
Proceedings of Ike Edinburgh Mathematical Society (1999) 42, 143-153 ©

UNIQUE CONTINUATION AT INFINITY OF SOLUTIONS TO
SCHRODINGER EQUATIONS WITH COMPLEX-VALUED

POTENTIALS

by J. CRUZ-SAMPEDRO*

(Received 13th March 1997)

Dedicated to the memory of Professor Olgierd A. Biberstein (1921-1997)

We obtain optimal L2-lower bounds for nonzero solutions to —AV + V*¥ = E¥ in R", n > 2, E s R, where
V is a measurable complex-valued potential with V(x) = 0(1x1"') as |x| -»• co, for some i e R. We show that
if 36 = max(0, 1 - 2e) and exp(T|x|'+<)4/ e L2(R") for all T > 0, then ¥ has compact support. This result is
new for 0 < £ < 1/2 and generalizes similar results obtained by Meshkov for e = 0, and by Froese, Herbst,
M. Hoffmann-Ostenhof, and T. Hoffmann-Ostenhof for both e < 0 and e. > 1/2. These L2-lower bounds are
well known to be optimal for t > 1/2 while for t < 1/2 this last is only known for i = 0 in view of an example
of Meshkov. We generalize Meshkov's example for e < 1/2 and thus show that for complex-valued potentials
our result is optimal for all e e R.

1991 Mathematics subject classification: 35J1O, 35B40, 35B60, 81CO5.

1. Introduction

Let £ G R be given and suppose V is a measurable complex-valued function on R"
that satisfies

V{x) = O(|x|-£), as |x|->oo. (1.1)

In this paper we investigate the fastest possible rate of decay of the solutions to

- A * + V*¥ = EV, (1.2)

on R", where A is the Laplacian on R\ n > 2, and E e R. Without further assumptions
on V we prove:

Theorem 1. Let V, E, and e be as in (1.1) and (1.2) and let 35 = max{0, 1 - 2e}. Let
*P 6 fl^R") be a nonzero solution of (1.2) that satisfies
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exp^M14*)'? e L2(R") (1.3)

for all T > 0. Then 4* has compact support.

We view this theorem as a unique continuation at infinity result and prove it through
a Carleman-like estimate that generalizes work of Meshkov [10] for e = 0. A similar
result for both e < 0 and e > 1/2 has been obtained using different methods by Froese,
Herbst, T. Hoffmann-Ostenhof, and M. Hoffmann-Ostenhof [8]. It is well known that
Theorem 1 is optimal for e > 1/2 while for e < 1/2 this last is only known for e = 0 in
view of an example due to Meshkov [10]. We generalize Meshkov's example for
£ < 1/2 and prove:

Theorem 2. Let e < 1/2 and 5 > 0 satisfy 2e + 35 = 1. Then there exist a continuous
complex-valued function V on R2 satisfying (1.1), and a ^-function W which does not
have compact support and satisfies A*P = VW on R2 and

«F(x) = O(]txp(-P\x\l+t)). as |x|-+oo, (1.4)

for some ft > 0.

Thus, for complex-valued potentials Theorem 1 is optimal for all e e R.
The above results are closely related to the following question posed by B. Simon

[12]. Let V be a real-valued potential and suppose that *P # 0 satisfies
(-A + V - £)¥ = 0 in R". Is it true that if -A + V does not have compact resolvent,
then exp^lxl)*? 4 L2(Rn) for T > 0 sufficiently large? The answer to this question is not
known but a positive response is suggested by the sharp exponential upper and lower
bounds of different kinds already established for several classes of potentials [1, 2, 3, 4,
5, 6, 7, 8]. The results for 0 < e < 1/2 presented in this paper show that a proof of an
affirmative answer to Simon's question has to use in an essential way the fact that V is
real-valued, even if V(x) goes to zero as |x| goes to infinity.

The general strategy to prove Theorems 1 and 2 is that of Meshkov [10]; however,
the author also benefited from [11]. In Section 2 we obtain Carleman-like estimates
near infinity and use these to prove Theorem 1. In Section 3 we generalize Meshkov's
example.

