, \infty)$ for which another such norm σ_{2} exists with $T \in\left[L^{\sigma_{1}}, L^{\sigma_{2}}\right]$, then $L^{\sigma_{1}} \subset \Lambda(\psi)$.
(ii) If σ_{2} is a rearrangement invariant norm on $M(0, \infty)$ for which another such norm σ_{1} exists with $T \in\left[L^{\sigma_{1}}, L^{\sigma_{2}}\right]$, then $L^{\sigma_{2}} \supset M(\phi)$.

Proof. Suppose $f \in L^{\sigma_{1}}$. Then $T f^{*} \in L^{\sigma_{2}}$. As a result, since $\chi_{(0,1)}$ belongs to every rearrangement invariant space,

$$
\begin{equation*}
\int_{0}^{\infty}\left(T f^{*}\right)(t) \chi_{(0,1)}(t) d t<\infty, \tag{2.3}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\int_{0}^{\infty} f^{*}(t) \psi(t) d t<\infty \tag{2.4}
\end{equation*}
$$

$T \in\left[L^{\sigma_{1}}, L^{\sigma_{2}}\right]$ implies $T^{\prime} \in\left[L^{\sigma_{2}^{\prime}}, L^{\sigma_{1}^{\prime}}\right]$. By (i), $L^{\sigma_{2}^{\prime}} \subset \Lambda(\phi)$, or equivalently, $L^{\sigma_{2}} \supset M(\phi)$.

Theorem 2.2. Let T be a positive operator of convolution-type having kernel $a(t)$ for which

$$
\begin{equation*}
\int_{0}^{\infty} \min [1,1 / u] a(u) d u<\infty \tag{2.5}
\end{equation*}
$$

Then the function $\phi=T_{x_{(0,1)}}$ is nonnegative and nonincreasing on $(0, \infty)$ with $\int_{0}^{1} \phi(t) d t<\infty$. Moreover, to each rearrangement invariant norm σ on $M(0, \infty)$ with $L^{\sigma} \supset M(\phi)$ there corresponds a rearrangement invariant norm $\boldsymbol{\sigma}$ such that $T \in\left[L^{\sigma}, L^{\sigma}\right]$.

Proof. Observe that (2.5) is simply the condition that $\Phi(1)=\int_{0}^{1} \phi(t) d t$ be finite. This means that $\Phi(t)$ and hence $\left\|\chi_{(0, t)}\right\|_{M(\phi)}=t / \Phi(t)$ will be finite for all $t>0$.

Given nonnegative $f \in M(0, \infty)$, define $\boldsymbol{\sigma}(f)$ by

$$
\begin{equation*}
\boldsymbol{\sigma}(f)=\sigma\left(T f^{*}\right) \tag{2.6}
\end{equation*}
$$

We show $\boldsymbol{\sigma}$ satisfies the definitive properties of a rearrangement invariant norm given in [4]. In what follows, f, f_{n}, and g are nonnegative functions in $M(0, \infty)$.

Now, $\sigma\left(T f^{*}\right) \geq 0$ with equality if and only if

$$
\begin{equation*}
\int_{0}^{\infty} a(s) f^{*}(s t) d s=0, \quad \text { a.e. } \tag{2.7}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\int_{0}^{\infty} a(s / t) f^{*}(s) d s=0, \quad \text { a.e. } \tag{2.8}
\end{equation*}
$$

The assumption that $f=0$ a.e. is false ensures the existence of $s_{0}>0$ such that $f^{*}(s)>0$ when $0<s<s_{0}$. But, for all sufficiently small t, the function $a(s / t)$ is greater than zero on a subset of ($0, s_{0}$) of positive Lebesgue measure. Hence $f=0$ a.e.

The subadditivity of $\boldsymbol{\sigma}$ will follow by duality given

$$
\begin{equation*}
\int_{0}^{\infty} h(t)\left[T(f+g)^{*}\right](t) d t \leq \sigma\left(T f^{*}\right)+\delta\left(T g^{*}\right) \tag{2.9}
\end{equation*}
$$

for all nonnegative, nonincreasing $h \in L^{\sigma^{\prime}}$ with $\sigma^{\prime}(h) \leq 1$. But, the first term in (2.9) is equal to

$$
\begin{equation*}
\int_{0}^{\infty} a(u) d u \int_{0}^{\infty} h(t)(f+g)^{*}(u t) d t \tag{2.10}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\int_{0}^{t}(f+g)^{*}(u s) d s \leq \int_{0}^{t} f^{*}(u s) d s+\int_{0}^{t} g^{*}(u s) d s \tag{2.11}
\end{equation*}
$$

together with a well-known result of Hardy and Littlewood, ensures (2.10) is dominated by

$$
\begin{equation*}
\int_{0}^{\infty} a(u) d u \int_{0}^{\infty} h(t) f^{*}(u t) d t+\int_{0}^{\infty} a(u) d u \int_{0}^{\infty} h(t) g^{*}(u t) d t \tag{2.12}
\end{equation*}
$$

After inverting the order of the integrals in (2.12), an appeal to the generalized Hölder inequality will yield (2.9).

