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CUSP-LIKE FREE-SURFACE FLOWS
DUE TO A SUBMERGED SOURCE OR SINK
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Abstract

Solutions are found to several problems involving a line source or sink beneath a cusped
free surface, over several different impermeable bases. These are compared with known
exact and numerical solutions, and with other work, both theoretical and experimental, on
similar problems.

1. Introduction

Using conformal mapping techniques, Tuck and Vanden Broeck [8], subsequently
referred to as /, found a series solution to the problem of a line source or sink
situated beneath a free surface in a two-dimensional, steady, irrotational flow of
an incompressible, inviscid, infinitely deep fluid under gravity. They found that a
cusp-shaped free surface existed only for a single Froude number, namely 1.776.

To understand why flows of this type exist only at a single Froude number, we
must look at a slightly more general problem. If a sink is placed beneath the
interface between two fluids of different density, with the lighter fluid above, then
for any flow with a Froude number greater than some critical value, both fluids
will be drawn into the sink. In this situation, the angle of entry of the interface
into the sink will lie somewhere between zero and IT/2, and will tend toward the
latter as the Froude number tends to the critical value from above. Huber [5]
calculated several such flows in the case where the line sink is "located in the
bottom corner of a rectangular configuration with the upstream end extending to
infinity."
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(2) Free-surface flows due to a source 471

At and below this critical value of Froude number, the lighter fluid will remain
motionless, and the condition of constant pressure across the interface will reduce
to a condition of constant pressure on a free surface. The behaviour of the free
surface at these lower Froude numbers is unclear. Several earlier researchers [6],
[10] considered flows for small values of Froude number, where a stagnation
point exists above the source on the free surface. Short waves appear in these
stagnation-point flows, and these steepen as the Froude number increases.
Solutions of this type appear to exist only for values of Froude number less than
unity, leaving a region in the Froude number space about which little is known.

The cusp-like flows in which we are interested are the flows at the critical
Froude number, where the lighter fluid begins or ceases to flow.

Craya [2] (also in Yih [13], pages 124-126 and Tuck [9]) used an inverse
procedure first derived by Sautreaux [7], to find an exact solution to a similar
problem in which the source or sink is located on the top of an infinite triangular
"mountain" of apex angle 120°, beneath the free surface. Using an approximate
and intuitive argument, Craya produced an estimate for the solution to the
problem considered in /. The same argument can be used to make estimates for
the Froude number at which cusp-like solutions occur in the more general case
when the apex angle of the "mountain" lies between 0° (infinite depth) and 180°
(rigid horizontal plane). The right half of this flow is depicted in Figure 1.

Here we consider this problem using a numerical method based upon that used
in /. If we let the "mountain" apex angle be 2iry, then there are three cases of
particular interest. The problem in / occurs when y = 0, while for y = \ the
source is located on a rigid horizontal plane. The case y = \, i.e. for an apex
angle of 120°, is the same problem for which Craya found an exact solution, and
we can use it as an accuracy test for the numerical method.

FIGURE 1. The physical z-plane.
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In Section 4, we look at a related problem, where the source is situated above a
horizontal plane, and once again seek solutions with a cusped free surface. Gariel
[3], performed an experiment with a flow of this type to approximate the case
Y = 0, i.e. infinite depth, and test the prediction of Craya.

Note that although the mathematics is done for a source, the more applicable
case of a sink may be recovered by letting the source strength be negative.

2. An exact solution

In [9], Tuck derived an inverse procedure for generating solutions to free-surface
problems. The procedure is equivalent to those derived by Sautreaux [7] and
others (see Wehausen and Laitone [12], page 736).

The equation

for a suitable choice of Y(f), defines an exact flow with a free surface z(<f>, 0),
where/(z) = <f>(x, y) + itp(x, y) is a complex velocity potential.

Our task in this section is to examine the equations which result if we make the
substitution

= -aexp(-irf/m) (2)

in (1), and discover what type of fluid flow they describe. We will see that the
flow is like that described in the introduction, where a source is located on a
triangular "mountain" with an apex angle of 120° i.e. y = }• Since the method is
an inverse procedure, there is no systematic way to find a substitution Y(f)
which will provide an exact solution for other values of y, and hence such exact
solutions are unavailable to us.