2. Carleman-like estimates in exterior domains

Theorem 1 will be derived from the following Carleman-like estimate at infinity.

Lemma 2.1. Let p > 0, E e R, and 5 > 0 be given. Set Qp - {x e R" : |x| > p} and
fix K such that —35 < K < 2 — 5. Then there exist a constant K independent of x and
T0 > 0 such that for any v e CJJ°(Qp) and T > T0 we have
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SOLUTIONS TO SCHRODINGER EQUATIONS 145

f |x |"-"+>(*)l2 e x p ( 2 t | x O d x <*[ |xr+1-"|(A + E)v(x)\2 exp(2TW1+Vx. (2.1)
Jap T Jo,

Remark. The constant E in (2.1) is important only for 0 < 5 < 1/3.

Proof. Since E e R we may assume without loss of generality that v is real-valued.
Set r =\x\,o) = x/\x\, and a = 1 + 5. For T > 0 set u = exp(TV")i> and
At = exp(Tr")A exp(—xr"), where exp(Tr') and exp(—zr") are multiplication operators.
Using this notation we find that (2.1) is equivalent to

fr™+K-l\u\2drdco < 4 f r*\(\ + E)u\2drda>, (2.2)

where dco denotes the Lebesgue measure on S"~'. Defining L = 2xarx'] + 3r we have

L + At = %„ + fa?!*-2 + Y^- d, - ta(n + a - 2)r=-2 + \ A,

where A is the Laplace-Beltrami operator on the unit sphere S"~]. Setting ur = dFu and
integrating by parts with respect to r we obtain

fr*\(Ai+E)u\2drdco> IT*{\LU\2 - 2Lu(L + A, + E)u)drdco

= /VhVr2*1-*-2 + 2ia(a + K - 2n + iy+K-2)u2
rdrdco

+ 2ta f [(t2a2(3a + ic - 3)^"-*

- ra(2a - 3 + *)(n + a - 2)r2ot+K-4)«2

+ (a + K - 3)ra+K-4uAu - a£(a + K- l ) ^ " " ^ 2 ] ^ dco

K -

Since —35 < K < 2 — 6 and A is a negative operator on L2(S"~', dco) we have

/V|(A, + E)u\2drdco > f 2i3a\3d + K)T»**-W(\ + o(-X\drdco,

from which (2.2) follows.
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Proof of Theorem 1. Theorem 1 follows from (2.1) using standard arguments that
we sketch here for the sake of completeness. Let V, E, e, 6 and *F be as in Theorem 1.
Assuming that

s)dx < oo (2.3)

for all x > 0, we will prove that *F has compact support. Using L2-interior estimates
[9], it follows from (2.3) that

L exp(2z\x\l+i)dx < oo (2.4)

for all T > 0 and all multi-indices J? such that |/?| < 2. Let K be as in Lemma 2.1 and
fix p > 0 so that |V(x\) < C\x\~c for xeQp. A simple estimate, using (2.1) and
3d — max{0, 1 — 2e}, shows that there exist a constant K independent of T and TO > 0
such that for any v e CJJ°(QP) and t > T0 we have

|x|3a-"+>(x)|2exp(2T|x|1+V* < 4 / Ixr+I~"I(A- V + E)v(x)\2exp(2z\x\l+6)dx. (2.5)

Let h be a C°°-function on R" which takes values between 0 and 1, vanishes on
\x\ < p + 1/2, and equals 1 on |x| > p + 1. Let <p e CS°(R") be a function which equals 1
on |x| < 1 and set 4>,(x) = <f){x/X) for k > 0. An approximation argument shows that
(2.5) holds for every v e H2(R") with compact support contained in Qp. Hence (2.5)
holds on Qp for vx — (fj^Vh and therefore, using (2.4), for v = *FJi. Since *P satisfies (1.2)
and h(x) = 1 on Qp+i we obtain

f \x\>*-"+*\¥(x)\*dx < ^ f |x|K+1-"|(A - V + E)v(x)\2dx.
J(lp+\ ^ Jp<W<p+l

Letting T go to infinity in this last estimate we find that T = 0 on n,,+|.