To verify $\boldsymbol{\sigma}$ satisfies the Fatou property, observe that $0 \leq f_{n} \uparrow f$ implies $T f_{n}^{*} \uparrow T f^{*}$ and hence, by the corresponding property of $\sigma, \boldsymbol{\sigma}\left(f_{n}\right) \uparrow \boldsymbol{\sigma}(f)$.

At this point we obtain from [9, p. 42] that $\boldsymbol{\sigma}$ gives rise to a Banach space in the usual way.

Suppose now $E \in \mathfrak{M}$, the class of Lebesgue-measurable subsets of $(0, \infty)$, and that $m(E)<\infty$. Then $T \chi_{E}^{*}$ will belong to L^{σ} if there exists $c>0$ so that

$$
\begin{equation*}
\int_{0}^{s}\left[T_{\left.\chi_{(0, m(E)}\right)}\right](u) d u \leq c \int_{0}^{s}\left[T \chi_{(0,1)}\right](u) d u \tag{2.13}
\end{equation*}
$$

for all $s>0$. But, (2.13) just asks that

$$
\begin{equation*}
m(E) \Phi(s / m(E)) \leq c \Phi(s) \quad s>0 \tag{2.14}
\end{equation*}
$$

which is true with $c=\max (1, m(E))$, since Φ increases concavely from $\Phi(0)=0$.
Finally, we show that to each $E \in \mathfrak{M}, m(E)<\infty$, there is associated a constant $k_{E}>0$ so that

$$
\begin{equation*}
\int_{E} f(t) d t \leq k_{E} \boldsymbol{\sigma}(f) \tag{2.15}
\end{equation*}
$$

for all nonnegative $f \in M(0, \infty)$. It will be enough to show that for such f there is a $k>0$ for which $\boldsymbol{\sigma}(f) \leq k \boldsymbol{\sigma}(f)$, because σ satisfies (2.15). To this end, fix f, g and suppose $\sigma^{\prime}(g) \leq 1$. Also, let $u>0$ be such that $A(u) \equiv \int_{0}^{u} a(s) d s>0$. We
have

$$
\begin{equation*}
\int_{0}^{\infty} \stackrel{\rightharpoonup}{*} f^{*}(t) g^{*}(t) d t \leq \max (1, u) \int_{0}^{\infty} f^{*}(u t) g^{*}(t) d t, \tag{2.16}
\end{equation*}
$$

since $f^{*}(t) \leq f^{*}(u t)$ for $0<u \leq 1$, while $g^{*}(t) \leq g^{*}(t / u)$ for $u>1$. Now, from Lemma 3.3 of [3],

$$
\begin{equation*}
A(u) \int_{0}^{\infty} f^{*}(u t) g^{*}(t) d t \leq \int_{0}^{u} a(s) d s \int_{0}^{\infty} f^{*}(s t) g^{*}(t) d t \tag{2.17}
\end{equation*}
$$

the latter being no bigger than

$$
\begin{align*}
\int_{0}^{\infty} a(s) d s \int_{0}^{\infty} f^{*}(s t) g^{*}(t) d t & =\int_{0}^{\infty}\left(T f^{*}\right)(t) g^{*}(t) d t \tag{2.18}\\
& \leq \sigma\left(T f^{*}\right) \boldsymbol{\sigma}^{\prime}\left(g^{*}\right)=\boldsymbol{\sigma}(f)
\end{align*}
$$

Thus,

$$
\begin{equation*}
\int_{0}^{\infty} f^{*}(t) g^{*}(t) d t \leq k \boldsymbol{\sigma}(f) \tag{2.19}
\end{equation*}
$$

where $k=\max (1, u)[A(u)]^{-1}$. The argument is completed on taking the supremum over g.