Substituting (2) into (1) gives

z(f)--afiz(-%-togfi) (3)

where

and

Z'(G) = ieG + ec(-l + e"3 c)1 / 2 (5)

where g is the acceleration due to gravity.
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[41 Free-surface flows due to a source 473

The equations (3)-(5) are a little difficult to interpret, but we can transform
them to a more easily studied form. If we let

fT = f+ ™ log/? = £ log(4/(/ + I)'2) (6)

and substitute into equations (3)-(5), then nondimensionalize with respect to the
length (m2/lSir2g)l/J and the velocity (2wg/3w)1/3 we acquire two new equa-
tions in the nondimensional variables/^ and zN i.e.

fN{t) = log(4/(/ + I)"2) (7)

and

+ l ) - 4 / 3 ( ' - l ) (8)

which satisfy the nondimensional free-surface condition

yN + \fA*N)\2 = o (9)
o n \f/N = 0, <j> > 0.

It is convenient at this point to discard the subscript 'N' which denotes a
nondimensional variable, and henceforth assume all variables are in nondimen-
sional co-ordinates unless otherwise stated.

To ascertain the character of this inverse solution we must determine the nature
of the singularities at / = 0 and t = - 1 , and the boundaries of the flow domain.

As / tends toward zero, / -» log / and z + ihs -* const • / 2 / 3 where -ihs is the
value of z at t = 0, so that

and hence the flow is like a source of strength 3TT located at z = -ihs. Near the
point / = - 1 , / -» -21og(f + 1) and z -» const.(f + 1)"1/3, and therefore

/ - » 61ogz.

The transformation (7) maps/ = <f> + iip to the lower half of the unit circle. On
the real /-axis, i// takes the value of -IT for -1 < / < 0, and zero for 0 < / < 1. ̂  is
also zero on the lower semi-circumference of the unit circle, the line which
corresponds to the free surface. Observe that <// only changes value at the singular
points t — 0 and / = - 1 , which means that the lines which map from the z-plane
to the boundary of the lower half of the unit circle in the /-plane are stream
surfaces, and hence possible solid boundaries of the region of flow. (See Figures 2
and 3.)

In a fashion very similar to a Schwarz-Christoffel conformal mapping, the exact
solution relates the z-plane to the /-plane by a differential expression. The nature
of the singularities at / = 0 and / = -1 indicate that the z-plane is as for the case
Y = i discussed in the introduction, and shown in Figure 1.
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FIGURE 2. The complex velocity potential /-plane.

FIGURE 3. The r-plane.

The quantity m which appears in (2), can be seen from the length and velocity
scales to have the dimensions of a flux, and is in fact the dimensional strength of
the source per unit length.

The velocity field of the flow can be written

+ 1) (IV)

and since the cusp is located at / = 1, it is easily seen from the free-surface
condition (9) that the nondimensional depth hc of the cusp is

Hence

(11)

The source is located at / = 0, and it is possible, by integrating (11), to show that
the nondimensional depth of the source in the z-plane, Jis, is

where B denotes the Beta function [1].
To define the Froude number, let us return to the problem for general y for a

moment. The free-surface condition (9) for the general problem is a result of
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|6] Free-surface flows due to a source 475

nondimensionalization with respect to the length (w2(l - y)2/(8n2g))1/3 and the
velocity (mg(l - y)/w)1/3. We define the Froude number with respect to the
amount of fluid which flows into the flow domain. The flux from the source per
unit length is m, but fluid only flows out of the source from the region of interest
through an arc of TT(1 - y) radians. Thus the flux is (w/2)(l - y) into the right
half of the flow domain.

If we define the Froude number in terms of this quantity and the (dimensional)
depth of the source hs, i.e.

then in terms of the nondimensional source depth hs, the Froude number is
•2

(12)

Thus the Froude number corresponding to the exact solution i.e. for the case
= i, is

Craya assumed that only the flux from the source would alter if the angle y
were changed, so that he predicted

F c r = 3 ( l . 0 0 6 ) ( l - Y ) / 2 .

This assumption, while it does give a rough approximation to the actual value of
F for each y, is later shown to be incorrect.

3. Solution for arbitrary apex angle

In this section we develop a numerical scheme, based upon that in /, to
calculate solutions to the problem for values of y between zero and one half.