3. Examples

Although the essential idea of the construction given below is that of Meshkov
[10], we present the details for the reader's convenience. For p > 0 we will denote by
A(a, /?) the annulus in R2 defined by p 4- ap°~W2 <r<p + /Jp0""'2.

Lemma 3.1. Let 5 > 0 and e e R satisfy 2e + 35 = 1. For a fixed and large p > 0 let
n and k be positive integers such that \n - pl+*| < 1 and \k - 6(1 + <5)p(l+l!)/2| <
1 -1- 205(1 + 5). Then there exist complex-valued functions u and V on A(0, 6) possessing
the following properties:
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(a) The function u is of class C2 and satisfies

Au+Vu = 0 onA(0,6). (3.1)

(b) There exists a constant C independent of p,n, and k such that

\V(r,9)\<Cre on/l(0,6). (3.2)

(c) For a constant a > 0 we have

I r~" exp(-i"n0) on A(0,0.1),

ar-"-k exp i(-n - k)9 on ,4(5.9, 6).
Therefore V = Qon the annuli 4(0, 0.1) and ,4(5.9,6).

(d) Let m{r) = max{|u(r, 0)\, 0 < 0 < 2n}. Then

logwi(r) - log m(p) < log2 - - / t*dt,

Proof of Theorem 2. First we fix a large p, > 0 and set pj+l = ps + 6pf~i)/2 for
j = 1,2, Then we set n, — [p)+s], where [x] — maxfn e Z : n < x], and kj = nj+l — r\y

Forj = 1, 2 , . . . we have n; = p]+s — ys, with 0 < y), < 1, and

= 6(1 + 5)pf+m + 18,5(1 + 8) j j

Therefore if p, is large we may assume that \k, - 6(1 + 5)pf+m\ < 1 + 2O<5(1 4- 6). For
j — 1,2,..., let a; be constants and ut and Vj be functions constructed on pf <r < pj+l

as in Lemma 3.1. Then Uj(pj,6) = pr"' exp(—in;0) and Uj(pj+l, 9) = a/p;+"i+l exp(-in;+10).
Since pj -*• oo as j -*• oo, then for r > p, we set V(r, 6) — Vj(r, 9) and ^(r , 0) = A-ufij, 6)
for Pj < r < p;+1, where we define At = aoax... at_u for j = 1,2,..., and a0 = 1. Clearly
V satisfies (1.2) and *P is of class C2 and satisfies -A*¥ + V*¥ — 0 on fiPi. To prove that
¥ satisfies (1.4) we set fi(r) - max{|vF(r, 9)\ : 0 < 6 < In) for r > p, and pick / such that
p,<r<pl+i. Then

= (logm,(r) - logm,(p,) + . . . + (logm,(p2) - logm,(p,)) + logm,(p,),

where mfr) is as in (d) of Lemma 3.1. Using (d) of this lemma we find that
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Iog/ i ( r )< / log2- - I t'dt-

Thus if 5 > 1 then log/i(r) < Cr0^72 - crl+i, and if 0 < 5 < 1 then log /i(r) < Cr - crl+*,
where C and c are positive constants. Therefore, since 5 > 0, for r sufficiently large we
have

0</z(r)<Cexp(-jSr1+i),

for some /? > 0. The functions F and *P defined above can easily be extended to R2 in
a way that Theorem 2 is satisfied.

Proof of Lemma 3.1. We will smoothly modify in four steps the function
u, = r~" exp(—ind) into a function u on A(0, 6) that satisfies (a), (b), (c), and (d). In this
proof C denotes a positive constant independent of p, k, and n.