Clearly, $T \in\left[L^{\boldsymbol{\sigma}}, L^{\sigma}\right]$ by the very definition of $\boldsymbol{\sigma}$.
The result dual to Theorem 2.2 is
Theorem 2.2'. Let T be a positive operator of convolution-type having kernel $a(t)$ and associate T^{\prime}. Suppose

$$
\begin{equation*}
\int_{0}^{\infty} \min (1,1 / u) a(1 / u) \frac{d u}{u}<\infty . \tag{2.20}
\end{equation*}
$$

Then the function $\psi=T^{\prime} \chi_{(0,1)}$ is nonnegative and nonincreasing on $(0, \infty)$ with $\int_{0}^{1} \psi(t) d t<\infty$. Moreover, to each rearrangement invariant norm σ on $M(0, \infty)$ with $L^{\sigma} \subset \Lambda(\psi)$ there corresponds a rearrangement invariant norm $\tilde{\sigma}$ such that $T \in\left[L^{\sigma}, L^{\tilde{\sigma}}\right]$.

Proof. Condition (2.20) is just condition (2.5) of Theorem 2.2 for T^{\prime} and its kernel $(1 / t) a(1 / t)$. Further, $L^{\sigma} \subset \Lambda(\psi)$ implies $L^{\sigma^{\prime}} \supset M(\psi)$. Let $\boldsymbol{\sigma}^{\prime}$ be the norm guaranteed by Theorem 2.2 for T^{\prime} and σ^{\prime}. Take $\tilde{\boldsymbol{\sigma}}=\left(\boldsymbol{\sigma}^{\prime}\right)^{\prime}$.

Remarks. 1. One may give $\tilde{\boldsymbol{\sigma}}$ a somewhat more explicit form in Theorem 2.2^{\prime} using a construction analogue to that in Bennett [2]. Thus, firstly, $\tilde{\sigma}^{0}$ is defined at nonnegative $g \in M(0, \infty)$ by

$$
\begin{equation*}
\tilde{\sigma}^{0}(g)=\inf \left\{\sigma(|f|): g^{* *} \leq\left(T f^{*}\right)^{* *}, f \in L^{\sigma}\right\} \tag{2.21}
\end{equation*}
$$

with the convention that $\tilde{\sigma}^{0}(g)=\infty$ if no such f exists. Then, $\tilde{\sigma}$ is given at
nonnegative $g \in M(0, \infty)$ by

$$
\begin{equation*}
\tilde{\sigma}(\mathrm{g})=\sup \tilde{\sigma}^{0}\left(g \chi_{E}\right), \tag{2.22}
\end{equation*}
$$

the supremum being taken over all Lebesgue-measurable subsets E of $(0, \infty)$ with $m(E)<\infty$.
2. It is clear from the constructions of $\boldsymbol{\sigma}$ and $\tilde{\sigma}$ that, with respect to $T, L^{\boldsymbol{\sigma}}$ is the largest domain space having L^{σ} as range, while $L^{\tilde{\sigma}}$ is the smallest range space having L^{σ} as domain. Further, $L^{\sigma} \subset L^{\sigma}$ and hence $L^{\sigma} \subset L^{\bar{\sigma}}$. In particular, if $T \in\left[L^{\sigma}\right]$, then $L^{\sigma}=L^{\tilde{\sigma}}=L^{\sigma}$, the norms being equivalent.

Definition 2.1. Let σ_{1} and σ_{2} be rearrangement invariant norms. The functional $\sigma_{1} \wedge \sigma_{2}$ is given at nonnegative $f \in M(0, \infty)$ by

$$
\left(\sigma_{1} \wedge \sigma_{2}\right)(f)=\max \left[\sigma_{1}(f), \sigma_{2}(f)\right]
$$

Remark. One readily verifies that $\sigma_{1} \wedge \sigma_{2}$ is a rearrangement invariant norm and that, as sets, $L^{\sigma_{1} \wedge \sigma_{2}}=L^{\sigma_{1}} \cap L^{\sigma_{2}}$. In view of this we will use the intersection notation for $L^{\sigma_{1} \wedge \sigma_{2}}$.

In what follows, σ_{α} and $\sigma_{\alpha}^{\prime}(0<\alpha \leq 1)$ will denote the usual Lorentz norms for which $\phi(t)=t^{\alpha-1} ; \Lambda(\alpha), M(\alpha)$ the corresponding Lorentz spaces. To keep notation uniform we will write $\Lambda(0)$ for L^{∞} and $M(0)$ for L^{1}.

Theorem 2.3. Suppose T is a positive operator of convolution-type with kernel (1.2). Let σ denote the usual norm on the Lorentz space $M(\phi), \phi=T_{\chi_{(0,1)}}$. Then, as a set, $L^{\boldsymbol{\sigma}}$ is equal to $\Lambda\left(p^{-1}\right) \cap \Lambda\left(q^{-1}\right)$. In particular, if $q<\infty$, this is $\Lambda\left(\max \left[t^{\epsilon}, t^{\eta}\right]\right), \epsilon=1 / p-1, \eta=1 / q-1$.