To begin, it is necessary to reintroduce the complex variable /, related by (7) to
/ . The relationship between z and t is chosen so that z is a power series in t of the
form

z(t) = -iX - iry(y - ±yl((t + I)2*"1 - l) £ ajtJ (13)
j-o

where the constant X and all of the coefficients ay, j = 0,1,2,..., are real. Note
that the source depth hs, i.e. the depth of the top of the "mountain", is equal to
the value of X.
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j

0
1
2
3

4
5
6

aj

Numerical

-0.6555
0.1748

-0.0169
\J.\J\J\J1.

-0.0031
0.0019

-0.0013

Exact

-0.6552
0.1747

-0.0170
0.0062

-0.0033
0.0020

-0.0014

TABLE 1. Comparison of the numerically calculated coefficients a, for N
from the exact solution at y — j .

55, with those calculated

Representing z(/) in this form rather than as a derivative, as in equation (8),
removes the necessity for numerical integration to find the value of z. The
disadvantage of this form is that since (8) cannot be integrated in closed form,
(13) does not reduce to a simple expression when y = j . It is possible, however, to
calculate all of the a, for the case y = j , by differentiating (13) and equating the
coefficients of tJ with those in (8). The first seven coefficients calculated in this
manner are shown in Table 1.

As we have seen (7) ensures that the boundaries of the lower half of the unit
circle in the /-plane are stream surfaces. Since X and the ay are real, (13) maps the
line x = 0 in the z = x + iy plane, to 0 < / «g 1, and the right hand side of the
sloping wall to -1 < t < 0. It is possible to consider x = 0 as a solid boundary
because it is a line of symmetry of the flow. The left hand side of the flow maps to
the upper half of the unit circle in the /-plane.

Thus all of the conditions on the flow are satisfied by (7) and (13) except that
of constant pressure on the free surface. In the /-plane this condition (9) can be
written as

on/ = e'w, 0 < 6 < IT.

Substituting (7) and (13) into (14) gives a set of equations for the unknown
coefficients aj of the series. Also, since we are searching for cusp-like solutions
only, we specify

5- = 0 at / = 1
dt

which gives an extra condition on the unknowns, namely

y-o
aj(U - 1 - 1) +(2y - = 0.

(15)

(16)
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The full problem then is to find X and all of the aJt j = 0 ,1 ,2 , . . . , such that
P(0\ dj) = 0 for 0 < 6 < ir, subject to (16), where

P{6\aj) = Y{6) + 4 ( Y - \f r~Aysin20[A2(8) + B2{6)\
and

Y(8) = -X-(y- I)"1 £ ay(r2ir-1cos(y- \)0 - cos(y -
7-0

00

A(8) — £ aj[(J ~ y){rc°s(j + y — \)6 - r2~2ycos jd)

+ (2y-l)cos(j + y)e],

B(9) = £ aj[(j - y){-rsin{j + y - \)d + r2-^sin jO)
7=0

and
r = 2 c o s ( « / 2 ) , 0 < « < 7 T . (17)

We cannot find an analytic solution to this problem, but if we truncate the
series to N terms, and consider M values of 6, we have a system of M equations,
plus the cusp condition (16), for the unknown coefficients. The system is
nonlinear, but we can solve it using Newtonian iteration.

Before proceeding to look at the details of the numerical procedure, we should
consider the special case where the source is located on a horizontal plane, i.e.
y = \, since, unlike the cases for y < \, the fluid at infinity is no longer a
stationary fluid, but a uniform flowing stream. The limiting case of (13) as y -» \
takes this fact into account, since as y -* \

and then as / -» -1
/-»-21og(r + l)

and

z - -2 £ a,.(-lVlog(/ + 1)
j-0

so that

where

U = £ a.(-\)J

17-0
is the stream velocity at infinity.

0 0 N - 1
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i.O

3.0
"g

1.0

0.0

N- oo (Exact)

10 20 30 50

FIGURE 4. Comparison of the rate of decay of the coefficients a, for increasing j calculated
numerically with/V = 55, and those calculated from the exact solution, at y = j .

To obtain solutions, at any value of y, we choose a set of M equally spaced,
discrete values of 6k, and iterate until P(0k\ aj) is less than some small number
(10~7 say) at all values of 6k. We solve the equations for some small value of N (5
say), and then use this set of coefficients as a starting guess for an increased value
ofiV.