I. The annulus /4(0, 2). For m = 0 ,1 , . . . ,2n + 2fe - 1 we set 9m = mT, where
T = 7t/(n + fe). Let / be a smooth T-periodic function on R such that f*f(B)dd = 0,
f{&) = -4k on [0, 775] U [4T/5, T], and -4fc < /(0) < 5fe and |/'(0)| < Ck/T, for
0 < 9 < T. Set

= / f(t)dt.
Jo

Clearly O is T- and 27t-periodic, and <D(0m) = 0. In addition, for 0 e R we have

|d>(0)| < 5k/(n + k), |(D'(0)| < 5k, and |<D"(0)| < Ckn, (3.3)

and

(D(0) = -4fc(0 - 0 J = -4fc0 + bm, for |0 - 0J < T/5. (3.4)

Set F(0) = (n + 2k)G + O(0), b = (p + p''-^2)"14, and u2 = -fcr-"+21 exp(iF(0)). Note that
|U|(r, 0)| = \u2(r, 0)| for r = p + p°~m; in addition, it follows from (3.4) that
u2 = -br"(""2i)exp(i(« - 2k)9 + ibj on the sectors

Sm = {(r, 0) : |0 - 9m\ < T/5}, m = 0, 1, . . . , 2n + 2k - 1.

On /4(0, 1/3) we have

M r , 0)1 = r*

l \ -2*
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Hence using the assumptions on k and p we obtain

l«2(r, 0)| < exp(-8)|U,(r, 6)\ on ,4(0, 1/3). (3.5)

Similarly

\u2(r, 0)| > exp(8)|U,(r, 9)\ on ,4(5/3,2). (3.6)

Let ilf,(r), i = l , 2 , be C°°-functions taking values between 0 and 1 such that if/i

vanishes for r > p + 1.9p(1"W2 and equals 1 for r < p + (5/3)p°~fl/2, î 2 vanishes for
r < p 4- (Up0-*'72 and equals 1 for r > p + (l/3)p(1-W2, and

l^!rtWI < Cp-^1"^2, r > 0; i = 1, 2; p = 1, 2. (3.7)

Define u = t^,u, + ip2u2. Clearly w is harmonic i n S s ,4(1/3, 5/3) n (USm). Now set

0 (r, 9) e S,
1 Au/u otherwise.

Clearly (3.1) holds on A(Q, 2). Next we show that |«| > 0 on A(0, 2)\S and that
(3.2) holds on A(0, 2).

On A(0, 1/3) we have

Au = i^2Au2 + 2i/f29,.u2 + ('A?/'' "I" ̂ 2)^2 (3-8)

and, using (3.5),

M > In,I - IU2I > \ I". I > exp(7)|M2| > 0. (3.9)

Similarly on X(5/3, 2) we have

Au = Au2 4- 2il/\drul + (il/\/r + ^")t*| (3.10)

and, using (3.6),

\u\ > |u2| - |u,| > exp(7)|w,| > 0. (3.11)

A short calculation shows that on A(0, 2) we have

[(4k + 2n + 0>')<D' - 8/cn id>"lCO
r2

Using (3.3) we obtain
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Ckn
| ||AM2| < — - | u 2 | .

Thus, by the assumptions on k, n, e, and <5, we have

\Au2\ < Cr~c\u2\ on .4(0,2). (3.12)

We also have

%-(|-^2|u2| < cr£|u2|

and

Combining these three last estimates, (3.8), and (3.9) we find that (3.2) holds on
A(0, 1/3). Analogously, using (3.10), (3.11), and (3.12), we have that (3.2) holds on
4(5/3, 2). It remains to show that \u\ > 0 and that (3.2) holds on

: 6m + 1 < 9 < 0m + ̂  j n A ( l / 3 , 5/3), m = 0 , . . . , 2 n + 2 f c - l .

For this purpose we set G(6) = F(6) + nO. On the annular sectors Pm we have

|ti| = |u, +u2\ = | U 2 | | exp( iG(0)) -^ | . (3.13)

We will show now that for some r\ > 0 we have

^ ^ , (r,0)ePm, m = 0, . . . ,2n + 2fc-1. (3.14)

Using this last, (3.12), and the fact that Au = Au2 on Pm we obtain \u\ > rj\u2\ and
therefore (3.2) holds on Pm. To prove (3.14) note that G(0) = 2(n + k)9 + <D(0) and
G'{0) — 2{n + k)+ f(6). Hence by the assumptions of / , k, and n we may assume that
G'(0) > n > 0. Since G(0m) = 2nm and G(0m+1) = 2n(m + 1) we conclude that

^ 2 7 r ( m + l ) - ^ for 0m+ | < 0 < 0 m + ^ .