Proof. The boundedness of T follows once it is shown that for $u>0$ a constant multiple of the norm of f (in $\Lambda\left(p^{-1}\right) \cap \Lambda\left(q^{-1}\right)$) dominates

$$
\begin{equation*}
\int_{0}^{\infty} f^{*}(t) g_{u}(t) d t \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{g}_{u}(t)=\left[T^{\prime} \chi_{(0, u)}\right](t) / \Phi(u) \tag{2.24}
\end{equation*}
$$

Now, for the kernel $a(r)=\min \left(r^{\epsilon}, r^{\eta}\right)$ one easily sees that

$$
\begin{equation*}
a(r t) \leq \max \left(t^{\epsilon}, t^{\eta}\right) a(r) \tag{2.25}
\end{equation*}
$$

and so

$$
\begin{equation*}
\mathrm{g}_{u}(t) \leq \int_{t / u}^{\infty} a(r) \frac{d r}{r} / \int_{1 / u}^{\infty} a(r) \frac{d r}{r} \tag{2.26}
\end{equation*}
$$

since

$$
\begin{equation*}
\Phi(u)=\int_{0}^{\infty} \min (u, 1 / r) a(r) d r \geq \int_{1 / u}^{\infty} a(r) \frac{d r}{r} . \tag{2.27}
\end{equation*}
$$

But,

$$
\begin{equation*}
\int_{1 / u}^{\infty} a(r t) \frac{d r}{r} / \int_{1 / u}^{\infty} a(r) \frac{d r}{r} \leq \max \left(t^{\epsilon}, t^{\mathfrak{5}}\right), \tag{2.28}
\end{equation*}
$$

by (2.25). This completes the proof of the boundedness in case $q<\infty$ and, indeed, gives

$$
\begin{equation*}
\int_{1}^{\infty} f^{*}(t) g_{u}(t) d t \leq\|f\|_{\epsilon} \tag{2.29}
\end{equation*}
$$

for all q. It is enough to show now that

$$
\begin{equation*}
\int_{0}^{1} f^{*}(t) g_{u}(t) d t \leq\|f\|_{\infty} \int_{0}^{1} g_{u}(t) d t=\|f\|_{\infty} . \tag{2.30}
\end{equation*}
$$

However,

$$
\begin{equation*}
\int_{0}^{1}\left[T^{\prime} \chi_{(0, u)}\right](t) d t=\int_{0}^{u}\left[T \chi_{(0,1)}\right](t) d t=\Phi(u) . \tag{2.31}
\end{equation*}
$$

The methods of [7, Theorem 4.7] readily show $\Lambda\left(p^{-1}\right) \cap \Lambda\left(q^{-1}\right)$ is the largest space having range $M(\phi)$ under T. Indeed, suppose, if possible, that $f \in$ $M(0, \infty), T f^{*} \in M(\phi)$, but $f \notin \Lambda\left(p^{-1}\right)$. From

$$
\begin{equation*}
\lim _{u \rightarrow \infty} g_{u}(t)=-\left(1+\epsilon^{-1}\right) t^{\epsilon}, \tag{2.32}
\end{equation*}
$$

we conclude, using Fatou's lemma on (2.23), that

$$
\begin{equation*}
\|T f\|_{M(\phi)} \geq-\left(1+\epsilon^{-1}\right)\|f\|_{\epsilon}=\infty \tag{2.33}
\end{equation*}
$$

a contradiction. Similar considerations show that when $q<\infty$, one must have $f \in \Lambda\left(q^{-1}\right)$ whenever $T f^{*} \in M(\phi)$. Assume, then, if possible, that $f \in M(0, \infty)$, $\left(P_{\mathrm{p}}+Q_{\infty}\right) f^{*} \in M(\phi)$, but $f \notin L^{\infty}$. Given $B>0$ there must exist $b>0$ such that $f^{*}(t) \geq B$ when $0<t \leq b$. For $u \leq t \leq b$, the expression (2.23) is no smaller than

$$
\begin{equation*}
B(u \ln (b / u)) \tag{2.34}
\end{equation*}
$$

which approaches B as $u \rightarrow 0+$. Since B was arbitrary, a contradiction has been reached.

In view of the second remark following Theorem 2.2^{\prime}, the proof is complete.
Theorem 2.3'. Supose T is a positive operator of convolution-type with kernel (1.2). Let σ denote the usual norm on the Lorentz space $\Lambda(\psi), \psi=T^{\prime} \chi_{(0,1)}$. Then, as a set, $L^{\tilde{\sigma}}$ is equal to $M(1-1 / p)+M(1-1 / q)$. In particular, if $p>1$, it is $M\left(\max \left[t^{-\mathbf{p}^{-1}}, t^{-q^{-1}}\right]\right)$.