The choice of M = N — 1 allows us to have X (and hence the Froude number)
as an input parameter. We would expect that no solution could be found for
general y and X since we expect steady solutions with a cusp to exist only at a
single Froude number for a given value of y. Several attempts at various values of
y and X failed to show any sign of convergence of the iterative scheme,
reinforcing this idea.

On the other hand, the choice M = N, which allows A" to be a variable of the
numerical problem, resulted in quite rapid convergence of the scheme for almost
all values of y, with less than four iterations required at each value of N. The
values of y for which convergence did not occur were those very close to y = \,
where the y — \ term in the denominator of z(t) becomes very small. This
difficulty was overcome in the case y — \ by using the mapping

z{t) = -iX - 2ir1/2log(t + 1) (18)
y=o

and substituting as before.
Calculations were found to be accurate to 3 figures for all values of y when we

chose TV = 55. In the case where y = 0, as in /, the solution converged to 5 figure
accuracy when only 30 coefficients of the series had been calculated.

The behaviour of the numerical calculations was similar for all values of y such
that 0 < y < \, and hence we may use the "exact" series solution at y = \ to
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2.70

' f 2.69

2.68

0.00}-

Exact Solution

20 60

FIGURE 5. Convergence of the numerical method to the exact solution for the case y = \, as N is
increased.

analyse our results. A comparison of the numerically and exactly calculated
coefficients for y = % is given in Table 1 and Figure 4. The graphical representa-
tion shows clearly how the truncation of the series to a finite number of terms
affects the results.

A Domb-Sykes plot [4] (see also [11]) of the exactly calculated series for y = %,
indicates that there is a branch-point singularity at / = - 1 , which means the
radius of convergence of the series is unity. It is this fact which accounts for the
relatively slow decay of the coefficients ay for large j . In fact, for large j , cij ~
0.006 (i).

The highly converged series solution, for the case y = 0, has a Domb-Sykes
plot which gives the nearest singularity to be near the point / = -1.4. The radius
of convergence of this series is greater than unity, and hence the coefficients
decay quickly to zero. This different behaviour at y = 0 suggests that perhaps the
inclusion of a sloping wall in the problem introduces a branch-point singularity at

N

10
20
30
40
50
60
65

oo (exact)

Source Depth

2.6782
2.6913
2.6934
2.6910
2.6894
2.6896
2.6901
2.6907

TABLE 2. Table showing the convergence of source depth toward the exact solution for increasing
values of N, for the case y = \.
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0.0 0.1 02 0.3 01 0.5

FIGURE 6. Comparison of Craya's results..., with ours—, for changing values of Y- Depths are
measured from the stagnation level.

0.86

0.76

0.00'
00 0.1 0.2 03 O.i 05

FIGURE 7. Ratio of cusp depth to source depth plotted against y, compared with Craya's estimate.

t = -I. Figure 5 shows graphically the oscillatory nature of the convergence of
the numerical scheme toward the exact solution for y = \. (See also Table 2.)

Bearing these facts in mind, we can now move to a discussion of the results for
general values of y. The Froude number at which the cusp-like solutions occur
was found to vary with y (Figure 6), and the variation of F and the source and
cusp depths with y is shown in Table 3. The error in the assumption of Craya is
perhaps most clearly illustrated in Figure 7, which shows the ratio of cusp depth
to source depth i.e. lic/~hs plotted against y. Craya's assumption implies that this

Angle y

0.0
0.25
0.33
0.45
0.50

Cusp Depth

1.3808
1.8256
2.0785
2.6586
3.6879

Source Depth

1.8426
2.3915
2.6894
3.3377
4.3163

F

1.7763
1.2013
1.0074
0.7286
0.4955

TABLE 3. Results for various values of bottom slope y, computed with 50 coefficients in the series.
Depths are measured from the stagnation level.
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112] Free-surface flows due to a source 481

ratio is constant for all values of y, but the results using the method in this paper,
clearly show an increase in this ratio as y increases.