Using the definition of T and the assumptions on k and n we find that

^ 2 n ( m + l ) - ^ for 0 m + - < 0 < 0 m + _ .
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It follows from this last estimate and (3.13) that (3.14) holds with r\ = sin(7r/7).
II. On A(2, 3) we deform u2 into u3 = -br~n+2ke\pi(-n + 2k)9. Let ij/(r) be a C°°-

function which takes values between 0 and 1, equals 1 for r < p + (7/3)p{l~S)/2, vanishes
for r > p + (8/3)p(|-fl/2, and satisfies (3.7). On A(2, 3) we set u = -brn+2k exp i(\j/(r)<b(9)
+(n + 2k)9) and V = Au/u. A short calculation shows that

- j ,
Using (3.3), the assumptions on i/'(rt, and the assumptions on k, n, e, and 5 we find that
\p'<t> = 0{\/r), that W = O(k), that i/f<D" = 0(/cn), and that <D(f/r + i//') = 0 ( 0 - Hence

Using again the assumptions on k, n, e, and 5 we find that (3.2) holds on A(2, 3).
III. On /4(3,4) we deform u3 into w4 = -br~(n+2k) exp i(n + 2k)9, where b is as in I

and d = (p + 3p°~fl/2)4\ Let ^ be a C°°-function which takes values between 0 and 1,
equals 1 for r < p + (10/3)p(1~l5)/2, vanishes for r > p + (1 l/3)p(1~lS)/2, and satisfies (3.7).
Next we define h(r) = \J/(r) + (1 — \j/(y))dr~*k. It is easily verified using the assumptions
on \j/t k, and 8 that h satisfies (3.7) and that

h(r) > dr-" > (1 + * , ^ > exp(-25(l + 5)).

Now we set u = u^h and V — Au/u, and verify as above that (3.2) holds on 4(3,4). In
addition, on A{\ 1/2,4) we have u = -bdr~("+2k) exp i(n + 2k)9.

IV. Finally on A(4,6) we deform u4 into u5 = ar~"~k exp i(—n - k)9, where
a = ferf(p + Sp^'*"2)^ and b and d are as in III. Note that a has been chosen so that
|u4(r, 0)| = |us(r, 0)| for r = p + Spix~m. Let tj/^r), i = 1,2, be C°°-functions taking
values between 0 and 1 and satisfying (3.7), such that \j/t vanishes for r > p + 5.9p°"fl/2

and equals 1 for r < p + (17/3)p(1"*)/2, and \j/2 vanishes for r < p + 4.lp°~S)/2 and equals
1 for r > p + (13/3)p°~a)/2. Now on A(4, 6) we set u = i^,u4 + t/r2u5. It is clear that u is
harmonic on /l(13/3, 17/3). Therefore we set V — 0 on this annulus. We verify as in I
that V = Au/u satisfies (3.2) on the remaining points of A(4, 6).

To finish this proof we set m{r) = max{|u(r, 0)|, 0 < 9 < 2p] and

M{r) =
br-^ p + pC-fl/J < r < p + 3 p < | - ' 5 ) / 2 ,

br-"+2kh(r) p + 3p(|-fl /2 < r < p + 4p^'2,

bdr—2* p + 4p"-«/2 < r < p + 5p(1-«/2,
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where a, b, and d are as in IV. It is clear that M(r) is a continuous piecewise smooth
function on [p, p + 6p{l~S)/2] that satisfies m(r) < 2M(r), m(p) = M(p), and

Therefore

r d \ r
\ogm(r) - \ogm(p) < l o g 2 + / — l o g M ( t ) d t < l o g 2 - - / dt,

Jp dr 6Ji
which proves Lemma 3.1.
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