Remarks. 1. The mappings of Theorems 2.2 and 2.2^{\prime} need not invert one another. Thus, if $-1<\eta<\epsilon<0$, Theorem 2.2 shows that both $L^{1} \cap L^{\infty}$ and $\Lambda\left(p^{-1}\right) \cap \Lambda\left(q^{-1}\right)\left(L^{1} \cap L^{\infty} \mp \Lambda\left(p^{-1}\right) \cap \Lambda\left(q^{-1}\right)\right)$ must have $M(\phi)$ as their minimal range space under T. The other assertion follows by duality.

The above example leads to the conjecture that the mappings of Theorems 2.2 and 2.2^{\prime} applied succesively to $L^{\sigma} \cap \Lambda(\psi)$ yield the space $\left(L^{\sigma} \cap \Lambda(\psi)\right)+L^{\rho}$, ρ being the usual norm of $M(\phi)$. This would just be L^{σ} when that space is intermediate between $\Lambda\left(p^{-1}\right)$ and $\Lambda\left(q^{-1}\right)$; that is,

$$
\begin{equation*}
\Lambda\left(p^{-1}\right) \cap \Lambda\left(q^{-1}\right) \subset L^{\sigma} \subset \Lambda\left(p^{-1}\right)+\Lambda\left(q^{-1}\right) . \tag{2.35}
\end{equation*}
$$

In view of [4, Lemma 2] and [1, Theorem 13.VII], then the conjecture would not hold if L^{σ} were intermediate but not such that all operators in $\left[\Lambda\left(p^{-1}\right) \cap\right.$ [$\Lambda\left(q^{-1}\right)$] were in [$\left.L^{\sigma}\right]$. But, for $p=2, q=4, L^{\sigma} \equiv L^{2} \cap \Lambda\left(\frac{1}{3}\right)$ satisfies (2.35), while the mapping that sends f to

$$
\begin{equation*}
\left(\int_{0}^{\infty} \min \left(t^{-1 / 2}, t^{-3 / 4}\right) f(t) d t\right) \chi_{(0,1)} \tag{2.36}
\end{equation*}
$$

is in $[\Lambda(1 / 2)] \cap[\Lambda(1 / 4)]$, though not in $\left[L^{\sigma}\right]$.
2. It is easily seen that the mappings of Theorems 2.2 and 2.2^{\prime} do invert each other when restricted in the domain spaces to the L^{σ} or in the range spaces to the $L^{\tilde{\sigma}}$.
3. If T has kernel

$$
\begin{equation*}
\max \left[t^{1 / p-1}, t^{1 / q-1}\right], \quad 1<p \leq q<\infty, \tag{2.37}
\end{equation*}
$$

then it will be bounded between every reasonable pair of rearrangement invariant spaces; more precisely,

$$
\begin{equation*}
T \in[\Lambda(\psi), M(\phi)] . \tag{2.38}
\end{equation*}
$$

Indeed, (2.38) will be true for a general T of form (1.1) if and only if

$$
\begin{equation*}
\Phi(r s) \leq c \Phi(r) \Phi(s) \tag{2.39}
\end{equation*}
$$

$c>0$ being independent of $r, s>0$.

References

[^0]6. A. P. Calderón, Spaces between L^{1} and L^{∞} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.
7. R. A. Kerman, Generalized Hankel conjugate transformations on rearrangement invariant spaces, Trans. Amer. Math Soc., 232 (1977), 111-130.
8. -, Optimal pairs of function spaces associated by operators of weak-type, Manuscript.
9. W. A. J. Luxemburg and A. C. Zaanen, Riesz Spaces I, North-Holland Pub. Co., 1971.

Department of Mathematics
Brock University
St. Catharines, Ontario, L2S 3A1

[^0]: 1. N. Aronszajn and E. Gagliardo, Interpolation spaces and interpolation methods, Ann. Mat. Pura. Appl., 68 (1965), 51-118.
 2. C. Bennett, A Hausdorff-Young theorem for rearrangement-invariant spaces, Pac. J. Math., 47 (1973), 311-328.
 3. D. W. Boyd, The Hilbert transform on rearrangement-invariant spaces, Canad. J. Math., 19 (1967), 599-616.
 4. -, Indices of function spaces and their relationship to interpolation, Canad. J. Math., 21 (1969), 1245-1254.
 5. -, Spectra of convolution operators, Acta. Sci. Math. (Szeged), 35 (1973), 31-37.