The definition of F for all values of y with 0 < Y < h is based on the depth of
the source beneath the level of the fluid at infinity, which is the stagnation level.
For consistency, the stagnation level was also used as a base for depth measure-
ments for the case y = \, but, as mentioned previously, the fluid in this situation
does not have a stagnation region at infinity. A more useful definition of the
Froude number at y = \ would be one based upon a length scale taken as the
depth of the source beneath the level of the free surface at infinity, where the fluid
is flowing with a constant velocity Ux. The resulting value of the modified Froude
number is F = 1.44. Free-surface profiles for several values of y are shown in
Figures 8(a), (b).

la) O.O-i

-1.0

-2.0

Ib)

Free Surface

I
1.0 2.0 30 i.O

O.Oi

-1.0-

-2.0

FIGURE 8. Free-surface profiles for the source on (a) a rigid horizontal plane, (b) the top of a
mountain with an apex angle of 120°.

4. A source above a horizontal plane

In this section we consider a problem similar in nature to that discussed earlier,
but with a different wall geometry. Let the source now be situated at a finite
distance above an impermeable horizontal plane of infinite extent, as in Figure 9.
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ft/
00

_

c

B

Stagnation Level

Free Surface

FIGURE 9. Physical z-plane for a source above a horizontal plane.

We have calculated two limiting cases of this situation already; the case where the
bottom depth tends to infinity is as considered in /, and the situation where the
source lies on the horizontal plane is precisely the case y = \ in the previous
section of the present paper. Note that in this section, all of the depths are to be
measured from the level of the fluid at infinity, which is no longer the stagnation
level since the flow tends toward a uniform stream at large distances from the
source. All distances measured from the stagnation level will be denoted h*.

Once again we choose a series form for z(t) such that (7) ensures the
boundaries are stream surfaces, and then find a set of coefficients which satisfy
the free-surface condition. Without loss of generality we can change the constant
in Bernoulli's equation and thus replace (9) by

.v \2\f'{z)\~{«/hB) (19)

where hB is the depth of the plane, and therefore ir/hB = Ux, the velocity of the
uniform stream. Thus at large distances from the source |/ '(z)l
y -* 0 on the free surface. A suitable transformation for z(t) is

) 1 / 2 log(r + i ) £
7-0

7 - 1

LL and hence

(20)

for some constant c, 0 < c < 1. Note that points -c < t < 0 map to x = 0
beneath the source, t = -c maps to the stagnation point on the plane beneath the
source, and -1 < / < -c to points along the impermeable horizontal plane.

The geometry of the problem allows us to define the Froude number in two
ways, both of which are consistent with the definition already given. In fact, both
are useful parameters in analysing our results. We allow F to remain the Froude
number based on the depth of the source hs, and define a new parameter Fo,
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114] Free-surface flows due to a source 483

which we base on the depth of the plane hB, so that

I m2(l - y)2\1/2 U^ [im7

Note that this latter definition is the conventional one in hydraulics, founded
on free-stream velocity and fluid depth. Flows with Fo ^ 1 can be described as
super- and sub-critical respectively.

The numerical procedure itself is very similar to that in Section 3. A set of
nonlinear algebraic equations is formed by substituting (7) and (20) into (19) on
t = e~'e, 0 < 8 < ir, and truncating the series in (20) to a finite number of terms.
We then force the equation to hold at N distinct, equally spaced values of 8. We
once again use (15) to force the free surface to have a cusp shape, giving rise to
another equation.

Since only one Froude number will give rise to a cusp-like flow for each
geometrical configuration, we let c be an input parameter and K = JiB, and Jis be
output parameters.

The number of iterations required at each value of N is similar to the number
required in the situation with a sloping bottom, but the accuracy is only
two-figure at TV = 55, as can be seen in Table 4, which shows typical convergence
behaviour of the source depth h s as TV increases, for nonzero values of c.

20r ^
hB * 2.2

1.5V
0.0^-

0 20 CO 60
N

FIGURE 10. Convergence for increasing N for two cases with the source above the horizontal plane.

N
25
35
45
55

1.9538
1.9481
1.9441
1.9411

TABLE 4. Convergence of the source depth Ti, for a typical case where the source is situated above a
horizontal plane (c = 0.045, JiB = 2.2) for increasing values of W.
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Note that the convergence is monotonic, in contrast to the oscillatory conver-
gence seen in Section 3 (see Figures 5 and 10). The series coefficients for the two
situations behave in a very similar manner to each other; i.e. both have alternat-
ing signs and a similar rate of decay of the coefficients a, to zero for increasing j .
The fact that the case c = 0, where the source lies on the horizontal plane,
behaves like the sloping base problems in. this regard, indicates that the sudden
change in the nature of the convergence may be caused by the introduction of a
stagnation point on the plane beneath the source, i.e. at z = -ihB.

Calculations proceeded quite smoothly for values of c between zero and 0.3.
For values of c greater than 0.3, the numerical scheme began to converge much
more slowly toward a solution, making the results unreliable, and if the program
was run with c much greater than 0.35, no convergence at all was apparent.

It appears to be more than coincidence that the value of c = 0.3 corresponds
closely to a value of base depth Kcr = TiB = (2w2)1/3, which gives a Froude
number of Fo = 1. This means the numerical method breaks down in the
transition region between super- and sub-critical flows. This would suggest that
perhaps the method used in this paper will not handle the type of cusp-like flow
which exists in the region 0 < Fo < 1, if solutions do exist.

At Fo = 0, where the source is an infinite distance above the horizontal plane,
as in /, a highly accurate solution is available. One possibility might be that for
subcritical flow, Fo < 1, waves form on the free surface at infinity which have
decreasing amplitude for decreasing Fo, and which disappear completely at
Fo = 0.

Within the range of values of K for which our solutions are reliable i.e.
2.120 < K ^ Kcr = (2w2)1/3 there are several interesting features.

2.0

1.0

.0
0.0 1.0 7.5

FIGURE 11. Results for the source above the plane where 1 < Fo < 1.44, showing also the values for
the infinite depth case i.e. Fo = 0.
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Firstly, the depth of the horizontal plane beneath the stagnation level, Ji*B = JiB

+ (ir/Tig)2, has a minimum coinciding exactly with the situation in which Fo is
equal to unity. Differentiating^*B with respect to hB gives

which is zero when hB= (2TT2)1/3 = Kcr.
Another point of interest is revealed by the plot of cusp depth to source depth

Jtc/Jis (see Figure 11). Over the entire range of values of Fo, the depth of the cusp
remains between 70% and 80% of the source depth. This percentage is consistent
with the results obtained for the sloping-base problem.

Finally, we note the behavior of F for changing Fo. As Fo tends toward unity
from above, F increases up to 2.21, and this trend appears to continue into the
region where Fo < 1. The value of F at Fo = 0 is only 1.776, however, which is less
than F at Fo = 1, which means this trend must reverse in the region 0 < Fo < 1 if
steady solutions exist.

5. Conclusions

The amount of material in the literature with which we can compare our results
is limited. Craya [2] founded almost all of his relevant work on the exact solution
in Section 2, and his assumption that changes in boundary shape would cause
little or no change in flow behaviour. His predictions of F for the sloping base
problem are all less than about 15% different to those values calculated in the
present paper, but the usefulness of the assumption is doubtful for other flow
configurations, such as those in Section 4.

Gariel [3] performed experiments at Fo = 0.1 to compare with Craya's predict-
ion of F at Fo = 0, i.e. for the source in an infinitely "deep" fluid. His result that
F = 1.52, is very close to Craya's estimate of F = 1.51. However, the value
calculated to high accuracy in / is F = 1.78. Unfortunately, Fo = 0.1 lies in the
region where we were unable to obtain results, making comparison difficult.

Huber [5] used a relaxation method to calculate a series of the two fluid type
flows discussed in the introduction. When he took the limit of the Froude number
in the lower fluid as the upper fluid slowed, he obtained a value of F = 1.66 for
the flow corresponding to the situation with a source on a solid, horizontal plane,
beneath the free surface i.e. to y = \ in Section 3. The value obtained in the
present work was F = 1.44. It is interesting to note that the assumption of Craya
gives a value of F approximately half of these two values.

Note that the results of both Huber and Gariel give values of the Froude
number based on source depth, F, within the range of all solutions with nonzero
flow at infinity calculated in the present work i.e. 1.44 < F < 2.16.

https://doi.org/10.1017/S0334270000004665 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004665


486 G. C. Hocking [171

The method used in this paper and in /, appears to give very satisfactory results
for those flows which have a cusp, and no extraordinary behaviour, such as
waves, on the free surface. The transformations (13) and (20) for z(t) are not
unique, however, and better choices, which build in more of the flow behaviour,
almost certainly exist.

Finally, the results obtained do not seem to shed any light on why the cusp-like
flows change as they do for changes in the geometrical configuration of the solid
boundaries. A clue to the reasons may be given by the form of the sub-critical
flows, and work is continuing on this problem.
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